Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Review Article

Recent Advances in Enzyme Inhibition: A Pharmacological Review

Author(s): Kuldeep Singh*, Bharat Bhushan, Nidhi Mittal, Abhishek Kushwaha, Chandan Kumar Raikwar, Arun Kumar Sharma, Dilip Kumar Chanchal, Shivendra Kumar and Mohit Agrawal

Volume 20, Issue 1, 2024

Published on: 27 November, 2023

Page: [2 - 19] Pages: 18

DOI: 10.2174/0115734080271639231030093152

Price: $65

Abstract

Enzyme inhibition is a crucial mechanism for regulating biological processes and developing therapeutic interventions. This pharmacological review summarizes recent advances in enzyme inhibition, focusing on key developments and their implications for drug discovery and therapeutic strategies. It explains basic ideas, including the different kinds of inhibitors and how they work, and looks at recent advances in small-molecule inhibitor design, fragment-based drug discovery, and virtual screening techniques. The review also highlights the advances in targeting specific enzyme families, explaining the structural basis of enzyme-inhibitor interactions, optimizing inhibitor potency, selectivity, and pharmacokinetic properties, and new trends in enzyme inhibition. The clinical implications of recent advances in enzyme inhibition include the development of novel therapeutic agents for diseases like cancer, infectious diseases, and neurological disorders. The review addresses challenges and future directions in the field, such as optimizing drug safety, resistance mechanisms, and personalized medicine approaches. Overall, the insights provided in this review may inspire further research and collaborations to accelerate the translation of enzyme inhibitors into effective clinical treatments.

Graphical Abstract

[1]
Robinson PK. Enzymes: Principles and biotechnological applications. Essays Biochem 2015; 59: 1-41.
[http://dx.doi.org/10.1042/bse0590001]
[2]
de la Fuente M, Lombardero L, Gómez-González A, Solari C, Angulo-barturen I, Acera A. Enzyme therapy: Current challenges and future perspectives. Int J Mol Sci 2021; 22(17): 9181.
[3]
Tandon A, Kuriappan JA, Dubey V. Translocation tales: Unraveling the MYC deregulation in burkitt lymphoma for innovative therapeutic strategies. Lymphat 2023; 1: 97-117. [Available from: https://www.mdpi.com/2813-3307/1/2/10/htm
[4]
Geronikaki A. Recent trends in enzyme inhibition and activation in drug design. Molecules 2021; 26(1): 17.
[5]
Kabanov AV, Gendelman HE. Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci 2007; 32(8-9): 1054.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.014]
[6]
Lin X, Li X, Lin X. A review on applications of computational methods in drug screening and design. Mol 2020; 25(6): 1375.
[http://dx.doi.org/10.3390/molecules25061375]
[7]
Qu Y, Ye J, Lin B, Luo Y, Zhang X. Organ mimicking technologies and their applications in drug discovery. Intell Pharm 2023; 1(2): 73-89.
[http://dx.doi.org/10.1016/j.ipha.2023.05.003]
[8]
Holdgate GA, Meek TD, Grimley RL. Mechanistic enzymology in drug discovery: A fresh perspective. Nat Rev Drug Discov 2017; 172(2): 115-32. [Available from https://www.nature.com/articles/nrd.2017.219
[9]
Wiltschi B, Cernava T, Dennig A, et al. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40: 107520.
[http://dx.doi.org/10.1016/j.biotechadv.2020.107520] [PMID: 31981600]
[10]
Spicer AJ, Colcomb PA, Kraft A. Mind the gap: Closing the growing chasm between academia and industry. Nat Biotechnol 2022; 40(11): 1693-6.
[http://dx.doi.org/10.1038/s41587-022-01543-4]
[11]
Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel M. The growing role of precision and personalized medicine for cancer treatment. Technology 2018; 6(3-4): 79.
[http://dx.doi.org/10.1142/S2339547818300020]
[12]
Singh K, Gupta JK, Pathak D, Kumar S. The use of enzyme inhibitors in drug discovery: Current strategies and future prospects. Curr Enzym Inhib 2023; 19(3): 157-66.
[http://dx.doi.org/10.2174/1573408019666230731113105]
[13]
Rufer AC. Drug discovery for enzymes. Drug Discov Today 2021; 26(4): 875-86.
[http://dx.doi.org/10.1016/j.drudis.2021.01.006] [PMID: 33454380]
[14]
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X. NAD+ metabolism: Pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther 2020; 5(1): 1-37. Available from: https://www.nature.com/articles/s41392-020-00311-7 (cited 2023 Jul 26).
[15]
Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr Neuropharmacol 2013; 11(3): 315.
[16]
Delaune KP, Alsayouri K. Physiology, Noncompetitive Inhibitor. StatPearls 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545242/(cited 2023 May 15).
[17]
Blat Y. Non-competitive inhibition by active site binders. Chem Biol Drug Des 2010; 75(6): 535-40.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00972.x] [PMID: 20374252]
[18]
Boulton S, Selvaratnam R, Blondeau JP, Lezoualc’h F, Melacini G. Mechanism of selective enzyme inhibition through uncompetitive regulation of an allosteric agonist. J Am Chem Soc 2018; 140(30): 9624-37.
[http://dx.doi.org/10.1021/jacs.8b05044] [PMID: 30016089]
[19]
Tuley A, Fast W. The taxonomy of covalent inhibitors. Biochemistry 2018; 57(24): 3326-37.
[http://dx.doi.org/10.1021/acs.biochem.8b00315]
[20]
Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27(1): 1-30. Available from: https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-019-0592-z(cited 2023 Jul 26).
[21]
Geronikaki A, Eleutheriou PT. Enzymes and enzyme inhibitors: Applications in medicine and diagnosis. Int J Mol Sci 2023; 24(6): 5245.
[22]
Lewis T, Stone WL. Biochemistry, Proteins Enzymes. StatPearls 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554481/(cited 2023 Jul 26).
[23]
Lopina OD, Lopina OD. Enzyme Inhibitors and Activators. Enzym Inhib Act. Intechopen 2017.
[http://dx.doi.org/10.5772/67248]
[24]
Meghwanshi GK, Kaur N, Verma S, et al. Enzymes for pharmaceutical and therapeutic applications. Biotechnol Appl Biochem 2020; 67(4): 586-601.
[http://dx.doi.org/10.1002/bab.1919] [PMID: 32248597]
[25]
Goyal A, Cusick AS, Thielemier B. ACE Inhibitors. In: StatPearls. Treasure Island, (FL): StatPearls Publishing 2022.
[26]
Zarghi A, Arfaei S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran J Pharm Res 2011; 10(4): 655.
[27]
Patel MS, Harris RA. Metabolic regulation. Encycl Cell Biol 2016; 1: 288-97.
[http://dx.doi.org/10.1016/B978-0-12-394447-4.10034-3]
[28]
Strelow J, Dewe W, Iversen PW, Brooks HB, Radding JA, McGee J. Mechanism of Action Assays for Enzymes. In: Assay Guidance Manual. Bethesda, (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences 2012.
[29]
Uddin TM, Chakraborty AJ, Khusro A, et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health 2021; 14(12): 1750-66.
[http://dx.doi.org/10.1016/j.jiph.2021.10.020] [PMID: 34756812]
[30]
Mohs RC, Greig NH. Drug discovery and development: Role of basic biological research. Alzheimer’s Dement Transl Res Clin Interv 2017; 3(4): 651.
[31]
Souto AL, Sylvestre M, Tölke ED, Tavares JF, Barbosa-Filho JM, Cebrián-Torrejón G. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules 2021; 26(16): 4835.
[32]
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6(1): 1-48.
[http://dx.doi.org/10.1038/s41392-021-00572-w]
[34]
Palmer T, Bonner PL. Enzyme Inhibition. Enzymes 2011; 126-52.
[http://dx.doi.org/10.1533/9780857099921.2.126]
[35]
Fournié-Zaluski MC, Coric P, Turcaud S, et al. Mixed-inhibitor-prodrug as a new approach toward systemically active inhibitors of enkephalin-degrading enzymes. J Med Chem 1992; 35(13): 2473-81.
[http://dx.doi.org/10.1021/jm00091a016] [PMID: 1352352]
[36]
Ghosh AK, Samanta I, Mondal A, Liu WR. Covalent inhibition in drug discovery. ChemMedChem 2019; 14(9): 889.
[http://dx.doi.org/10.1002/cmdc.201900107]
[37]
Roemer T, Davies J, Giaever G, Nislow C. Bugs, drugs and chemical genomics. Nat Chem Biol 2012; 8(1): 46-56.
[http://dx.doi.org/10.1038/nchembio.744] [PMID: 22173359]
[38]
Edrada-Ebel RA, Jaspars M. The 9th european conference on marine natural products. Mar Drugs 2015; 13: 7150-249. [Available from https://www.mdpi.com/1660-3397/13/12/7059/htm
[39]
Dahlin JL, Walters MA. The essential roles of chemistry in high-throughput screening triage. Future Med Chem 2014; 6(11): 1265.
[http://dx.doi.org/10.4155/fmc.14.60]
[40]
Mons E, Roet S, Kim RQ, Mulder MPC. A comprehensive guide for assessing covalent inhibition in enzymatic assays illustrated with kinetic simulations. Curr Protoc 2022; 2(6): e419.
[http://dx.doi.org/10.1002/cpz1.419] [PMID: 35671150]
[41]
Brooks HB, Geeganage S, Kahl SD, Montrose C, Sittampalam S, Smith MC. Basics of Enzymatic Assays for HTS. Assay Guid Man 2012. Available from: https://www.ncbi.nlm.nih.gov/books/NBK92007/(cited 2023 May 13).
[42]
Goldstein A. The mechanism of enzyme-inhibitor-substrate reactions: Illustrated by the cholinesterase-physostigmine-acetylcholine system. J Gen Physiol 1944; 27(6): 529-80.
[http://dx.doi.org/10.1085/jgp.27.6.529] [PMID: 19873399]
[43]
Hafner M, Niepel M, Chung M, Sorger PK. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat Methods 2016; 13(6): 521.
[http://dx.doi.org/10.1038/nmeth.3853]
[44]
Knight ZA, Shokat KM. Features of selective kinase inhibitors. Chem Biol 2005; 12(6): 621-37.
[http://dx.doi.org/10.1016/j.chembiol.2005.04.011] [PMID: 15975507]
[45]
Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M. Opportunities and challenges in phenotypic drug discovery: An industry perspective. Nat Rev Drug Discov 2017; 16(8): 531-43.
[http://dx.doi.org/10.1038/nrd.2017.111]
[46]
Lage OM, Ramos MC, Calisto R, Almeida E, Vasconcelos V, Vicente F. Current screening methodologies in drug discovery for selected human diseases. Mar Drugs 2018; 16(8): 279.
[http://dx.doi.org/10.3390/md16080279]
[47]
Cecchini C, Pannilunghi S, Tardy S, Scapozza L. From conception to development: Investigating PROTACs features for improved cell permeability and successful protein degradation. Front Chem 2021; 9: 672267.
[http://dx.doi.org/10.3389/fchem.2021.672267] [PMID: 33959589]
[48]
Beaufils C, Man HM, de Poulpiquet A, Mazurenko I, Lojou E. From enzyme stability to enzymatic bioelectrode stabilization processes. Catal 2021; 11(4): 497.
[http://dx.doi.org/10.3390/catal11040497]
[49]
Dueñas ME, Peltier‐Heap RE, Leveridge M, Annan RS, Büttner FH, Trost M. Advances in high‐throughput mass spectrometry in drug discovery. EMBO Mol Med 2023; 15(1): e14850.
[50]
Ramsay RR, Tipton KF. Assessment of enzyme inhibition: A review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Mol 2017; 22(7): 1192.
[http://dx.doi.org/10.3390/molecules22071192]
[51]
Ring B, Wrighton SA, Mohutsky M. Reversible mechanisms of enzyme inhibition and resulting clinical significance. Methods Mol Biol 2021; 2342: 29-50.
[http://dx.doi.org/10.1007/978-1-0716-1554-6_2] [PMID: 34272690]
[52]
Copeland RA. Evaluation of enzyme inhibitors in drug discovery: A guide for medicinal chemists and pharmacologists. John Wiley & Sons, Inc 2013; pp. 1-23.
[http://dx.doi.org/10.1002/9781118540398]
[53]
Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P. Insights into protein–ligand interactions: Mechanisms, models, and methods. Int J Mol Sci 2016; 17(2): 144.
[54]
Uncompetitive Inhibitor : An overview | ScienceDirect Topics. Available from: https://www.sciencedirect.com/topics/neuroscience/uncompetitiveinhibitor (cited 2023 Jul 28).
[55]
Magni C, Sessa F, Accardo E, et al. Conglutin? a lupin seed protein, binds insulin in vitro and reduces plasma glucose levels of hypergly-cemic rats. J Nutr Biochem 2004; 15(11): 646-50.
[http://dx.doi.org/10.1016/j.jnutbio.2004.06.009] [PMID: 15590267]
[56]
Lentink S, Salazar Marcano DE, Moussawi MA, Parac-Vogt TN. Exploiting interactions between polyoxometalates and proteins for applications in (Bio)chemistry and medicine. Angew Chem Int Ed 2023; 62(31): e202303817.
[http://dx.doi.org/10.1002/anie.202303817] [PMID: 37098776]
[57]
Ochs RS. Understanding enzyme inhibition. J Chem Educ 2000; 77(11): 1453.
[http://dx.doi.org/10.1021/ed077p1453]
[58]
Gimenez-Bastida JA, Boeglin WE, Boutaud O, Malkowski MG, Schneider C. Residual cyclooxygenase activity of aspirin-acetylated COX-2 forms 15R-prostaglandins that inhibit platelet aggregation. FASEB J 2019; 33(1): 1033.
[59]
Bansal AB, Cassagnol M. HMG-CoA Reductase Inhibitors 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK542212/ (cited 2023 Jul 28).
[60]
Herman LL, Padala SA, Ahmed I, Bashir K. Angiotensin- Converting Enzyme Inhibitors (ACEI). StatPearls 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK431051/(cited 2023 May 13).
[61]
Hatlebakk JG, Katz PO, Camacho-Lobato L, Castell DO. Proton pump inhibitors: Better acid suppression when taken before a meal than without a meal. Aliment Pharmacol Ther 2000; 14(10): 1267-72.
[http://dx.doi.org/10.1046/j.1365-2036.2000.00829.x] [PMID: 11012470]
[62]
Bevans CG, Krettler C, Reinhart C, et al. Determination of the warfarin inhibition constant Ki for vitamin K 2,3-epoxide reductase com-plex subunit-1 (VKORC1) using an in vitro DTT-driven assay. Biochim Biophys Acta, Gen Subj 2013; 1830(8): 4202-10.
[http://dx.doi.org/10.1016/j.bbagen.2013.04.018] [PMID: 23618698]
[63]
Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8): 1167-74.
[http://dx.doi.org/10.1172/JCI13505] [PMID: 11602624]
[64]
Abosamak NER, Shahin MH. Beta2 Receptor Agonists and Antagonists. StatPearls 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559069/ (cited 2023 Jul 28).
[65]
Bolton TB. Rate of offset of action of slow-acting muscarinic antagonists is fast. Nat 1977; 270(5635): 354-6.
[http://dx.doi.org/10.1038/270354a0]
[66]
Botting R, Ayoub SS. COX-3 and the mechanism of action of paracetamol/acetaminophen. Prostaglandins Leukot Essent Fatty Acids 2005; 72(2): 85-7.
[http://dx.doi.org/10.1016/j.plefa.2004.10.005] [PMID: 15626590]
[67]
DiBianco R. Angiotensin converting enzyme inhibition. Postgrad Med 1985; 78(5): 229-48. 244, 247-248.
[http://dx.doi.org/10.1080/00325481.1985.11699167] [PMID: 2864682]
[68]
Markowska A, Antoszczak M, Markowska J, Huczyński A. HMG-CoA reductase inhibitors as potential anticancer agents against malignant neoplasms in women. Pharm 2020; 13(12): 422. [Available from https://www.mdpi.com/1424-8247/13/12/422/htm
[69]
Qureshi O, Dua A. COX Inhibitors. In: Encycl Immunotoxicol. 2022.
[70]
Chandrasekharan NV, Dai H, Roos KLT, Evanson NK, Tomsik J, Elton TS. From the Cover: COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proc Natl Acad Sci. 2002; 99: p. (21)13926.
[71]
Daly MJ, Stables R. In vitro actions of ranitidine, a new histamine H2-receptor antagonist. Agents Actions 1980; 10(1-2): 190-1.
[http://dx.doi.org/10.1007/BF02024210] [PMID: 6104417]
[72]
Bardhan KD. Pantoprazole: A new proton pump inhibitor in the management of upper gastrointestinal disease. Drugs Tod 1999; 35(10): 773-808.
[http://dx.doi.org/10.1358/dot.1999.35.10.561696] [PMID: 12973372]
[73]
Herbert JM, Savi P. P2Y12, a new platelet ADP receptor, target of clopidogrel. Semin Vasc Med 2003; 3(2): 113-22.
[http://dx.doi.org/10.1055/s-2003-40669] [PMID: 15199474]
[74]
Havlir DV, O’Marro SD. Atazanavir: new option for treatment of HIV infection. Clin Infect Dis 2004; 38(11): 1599-604.
[http://dx.doi.org/10.1086/420932] [PMID: 15156449]
[75]
Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021; 190: 108352.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108352] [PMID: 33035532]
[76]
Pathak R, Bridgeman MB. Dipeptidyl peptidase-4 (DPP-4) inhibitors in the management of diabetes. Pharm Ther 2010; 35(9): 509.
[77]
Perzborn E, Roehrig S, Straub A, Kubitza D, Mueck W, Laux V. Rivaroxaban: A new oral factor Xa inhibitor. Arterioscler Thromb Vasc Biol 2010; 30(3): 376-81.
[http://dx.doi.org/10.1161/ATVBAHA.110.202978] [PMID: 20139357]
[78]
Azevedo ER, Kubo T, Mak S, et al. Nonselective versus selective β-adrenergic receptor blockade in congestive heart failure: Differential effects on sympathetic activity. Circulation 2001; 104(18): 2194-9.
[http://dx.doi.org/10.1161/hc4301.098282] [PMID: 11684630]
[79]
Ohning GV, Walsh JH, Pisegna JR, Murthy A, Barth J, Kovacs TOG. Rabeprazole is superior to omeprazole for the inhibition of peptone meal-stimulated gastric acid secretion in Helicobacter pylori-negative subjects. Aliment Pharmacol Ther 2003; 17(9): 1109.
[http://dx.doi.org/10.1046/j.1365-2036.2003.01573.x]
[80]
Goldenberg MM. Celecoxib, a selective cyclooxygenase-2 inhibitor for the treatment of rheumatoid arthritis and osteoarthritis. Clin Ther 1999; 21(9): 1497-513.
[http://dx.doi.org/10.1016/S0149-2918(00)80005-3] [PMID: 10509845]
[81]
Miura SI, Karnik SS, Saku K. Angiotensin II type 1 receptor blockers: Class effects vs. Molecular effects. J Renin Angiotensin Aldosterone Syst 2011; 12(1): 1.
[82]
Cheng-Lai A. Rosuvastatin: A new HMG-CoA reductase inhibitor for the treatment of hypercholesterolemia. Heart Dis 2003; 5(1): 72-8.
[http://dx.doi.org/10.1097/01.HDX.0000050417.89309.F8] [PMID: 12549990]
[83]
Pairet M, Van Ryn J, Mauz A, Schierok H, Diederen W, Türck D. Differential inhibition of COX-1 and COX-2 by NSAIDs: a summary of results obtained using various test systems. In: Selective COX-2 Inhibitors. Dordrecht: Springer 1998; pp. 27-46.
[84]
Shiozaki A, Miyazaki H, Niisato N, et al. Furosemide, a blocker of Na+/K+/2Cl- cotransporter, diminishes proliferation of poorly differentiated human gastric cancer cells by affecting G0/G1 state. J Physiol Sci 2006; 56(6): 401-6.
[http://dx.doi.org/10.2170/physiolsci.RP010806] [PMID: 17052386]
[85]
Kumar S, Kulshreshtha DM, Saha S. Contribution of phosphodiesterase-5 (PDE5) inhibitors in the various diseases. Int J Sci Healthc Res 2022; 7(4): 164-72.
[http://dx.doi.org/10.52403/ijshr.20221023]
[86]
Materson BJ. Adverse effects of angiotensin-converting enzyme inhibitors in antihypertensive therapy with focus on quinapril. Am J Cardiol 1992; 69(10): C46-53.
[http://dx.doi.org/10.1016/0002-9149(92)90281-3] [PMID: 1546639]
[87]
Çikler E, Ersoy Y, Çetinel Ş, Ercan F. The leukotriene d4 receptor antagonist, montelukast, inhibits mast cell degranulation in the dermis induced by water avoidance stress. Acta Histochem 2009; 111(2): 112-8.
[http://dx.doi.org/10.1016/j.acthis.2008.04.006] [PMID: 18617226]
[88]
Palleria C, Di Paolo A, Giofrè C, Caglioti C, Leuzzi G, Siniscalchi A. Pharmacokinetic drug-drug interaction and their implication in clinical management. J Res Med Sci 2013; 18(7): 601.
[89]
Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 2015; 29(2): 205.
[http://dx.doi.org/10.1080/13102818.2015.1008192]
[90]
Wang S, Dong G, Sheng C. Structural simplification: An efficient strategy in lead optimization. Acta Pharm Sin B 2019; 9(5): 880.
[http://dx.doi.org/10.1016/j.apsb.2019.05.004]
[91]
Borgo C, Choudhuri S, Yendluri M, Poddar S, Li A, Mallick K. Recent advancements in computational drug design algorithms through machine learning and optimization. Kinases Phosphatases 2023; 1: 117-40.
[92]
Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005; 2(4): 541.
[http://dx.doi.org/10.1602/neurorx.2.4.541]
[93]
Mengist HM, Dilnessa T, Jin T. Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Front Chem 2021; 9: 622898.
[http://dx.doi.org/10.3389/fchem.2021.622898] [PMID: 33889562]
[94]
Bon M, Bilsland A, Bower J, McAulay K. Fragment‐based drug discovery—the importance of high‐quality molecule libraries. Mol Oncol 2022; 16(21): 3761.
[95]
Singh J, Petter RC, Baillie TA, Whitty A. The resurgence of covalent drugs. Nat Rev Drug Discov 2011; 10(4): 307-17.
[http://dx.doi.org/10.1038/nrd3410]
[96]
Lira AL, Ferreira RS, Torquato RJS, Oliva MLV, Schuck P, Sousa AA. Allosteric inhibition of α-thrombin enzymatic activity with ul-trasmall gold nanoparticles. Nanoscale Adv 2019; 1(1): 378.
[http://dx.doi.org/10.1039/C8NA00081F]
[97]
Rana S, Mallareddy JR, Singh S, Boghean L, Natarajan A. Inhibitors, PROTACs and molecular glues as diverse therapeutic modalities to target cyclin-dependent kinase. Cancers 2021; 13(21)
[98]
Maramai S, Benchekroun M, Gabr MT, Yahiaoui S. Multitarget therapeutic strategies for alzheimer’s disease: Review on emerging target combinations. Biomed Res Int 2020; 2020
[99]
Boike L, Henning NJ, Nomura DK. Advances in covalent drug discovery. Nat Rev Drug Discov 2022; 21(12): 881-98.
[http://dx.doi.org/10.1038/s41573-022-00542-z]
[100]
MA X, XU S. TNF inhibitor therapy for rheumatoid arthritis. Biomed Reports 2013; 1(2): 177.
[101]
Cicardi M, Banerji A, Bracho F, Malbrán A, Rosenkranz B, Riedl M. Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema. N Engl J Med 2010; 363(6): 532.
[102]
Mukhtar E, Adhami VM, Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 2014; 13(2): 275-84.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791]
[103]
Gabr SA, Elsaed WM, Eladl MA, et al. Curcumin modulates oxidative stress, fibrosis, and apoptosis in drug-resistant cancer cell lines. Life 2022; 12(9): 1427.
[http://dx.doi.org/10.3390/life12091427] [PMID: 36143462]
[104]
Davids MS, Brown JR. Ibrutinib: A first in class covalent inhibitor of Bruton’s tyrosine kinase. Future Oncol 2014; 10(6): 957-67.
[http://dx.doi.org/10.2217/fon.14.51] [PMID: 24941982]
[105]
Saini K, Sharma S, Khan Y. DPP-4 inhibitors for treating T2DM: Hype or hope? an analysis based on the current literature. Front Mol Biosci 2023; 10: 1130625.
[http://dx.doi.org/10.3389/fmolb.2023.1130625] [PMID: 37287751]
[106]
Iqbal N, Iqbal N. Imatinib: A breakthrough of targeted therapy in cancer. Chemother Res Pract 2014; 2014: 357027.
[http://dx.doi.org/10.1155/2014/357027]
[107]
Báez-Santos YM, St. John SE, Mesecar AD. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Res 2015; 115: 21.
[108]
O’Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A. Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis 2013; 72(02): ii111.
[http://dx.doi.org/10.1136/annrheumdis-2012-202576]
[109]
Wettstein L, Knaff PM, Kersten C, Müller P, Weil T, Conzelmann C. Peptidomimetic inhibitors of TMPRSS2 block SARS-CoV-2 infection in cell culture. Commun Biol 2022; 5(1): 681.
[110]
Hirsh J, Anand SS, Halperin JL, Fuster V. Mechanism of action and pharmacology of unfractionated heparin. Arterioscler Thromb Vasc Biol 2001; 21(7): 1094-6.
[http://dx.doi.org/10.1161/hq0701.093686] [PMID: 11451734]
[111]
Marchetti M, Faggiano S, Mozzarelli A. Enzyme replacement therapy for genetic disorders associated with enzyme deficiency. Curr Med Chem 2022; 29(3): 489-525.
[http://dx.doi.org/10.2174/0929867328666210526144654] [PMID: 34042028]
[112]
Das B, Yan R. A close look at BACE1 inhibitors for alzheimer’s disease treatment. CNS Drugs 2019; 33(3): 251.
[http://dx.doi.org/10.1007/s40263-019-00613-7]
[113]
Zhang F, Cheng W. The mechanism of bacterial resistance and potential bacteriostatic strategies. Antibiotics 2022; 11(9): 1215.
[http://dx.doi.org/10.3390/antibiotics11091215]
[114]
Pettit RS, Fellner C. CFTR modulators for the treatment of cystic fibrosis. Pharm Ther 2014; 39(7): 500.
[115]
Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: The relationship between pharmacological effects and clinical efficacy. Drugs Aging 2004; 21(7): 453-78.
[http://dx.doi.org/10.2165/00002512-200421070-00004] [PMID: 15132713]
[116]
Herman LL, Padala SA, Ahmed I, Bashir K. Angiotensin- Converting Enzyme Inhibitors (ACEI). StatPearls 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK431051/(cited 2023 Jul 28).
[117]
Wu HF, Morris-Natschke SL, Xu XD, Yang MH, Cheng YY, Yu SS. Recent advances in natural anti-HIV triterpenoids and analogues. Med Res Rev 2020; 40(6): 2339.
[118]
Costa DB, Nguyen KSH, Cho BC, Sequist LV, Jackman DM, Riely GJ. Effects of erlotinib in EGFR mutated non-small cell lung cancers with resistance to gefitinib. Clin Cancer Res 2008; 14(21): 7060.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1455]
[119]
Mishra T, Shrivastav PS. Validation of simultaneous quantitative method of HIV protease inhibitors atazanavir, darunavir and ritonavir in human plasma by UPLC-MS/MS. Sci World J 2014; 2014: 482693.
[120]
Jefferson T, Jones MA, Doshi P, Del Mar CB, Hama R, Thompson MJ. Neuraminidase inhibitors for preventing and treating influenza in adults and children. Cochrane Database Syst Rev 2014; 4.
[http://dx.doi.org/10.1002/14651858.CD008965.pub4]
[121]
Silva PJ. Computational development of inhibitors of plasmid-borne bacterial dihydrofolate reductase. Antibiot 2022; 11(6): 779.
[http://dx.doi.org/10.3390/antibiotics11060779]
[122]
Evans JD, Hill SR. A comparison of the available phosphodiesterase-5 inhibitors in the treatment of erectile dysfunction: A focus on avanafil. Patient Prefer Adherence 2015; 9: 1159.
[123]
Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 2009; 9(5): 338.
[http://dx.doi.org/10.1038/nrc2607]
[124]
Chumsri S, Howes T, Bao T, Sabnis G, Brodie A. Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol 2011; 125(1-2): 13.
[125]
Giasson CJ, Nguyen TQT, Boisjoly HM, Lesk MR, Amyot M, Charest M. Dorzolamide and corneal recovery from edema in patients with glaucoma or ocular hypertension. Am J Ophthalmol 2000; 129(2): 144-50.
[http://dx.doi.org/10.1016/S0002-9394(99)00274-3] [PMID: 10682965]
[126]
Tan YY, Jenner P, Chen S. Monoamine oxidase-B inhibitors for the treatment of parkinson’s disease: Past, present, and future. J Parkinsons Dis 2022; 12(2): 477.
[127]
Jun JEJ, Kinkade A, Tung ACH, Tejani AM. 5α-reductase inhibitors for treatment of benign prostatic hyperplasia: A systematic review and meta-analysis. Can J Hosp Pharm 2017; 70(2): 113.
[128]
Fu J, Tong Y, Xu Z, et al. Impact of TP53 mutations on EGFR tyrosine kinase inhibitor efficacy and potential treatment strategy. Clin Lung Cancer 2023; 24(1): 29-39.
[http://dx.doi.org/10.1016/j.cllc.2022.08.007] [PMID: 36117108]
[129]
Wang Y, Wang H. AChE inhibition-based multi-target-directed ligands, a novel pharmacological approach for the symptomatic and disease-modifying therapy of alzheimer’s disease. Curr Neuropharmacol 2016; 14(4): 364.
[130]
Patel PH, Zulfiqar H. Reverse transcriptase inhibitors. Front HIV Res 2023; 44-61. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551504/(cited 2023 Jul 29).
[131]
Angelini J, Talotta R, Roncato R, Fornasier G, Barbiero G, Cin LD. JAK-inhibitors for the treatment of rheumatoid arthritis: A focus on the present and an outlook on the future. Biomolecules 2020; 10(7): 1-40.
[132]
Aoki FY. Antiviral drugs for influenza and other respiratory virus infections. Mand Douglas, Bennett’s Princ Pract. Infect Dis 2015; 1: 531.
[http://dx.doi.org/10.1016/B978-1-4557-4801-3.00044-8]
[133]
Binesh Marvasti T, Adeli K. Pharmacological management of metabolic syndrome and its lipid complications. DARU J Pharm Sci 2010; 18(3): 146.
[134]
Tausch E, Close W, Dolnik A, Bloehdorn J, Chyla B, Bullinger L. Venetoclax resistance and acquired BCL2 mutations in chronic lymphocytic leukemia. Haematologica 2019; 104(9): e434.
[http://dx.doi.org/10.3324/haematol.2019.222588]
[135]
Gijtenbeek RGP, Damhuis RAM, van der Wekken AJ, Hendriks LEL, Groen HJM, van Geffen WH. Overall survival in advanced epidermal growth factor receptor mutated non-small cell lung cancer using different tyrosine kinase inhibitors in The Netherlands: A retrospective, nationwide registry study. Lancet Reg Heal Eur 2023; 27: 100592.
[http://dx.doi.org/10.1016/j.lanepe.2023.100592]
[136]
Sarich TC, Peters G, Berkowitz SD, et al. Rivaroxaban: A novel oral anticoagulant for the prevention and treatment of several thrombosis‐mediated conditions. Ann N Y Acad Sci 2013; 1291(1): 42-55.
[http://dx.doi.org/10.1111/nyas.12136] [PMID: 23701516]
[137]
Shirley M. Correction to: Bruton tyrosine kinase inhibitors in b-cell malignancies: Their use and differential features. Target Oncol 2022; 17(1): 93.
[http://dx.doi.org/10.1007/s11523-021-00857-8]
[138]
Singh K, Gupta JK, Kumar S, Singh K, Meenakshi K, Kumar K. PCSK9 Inhibitors: Pharmacology and therapeutic potential. Preprints 2022.
[139]
Gupta R, Lin M, Maitz T, et al. Vericiguat: A novel soluble guanylate cyclase stimulator for use in patients with heart failure. Cardiol Rev 2023; 31(2): 87-92.
[http://dx.doi.org/10.1097/CRD.0000000000000431] [PMID: 35609251]
[140]
Kotha K, Clancy JP. Ivacaftor treatment of cystic fibrosis patients with the G551D mutation: A review of the evidence. Ther Adv Respir Dis 2013; 7(5): 288-96.
[http://dx.doi.org/10.1177/1753465813502115] [PMID: 24004658]
[141]
Lorusso D, García-Donas J, Sehouli J, Joly F. Management of adverse events during rucaparib treatment for relapsed ovarian cancer: A review of published studies and practical guidance. Target Oncol 2020; 15(3): 391-406.
[http://dx.doi.org/10.1007/s11523-020-00715-z] [PMID: 32495160]
[142]
Oates J, Lopez D. Pharmacogenetics: An important part of drug development with a focus on its application. Int J Biomed Investig 2018; 1(2): 1-16.
[143]
McDonnell Pharm D. BCOP AM, Dang PharmD, BCPS CH. Basic review of the cytochrome P450 system. J Adv Pract Oncol 2013; 4(4): 263.
[144]
Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: An update. Arch Toxicol 2020; 94(11): 3671-722.
[http://dx.doi.org/10.1007/s00204-020-02936-7] [PMID: 33111191]
[145]
Ogu CC, Maxa JL. Drug interactions due to cytochrome P450. Proc Bayl Univ Med Cent 2000; 13(4): 421.
[http://dx.doi.org/10.1080/08998280.2000.11927719]
[146]
Lee Ventola C. Role of pharmacogenomic biomarkers in predicting and improving drug response: Part 1: The clinical significance of pharmacogenetic variants. Pharm Ther 2013; 38(9): 545.
[147]
Taylor C, Crosby I, Yip V, Maguire P, Pirmohamed M, Turner RM. A review of the important role of CYP2D6 in pharmacogenomics. Genes 2020; 11(11): 1295.
[http://dx.doi.org/10.3390/genes11111295]
[148]
Wang D, Chen H, Momary KM, Cavallari LH, Johnson JA, Sadée W. Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood 2008; 112(4): 1013.
[149]
Harmand PO, Solassol J. Thiopurine drugs in the treatment of ulcerative colitis: Identification of a novel deleterious mutation in TPMT. Genes 2020; 11(10): 1212. [Available from https://www.mdpi.com/2073-4425/11/10/1212/htm
[150]
Anderson JL, Horne BD, Stevens SM, Woller SC, Samuelson KM, Mansfield JW. Genetics and opioids: Towards more appropriate pre-scription in cancer pain. Cancers 1951; 12(7): 1951. Available from: https://www.mdpi.com/2072-6694/12/7/1951/htm (cited 2023 Jul 29).
[151]
Le D, Brown L, Malik K, Murakami S. Two opposing functions of angiotensin-converting enzyme (ACE) That links hypertension, dementia, and aging. Int J Mol Sci 2021; 22(24): 13178. Available from: https://www.mdpi.com/1422-0067/22/24/13178/htm(cited 2023 Jul 29).
[152]
Shen J, Swift B, Mamelok R, Pine S, Sinclair J, Attar M. Design and conduct considerations for first‐in‐human trials. Clin Transl Sci 2019; 12(1): 6.
[http://dx.doi.org/10.1111/cts.12582]
[153]
Schenone M, Dančík V, Wagner BK, Clemons PA. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 2013; 9(4): 232.
[http://dx.doi.org/10.1038/nchembio.1199]
[154]
Coussens NP, Braisted JC, Peryea T, Sittampalam GS, Simeonov A, Hall MD. Small-molecule screens: A gateway to cancer therapeutic agents with case studies of food and drug administration: Approved drugs. Pharmacol Rev 2017; 69(4): 479.
[http://dx.doi.org/10.1124/pr.117.013755]
[155]
Hughes JP, Rees SS, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol 2011; 162(6): 1239.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x]
[156]
Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B. Combination therapy in combating cancer. Oncotarget 2017; 8(23): 38022.
[http://dx.doi.org/10.18632/oncotarget.16723]
[157]
Ahmed S, Zhou Z, Zhou J, Chen SQ. Pharmacogenomics of drug metabolizing enzymes and transporters: Relevance to precision medicine. Genomics Proteomics Bioinformatics 2016; 14(5): 298.
[158]
Steinmetz KL, Spack EG. The basics of preclinical drug development for neurodegenerative disease indications. BMC Neurol 2009; 9 (Suppl. 1): S2.
[http://dx.doi.org/10.1186/1471-2377-9-S1-S2]
[159]
Luan B, Huynh T, Cheng X, Lan G, Wang HR. Targeting proteases for treating COVID-19. J Proteome Res 2020; 19(11): 4316-26.
[http://dx.doi.org/10.1021/acs.jproteome.0c00430] [PMID: 33090793]
[160]
Mellott DM, Tseng CT, Drelich A, et al. A clinical-stage cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells. ACS Chem Biol 2021; 16(4): 642-50.
[http://dx.doi.org/10.1021/acschembio.0c00875] [PMID: 33787221]
[161]
Mahoney M, Damalanka VC, Tartell MA, et al. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proc Natl Acad Sci 2021; 118(43): e2108728118.
[http://dx.doi.org/10.1073/pnas.2108728118] [PMID: 34635581]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy