Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Polymer Nanocomposites: A Review on Recent Advances in the Field of Green Polymer Nanocomposites

Author(s): Anushree Saha*

Volume 20, Issue 6, 2024

Published on: 27 November, 2023

Page: [706 - 716] Pages: 11

DOI: 10.2174/0115734137274950231113050300

Price: $65

Abstract

In order to address environmental issues, polymer nanocomposites are becoming more and more popular because of their remarkable functionality. Their use in various fields is highlighted by their special physicochemical features (i.e., stability, high reactivity, robustness, regenerability, etc.), conductivity, electronic compatibility, quick interfacial contacts, simplicity of functionalization, simplicity of synthesis, interface-to-volume ratio, and low cost. Green polymer nanocomposites have drawn a lot of attention for use in a variety of applications to preserve the environment. Because they are made of eco-friendly materials, they are frequently utilised in the automobile, building, packaging, and medical industries. Eco-friendly solutions to the problems caused by plastic trash are biodegradable polymers produced from renewable sources (microbes, plants, and animals). Plant fibres and natural resins are combined to create green composite materials. These fibres and resins used in green composites can be broken down by bacteria. The mixing of natural fillers and organic polymers results in green polymer nanocomposites with distinct characteristics. This review is anticipated to be comprehensive, compelling, and practical for the scientists and business professionals who collaborate to address a variety of environmental problems on a global scale using green polymer nanocomposites.

Graphical Abstract

[1]
Yashas, S.R.; Shahmoradi, B.; Wantala, K.; Shivaraju, H.P. Potentiality of polymer nanocomposites for sustainable environmental applications: A review of recent advances. Polymer, 2021, 233, 124184.
[http://dx.doi.org/10.1016/j.polymer.2021.124184]
[2]
Puttegowda, M; Rangappa, SM; Jawaid, M; Shivanna, P; Basavegowda, Y; Saba, N Potential of natural/synthetic hybrid composites for aerospace applications. In: Sustainable composites for aerospace applications; Woodhead Publishing Series in Composites Science and Engineering, 2018; pp. 315-351.
[3]
Thambidurai, S.; Pandiselvi, K. Polyaniline/natural polymer composites and nanocomposites. In: Polyaniline Blends, Composites, and Nanocomposites; Elsevier, 2018; pp. 235-256.
[4]
Saha, A.; Kurrey, R.; Verma, S.K.; Deb, M.K. Cationic polystyrene resin bound silver nanocomposites assisted fourier transform infrared spectroscopy for enhanced catalytic reduction of 4-nitrophenol in aqueous medium. Chemistry, 2022, 4(4), 1757-1774.
[http://dx.doi.org/10.3390/chemistry4040114]
[5]
Basu, H.; Singh, S.; Venkatesh, M.; Pimple, M.V.; Singhal, R.K. Graphene oxide-MnO2-goethite microsphere impregnated alginate: A novel hybrid nanosorbent for As (III) and As (V) removal from groundwater. J. Water Process Eng., 2021, 42, 102129.
[http://dx.doi.org/10.1016/j.jwpe.2021.102129]
[6]
Satyanarayana, K.G.; Arizaga, G.G.C.; Wypych, F. Biodegradable composites based on lignocellulosic fibers—An overview. Prog. Polym. Sci., 2009, 34(9), 982-1021.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.12.002]
[7]
Leja, K.; Lewandowicz, G. Polymer biodegradation and biodegradable polymers—a review. Pol. J. Environ. Stud., 2010, 19, 255-266.
[8]
Saha, A.; Khalkho, B.R.; Deb, M.K. Au–Ag core–shell composite nanoparticles as a selective and sensitive plasmonic chemical probe for L -cysteine detection in Lens culinaris (lentils). RSC Advances, 2021, 11(33), 20380-20390.
[http://dx.doi.org/10.1039/D1RA01824H] [PMID: 35479888]
[9]
Sinha, S.R.; Bousmina, M. Biodegradable polymer/layered silicate nanocomposites. In: Polymer nanocomposites; Mai, Y.; Yu, Z., Eds.; Woodhead Publishing and Maney Publishing: Cambridge, England, 2006; pp. 57-129.
[http://dx.doi.org/10.1533/9781845691127.1.57]
[10]
Pandey, J.K.; Chu, W.S.; Lee, C.S.; Ahn, S.H. Preparation characterization and performance evaluation of nanocomposites from natural fiber reinforced biodegradable polymer matrix for automotive applications. Presented at the International Symposium on Polymers and the Environment: Emerging Technology and Science, BioEnvironmental Polymer Society (BEPS),, Vancouver, WA, USA172007.
[11]
Saha, A.; Deb, M.K.; Mahilang, M.; Kurrey, R.; Sinha, S. Polymeric resins as nano-catalysts: A brief review. J. Indian Chem. Soc., 2020, 97(9b), 1-3.
[12]
Garlotta, D. Aliterature review of poly(lactic acid). J. Polym. Environ., 2001, 9(2), 63-84.
[http://dx.doi.org/10.1023/A:1020200822435]
[13]
Saha, A.; Kurrey, R.; Deb, M.K.; Verma, S.K. Resin immobilized gold nanocomposites assisted surface enhanced infrared absorption (SEIRA) spectroscopy for improved surface assimilation of methylene blue from aqueous solution. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 262, 120144.
[http://dx.doi.org/10.1016/j.saa.2021.120144] [PMID: 34245966]
[14]
Gupta, B.; Revagade, N.; Hilborn, J. Poly(lactic acid) fiber: An overview. Prog. Polym. Sci., 2007, 32(4), 455-482.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.01.005]
[15]
Kimura, T.; Kurata, M.; Matsuo, T.; Matsubara, H.; Sakobe, T. Compression moulding of biodegradable composite using ramie/ PLA non-twisted commingled yarn. 5th global wood and natural fiber composites symposium, Kassel, Germany. April;20042004, , pp. 27-28.
[16]
Pan, P.; Zhu, B.; Kai, W.; Serizawa, S.; Iji, M.; Inoue, Y. Crystallization behavior and mechanical properties of bio-based green composites based on poly(L-lactide) and kenaf fiber. J. Appl. Polym. Sci., 2007, 105(3), 1511-1520.
[http://dx.doi.org/10.1002/app.26407]
[17]
Ochi, S. Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech. Mater., 2008, 40(4-5), 446-452.
[http://dx.doi.org/10.1016/j.mechmat.2007.10.006]
[18]
Tokoro, R.; Vu, D.M.; Okubo, K.; Tanaka, T.; Fujii, T.; Fujiura, T. How to improve mechanical properties of polylactic acid with bamboo fibers. J. Mater. Sci., 2008, 43(2), 775-787.
[http://dx.doi.org/10.1007/s10853-007-1994-y]
[19]
Goriparthi, B.K.; Suman, K.N.S.; Mohan Rao, N. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos., Part A Appl. Sci. Manuf., 2012, 43(10), 1800-1808.
[http://dx.doi.org/10.1016/j.compositesa.2012.05.007]
[20]
Masirek, R.; Kulinski, Z.; Chionna, D.; Piorkowska, E.; Pracella, M. Composites of poly(L -lactide) with hemp fibers: Morphology and thermal and mechanical properties. J. Appl. Polym. Sci., 2007, 105(1), 255-268.
[http://dx.doi.org/10.1002/app.26090]
[21]
Chowdhury, A.A. Poly-β-hydroxybutters€aure abbauende Bakterien und Exoenzym. Arch. Microbiol., 1963, 47(2), 167-200.
[PMID: 14106079]
[22]
Holmes, P.A.; Collins, S.H.; Wright, L.F. Process for separating nitrated phenolic compounds from other phenolic compounds. US Patent No. 4447654, 1984.
[23]
Barham, P.J. Nucleation behaviour of poly-3-hydroxy-butyrate. J. Mater. Sci., 1984, 19(12), 3826-3834.
[http://dx.doi.org/10.1007/BF00980744]
[24]
Holmes, P.A. Development in crystalline polymers II; Elsevier: London, 1988, pp. 1-65.
[25]
Kurrey, R.; Saha, A. An overview of SARS-CoV-2 and technologies for detection and ongoing treatments: a human safety initiative. COVID, 2022, 2(6), 731-751.
[http://dx.doi.org/10.3390/covid2060055]
[26]
Gatenholm, P.; Kubát, J.; Mathiasson, A. Biodegradable natural composites. I. Processing and properties. J. Appl. Polym. Sci., 1992, 45(9), 1667-1677.
[http://dx.doi.org/10.1002/app.1992.070450918]
[27]
Luo, S.; Netravali, A.N. Interfacial and mechanical properties of environment-friendly “green” composites made from pineapple fibers and poly(hydroxybutyrateco-valerate) resin. J. Mater. Sci., 1999, 34(15), 3709-3719.
[http://dx.doi.org/10.1023/A:1004659507231]
[28]
Saha, A.; Deb, M.K.; Mahilang, M.; Sinha, S. Intriguing clinical and pharmaceutical applications of IERs: A mini review. J. Ravishankar Univ., 2020, 33(1), 47-57.
[http://dx.doi.org/10.52228/JRUB.2020-33-1-7]
[29]
Tomka, I. Thermoplastic Starch. Adv. Exp. Med. Biol., 1991, 302, 627-637.
[http://dx.doi.org/10.1007/978-1-4899-0664-9_34] [PMID: 1746354]
[30]
de Carvalho, A.J.F.; Curvelo, A.A.S.; Agnelli, J.A.M. A first insight on composites of thermoplastic starch and kaolin. Carbohydr. Polym., 2001, 45(2), 189-194.
[http://dx.doi.org/10.1016/S0144-8617(00)00315-5]
[31]
Park, H.M.; Li, X.; Jin, C.Z.; Park, C.Y.; Cho, W.J.; Ha, C.S. Preparation and properties of bio-degradable thermoplastic starch/clay hybrids. Macromol. Mater. Eng., 2002, 287(8), 553-558.
[http://dx.doi.org/10.1002/1439-2054(20020801)287:8<553:AID-MAME553>3.0.CO;2-3]
[32]
Park, H.M.; Lee, W.K.; Park, C.Y.; Cho, W.J.; Ha, C.S. Environmentally friendly polymer hybrids. Part I: Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J. Mater. Sci., 2003, 38(5), 909-915.
[http://dx.doi.org/10.1023/A:1022308705231]
[33]
Wilhelm, H.M.; Sierakowski, M.R.; Souza, G.P.; Wypych, F. Starch films reinforced with mineral clay. Carbohydr. Polym., 2003, 52(2), 101-110.
[http://dx.doi.org/10.1016/S0144-8617(02)00239-4]
[34]
Xu, Y.; Zhou, J.; Hanna, M.A. Melt-intercalated starch acetate nanocomposite foams as affected by type of Organoclay. Cereal Chem., 2005, 82(1), 105-110.
[http://dx.doi.org/10.1094/CC-82-0105]
[35]
Park, H.M.; Liang, X.; Mohanty, A.K.; Misra, M.; Drzal, L.T. Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules, 2004, 37(24), 9076-9082.
[http://dx.doi.org/10.1021/ma048958s]
[36]
Ruan, D.; Zhang, L.; Zhang, Z.; Xia, X. Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films. J. Polym. Sci., B, Polym. Phys., 2004, 42(3), 367-373.
[http://dx.doi.org/10.1002/polb.10664]
[37]
Lin, K.F.; Hsu, C.Y.; Huang, T.S.; Chiu, W.Y.; Lee, Y.H.; Young, T.H. A novel method to prepare chitosan/montmorillonite nanocomposites. J. Appl. Polym. Sci., 2005, 98(5), 2042-2047.
[http://dx.doi.org/10.1002/app.22401]
[38]
Xu, Y.; Ren, X.; Hanna, M.A. Chitosan/clay nanocomposite film preparation and characterization. J. Appl. Polym. Sci., 2006, 99(4), 1684-1691.
[http://dx.doi.org/10.1002/app.22664]
[39]
Wang, S.F.; Shen, L.; Tong, Y.J.; Chen, L.; Phang, I.Y.; Lim, P.Q.; Liu, T.X. Biopolymer chitosan/montmorillonite nanocomposites: Preparation and characterization. Polym. Degrad. Stabil., 2005, 90(1), 123-131.
[http://dx.doi.org/10.1016/j.polymdegradstab.2005.03.001]
[40]
Darder, M.; Colilla, M.; Ruiz-Hitzky, E. Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem. Mater., 2003, 15(20), 3774-3780.
[http://dx.doi.org/10.1021/cm0343047]
[41]
Luo, S.; Netravali, A.N. Mechanical and thermal properties of environment-friendly? green? composites made from pineapple leaf fibers and poly(hydroxybutyrate-co-valerate) resin. Polym. Compos., 1999, 20(3), 367-378.
[http://dx.doi.org/10.1002/pc.10363]
[42]
Sharma, H.; Saha, A.; Mishra, A.K.; Rai, M.K.; Deb, M.K. Diazotized reagent for spectrophotometric determination of glyphosate pesticide in environmental and agricultural samples. J. Indian Chem. Soc., 2022, 99(7), 100483.
[http://dx.doi.org/10.1016/j.jics.2022.100483]
[43]
Nishino, T.; Takano, K.; Nakamae, K. Elastic modulus of the crystalline regions of cellulose polymorphs. J. Polym. Sci., B, Polym. Phys., 1995, 33(11), 1647-1651.
[http://dx.doi.org/10.1002/polb.1995.090331110]
[44]
Netravali, A.N.; Chabba, S. Composites get greener. Mater. Today, 2003, 6(4), 22-29.
[http://dx.doi.org/10.1016/S1369-7021(03)00427-9]
[45]
Wallenberger, F.T.; Weston, N.E. Natural fibers, plastics and composites; Kluwer Academic Publishers: Boston, 2004, pp. 321-344.
[http://dx.doi.org/10.1007/978-1-4419-9050-1]
[46]
Nam, S.; Netravali, A.N. Green composites. I. physical properties of ramie fibers for environment-friendly green composites. Fibers Polym., 2006, 7(4), 372-379.
[http://dx.doi.org/10.1007/BF02875769]
[47]
Netravali, A.N.; Blackburn, R.S. Biodegradable and sustainable fibers; Woodhead Publishing Limited: Cambridge, 2005.
[48]
Chabba, S.; Netravali, A.N. ‘Green’ composites Part 1: Characterization of flax fabric and glutaraldehyde modified soy protein concentrate composites. J. Mater. Sci., 2005, 40(23), 6263-6273.
[http://dx.doi.org/10.1007/s10853-005-3142-x]
[49]
Kurrey, R.; Saha, A.; Sinha, S.; Sahu, Y.; Khute, M.; Sahu, B.; Deb, MK. Recent advances on analytical methodologies for screening and detection of biophenols and their challenges: A brief review. Results Chem., 2022, 4, 100456.
[http://dx.doi.org/10.1016/j.rechem.2022.100456]
[50]
Netravali, A.N. Towards advanced green composites. Proceeding of international workshop on green composites, , pp. 16-17.MarchKyoto, Japan2005
[51]
Otaigbe, J.U.; Adams, D.O. Bioabsorbable soy protein plastic composites: Effect of polyphosphate fillers on water absorption and mechanical properties. J. Environ. Polym. Degrad., 1997, 5(4), 199-208.
[http://dx.doi.org/10.1007/BF02763664]
[52]
Rhim, J.W.; Ng, P.K.W. Natural biopolymer-based nanocomposite films for packaging applications. Crit. Rev. Food Sci. Nutr., 2007, 47(4), 411-433.
[http://dx.doi.org/10.1080/10408390600846366] [PMID: 17457725]
[53]
Leonardi, A.; Bucolo, C.; Romano, G.L.; Platania, C.B.M.; Drago, F.; Puglisi, G.; Pignatello, R. Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles. Int. J. Pharm., 2014, 470(1-2), 133-140.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.061] [PMID: 24792979]
[54]
Ren, R.; Lim, C.; Li, S.; Wang, Y.; Song, J.; Lin, T.W.; Muir, B.W.; Hsu, H.Y.; Shen, H.H. Recent advances in the development of lipid-, metal-, carbon-, and polymer-based nanomaterials for antibacterial applications. Nanomaterials (Basel), 2022, 12(21), 3855.
[http://dx.doi.org/10.3390/nano12213855] [PMID: 36364631]
[55]
Yang, D.; Pornpattananangkul, D.; Nakatsuji, T.; Chan, M.; Carson, D.; Huang, C.M.; Zhang, L. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials, 2009, 30(30), 6035-6040.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.033] [PMID: 19665786]
[56]
Anton, N.; Benoit, J.P.; Saulnier, P. Design and production of nanoparticles formulated from nano-emulsion templates—A review. J. Control. Release, 2008, 128(3), 185-199.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.007] [PMID: 18374443]
[57]
Sadiq, S.; Imran, M.; Habib, H.; Shabbir, S.; Ihsan, A.; Zafar, Y.; Hafeez, F.Y. Potential of monolaurin based food-grade nano-micelles loaded with nisin Z for synergistic antimicrobial action against Staphylococcus aureus. Lebensm. Wiss. Technol., 2016, 71, 227-233.
[http://dx.doi.org/10.1016/j.lwt.2016.03.045]
[58]
Taylor, E.N.; Kummer, K.M.; Dyondi, D.; Webster, T.J.; Banerjee, R. Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids. Nanoscale, 2014, 6(2), 825-832.
[http://dx.doi.org/10.1039/C3NR04270G] [PMID: 24264141]
[59]
Hatae, A.C.; Roque-Borda, C.A.; Pavan, F.R. Strategies for lipid-based nanocomposites with potential activity against Mycobacterium tuberculosis: microbial resistance challenge and drug delivery trends; OpenNano, 2023, p. 100171.
[60]
Avella, M.; Buzarovska, A.; Errico, M.; Gentile, G.; Grozdanov, A. Eco-challenges of bio based polymer composites. Materials , 2009, 2(3), 911-925.
[http://dx.doi.org/10.3390/ma2030911]
[61]
Agarwal, M.; Xing, Q.; Shim, B.S.; Kotov, N.; Varahramyan, K.; Lvov, Y. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers. Nanotechnology, 2009, 20(21), 215602.
[http://dx.doi.org/10.1088/0957-4484/20/21/215602] [PMID: 19423933]
[62]
Lee, K.B. Two-step activation of paper batteries for high power generation: Design and fabrication of biofluid- and water-activated paper batteries. J. Micromech. Microeng., 2006, 16(11), 2312-2317.
[http://dx.doi.org/10.1088/0960-1317/16/11/009]
[63]
Luckachan, G.E.; Pillai, C.K.S. Biodegradable polymers-a review on recent trends and emerging perspectives. J. Polym. Environ., 2011, 19(3), 637-676.
[http://dx.doi.org/10.1007/s10924-011-0317-1]
[64]
Teeri, T.T.; Brumer, H., III; Daniel, G.; Gatenholm, P. Biomimetic engineering of cellulose-based materials. Trends Biotechnol., 2007, 25(7), 299-306.
[http://dx.doi.org/10.1016/j.tibtech.2007.05.002] [PMID: 17512068]
[65]
Qu, P.; Gao, Y.; Wu, G.; Zhang, L. Nanocomposites of poly(lactic acid) reinforced with cellulose nanofibrils. BioResources, 2010, 5(3), 1811-1823.
[http://dx.doi.org/10.15376/biores.5.3.1811-1823]
[66]
Kim, H.W.; Li, L.H.; Lee, E.J.; Lee, S.H.; Kim, H.E. Fibrillar assembly and stability of collagen coating on titanium for improved osteoblast responses. J. Biomed. Mater. Res. A, 2005, 75A(3), 629-638.
[http://dx.doi.org/10.1002/jbm.a.30463] [PMID: 16106439]
[67]
Rammelt, S.; Illert, T.; Bierbaum, S.; Scharnweber, D.; Zwipp, H.; Schneiders, W. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials, 2006, 27(32), 5561-5571.
[http://dx.doi.org/10.1016/j.biomaterials.2006.06.034] [PMID: 16879866]
[68]
Morra, M.; Cassinelli, C.; Meda, L.; Fini, M.; Giavaresi, G.; Giardino, R. Surface analysis and effects on interfacial bone microhardness of collagen-coated titanium implants: A rabbit model. Int. J. Oral Maxillofac. Implants, 2005, 20(1), 23-30.
[PMID: 15747670]
[69]
Murata, M.; Maki, F.; Sato, D.; Shibata, T.; Arisue, M. Bone augmentation by onlay implant using recombinant human BMP-2 and collagen on adult rat skull without periosteum. Clin. Oral Implants Res., 2000, 11(4), 289-295.
[http://dx.doi.org/10.1034/j.1600-0501.2000.011004289.x] [PMID: 11168221]
[70]
Koide, M.; Osaki, K.; Konishi, J.; Oyamada, K.; Katakura, T.; Takahashi, A.; Yoshizato, K. A new type of biomaterial for artificial skin: Dehydrothermally cross-linked composites of fibrillar and denatured collagens. J. Biomed. Mater. Res., 1993, 27(1), 79-87.
[http://dx.doi.org/10.1002/jbm.820270111] [PMID: 8421002]
[71]
Chen, G.Q.; Wu, Q. Microbial production and applications of chiral hydroxyalkanoates. Appl. Microbiol. Biotechnol., 2005, 67(5), 592-599.
[http://dx.doi.org/10.1007/s00253-005-1917-2] [PMID: 15700123]
[72]
Williams, S.F.; Martin, D.P.; Horowitz, D.M.; Peoples, O.P. PHA applications: Addressing the price performance issue. Int. J. Biol. Macromol., 1999, 25(1-3), 111-121.
[http://dx.doi.org/10.1016/S0141-8130(99)00022-7] [PMID: 10416657]
[73]
Na, K.; Shin, D.; Yun, K.; Park, K.H.; Lee, K.C. Conjugation of heparin into carboxylated pullulan derivatives as an extracellular matrix for endothelial cell culture. Biotechnol. Lett., 2003, 25(5), 381-385.
[http://dx.doi.org/10.1023/A:1022442129375] [PMID: 12882557]
[74]
Suzuki, S.; Kawai, K.; Ashoori, F.; Morimoto, N.; Nishimura, Y.; Ikada, Y. Long-term follow-up study of artificial dermis composed of outer silicone layerand inner collagen sponge. Br. J. Plast. Surg., 2000, 53(8), 659-666.
[http://dx.doi.org/10.1054/bjps.2000.3426] [PMID: 11090321]
[75]
Liu, M.; Zhang, Y.; Wu, C.; Xiong, S.; Zhou, C. Chitosan/halloysite nanotubes bionanocomposites: Structure, mechanical properties and biocompatibility. Int. J. Biol. Macromol., 2012, 51(4), 566-575.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.06.022] [PMID: 22743347]
[76]
Hajiali, H.; Karbasi, S.; Hosseinalipour, M.; Rezaie, H.R. Preparation of a novel biodegradable nanocomposite scaffold based on poly (3-hydroxybutyrate)/bioglass nanoparticles for bone tissue engineering. J. Mater. Sci. Mater. Med., 2010, 21(7), 2125-2132.
[http://dx.doi.org/10.1007/s10856-010-4075-8] [PMID: 20372984]
[77]
Okamoto, M.; John, B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci., 2013, 38(10-11), 1487-1503.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.06.001]
[78]
Saravanan, D.U.V. Protection textile materials. AUTEX Res. J., 2007, 7, 53-62.
[79]
Smith, G.J.; Miller, I.J.; Clare, J.F.; Diffey, B.L. The effect of UV absorbing sunscreens on the reflectance and the consequent protection of skin. Photochem. Photobiol., 2002, 75(2), 122-125.
[http://dx.doi.org/10.1562/0031-8655(2002)075<0122:TEOUAS>2.0.CO;2] [PMID: 11883599]
[80]
Hambardzumyan, A.; Foulon, L.; Chabbert, B.; Aguié-Béghin, V. Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties. Biomacromolecules, 2012, 13(12), 4081-4088.
[http://dx.doi.org/10.1021/bm301373b] [PMID: 23088655]
[81]
Song, Q.; Winter, W.; Bujanovic, B.; Amidon, T. Nanofibrillated cellulose (NFC): A high value co-product that improves the economics of cellulosic ethanol production. Energies, 2014, 7(2), 607-618.
[http://dx.doi.org/10.3390/en7020607]
[82]
Jiang, Y.; Song, Y.; Miao, M.; Cao, S.; Feng, X.; Fang, J.; Shi, L. Transparent nanocellulose hybrid films functionalized with ZnO nanostructures for UV-blocking. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3(26), 6717-6724.
[http://dx.doi.org/10.1039/C5TC00812C]
[83]
Hoareau, W.; Oliveira, F.B.; Grelier, S.; Siegmund, B.; Frollini, E.; Castellan, A. Fiberboards based on sugarcane bagasse lignin and fibers. Macromol. Mater. Eng., 2006, 291(7), 829-839.
[http://dx.doi.org/10.1002/mame.200600004]
[84]
Cerrutti, B.M.; de Souza, C.S.; Castellan, A.; Ruggiero, R.; Frollini, E. Carboxymethyl lignin as stabilizing agent in aqueous ceramic suspensions. Ind. Crops Prod., 2012, 36(1), 108-115.
[http://dx.doi.org/10.1016/j.indcrop.2011.08.015]
[85]
Ling, Z.; Chen, J.; Wang, X.; Shao, L.; Wang, C.; Chen, S.; Guo, J.; Yong, Q. Nature-inspired construction of iridescent CNC/Nano-lignin films for UV resistance and ultra-fast humidity response. Carbohydr. Polym., 2022, 296, 119920.
[http://dx.doi.org/10.1016/j.carbpol.2022.119920] [PMID: 36087975]
[86]
Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev., 2010, 110(6), 3479-3500.
[http://dx.doi.org/10.1021/cr900339w] [PMID: 20201500]
[87]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[88]
Nerenberg, K.A.; Zarnke, K.B.; Leung, A.A.; Dasgupta, K.; Butalia, S.; McBrien, K.; Harris, K.C.; Nakhla, M.; Cloutier, L.; Gelfer, M.; Lamarre-Cliche, M.; Milot, A.; Bolli, P.; Tremblay, G.; McLean, D.; Padwal, R.S.; Tran, K.C.; Grover, S.; Rabkin, S.W.; Moe, G.W.; Howlett, J.G.; Lindsay, P.; Hill, M.D.; Sharma, M.; Field, T.; Wein, T.H.; Shoamanesh, A.; Dresser, G.K.; Hamet, P.; Herman, R.J.; Burgess, E.; Gryn, S.E.; Grégoire, J.C.; Lewanczuk, R.; Poirier, L.; Campbell, T.S.; Feldman, R.D.; Lavoie, K.L.; Tsuyuki, R.T.; Honos, G.; Prebtani, A.P.H.; Kline, G.; Schiffrin, E.L.; Don-Wauchope, A.; Tobe, S.W.; Gilbert, R.E.; Leiter, L.A.; Jones, C.; Woo, V.; Hegele, R.A.; Selby, P.; Pipe, A.; McFarlane, P.A.; Oh, P.; Gupta, M.; Bacon, S.L.; Kaczorowski, J.; Trudeau, L.; Campbell, N.R.C.; Hiremath, S.; Roerecke, M.; Arcand, J.; Ruzicka, M.; Prasad, G.V.R.; Vallée, M.; Edwards, C.; Sivapalan, P.; Penner, S.B.; Fournier, A.; Benoit, G.; Feber, J.; Dionne, J.; Magee, L.A.; Logan, A.G.; Côté, A.M.; Rey, E.; Firoz, T.; Kuyper, L.M.; Gabor, J.Y.; Townsend, R.R.; Rabi, D.M.; Daskalopoulou, S.S. Hypertension Canada’s 2018 guidelines for diagnosis, risk assessment, prevention, and treatment of hypertension in adults and children. Can. J. Cardiol., 2018, 34(5), 506-525.
[http://dx.doi.org/10.1016/j.cjca.2018.02.022] [PMID: 29731013]
[89]
Ibn Yaich, A.; Edlund, U.; Albertsson, A.C. Wood hydrolysate barriers: Performance controlled via selective recovery. Biomacromolecules, 2012, 13(2), 466-473.
[http://dx.doi.org/10.1021/bm201518d] [PMID: 22181657]
[90]
Arora, A.; Padua, G.W. Review: Nanocomposites in food packaging. J. Food Sci., 2010, 75(1), R43-R49.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01456.x] [PMID: 20492194]
[91]
Bhawani, S.A.; Bhat, A.H.; Ahmad, F.B.; Ibrahim, M.N. Green polymer nanocomposites and their environmental applications. In: Polymer-based Nanocomposites for Energy and Environmental Applications,; , 2018; pp. 617-633.
[http://dx.doi.org/10.1016/B978-0-08-102262-7.00023-4]
[92]
Burdock, G.A. Safety assessment of hydroxypropyl methylcellulose as a food ingredient. Food Chem. Toxicol., 2007, 45(12), 2341-2351.
[http://dx.doi.org/10.1016/j.fct.2007.07.011] [PMID: 17723258]
[93]
Yu, J.; Cui, G.; Wei, M.; Huang, J. Facile exfoliation of rectorite nanoplatelets in soy protein matrix and reinforced bionanocomposites thereof. J. Appl. Polym. Sci., 2007, 104(5), 3367-3377.
[http://dx.doi.org/10.1002/app.25969]
[94]
Khalkho, B.R.; Saha, A.; Sahu, B.; Deb, M.K. Simple and cost effective polymer modified gold nanoparticles based on colorimetric determination of l-cysteine in food samples. J. Ravishankar Univ., 2021, 34(1), 41-57.
[http://dx.doi.org/10.52228/JRUB.2021-34-1-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy