Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Non-synonymous Single Nucleotide Polymorphisms in Human ACE2 Gene May Affect the Infectivity of SARS-CoV-2 Omicron Subvariants

Author(s): Arijit Samanta, Ashif Ahamed, Syed Sahajada Mahafujul Alam, Safdar Ali, Mohd. Shahnawaz Khan, Abdulaziz M. Al-Amri, Shams Tabrez and Mehboob Hoque*

Volume 29, Issue 36, 2023

Published on: 23 November, 2023

Page: [2891 - 2901] Pages: 11

DOI: 10.2174/0113816128275739231106055502

Price: $65

Abstract

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19), which first appeared in December 2019. Angiotensin I converting enzyme 2 (ACE2) receptor, present on the host cells, interacts with the receptor binding domain (RBD) of spike (S) protein of SARS-CoV-2 and facilitates the viral entry into host cells.

Methods: Non-synonymous single nucleotide polymorphisms (nsSNPs) in the ACE2 gene may have an impact on the protein's stability and its function. The deleterious or harmful nsSNPs of the ACE2 gene that can change the strength as well as the pattern of interaction with the RBD of S protein were selected for this study.

Results: The ACE2:RBD interactions were analyzed by protein-protein docking study. The missense mutations A242V, R708W, G405E, D292N, Y633C, F308L, and G405E in ACE2 receptor were found to interact with RBD of Omicron subvariants with stronger binding affinity. Among the other selected nsSNPs of human ACE2 (hACE2), R768W, Y654S, F588S, R710C, R710C, A191P, and R710C were found to have lower binding affinity for RBD of Omicron subvariants.

Conclusion: The findings of this study suggest that the nsSNPs present in the human ACE2 gene alter the structure and function of the protein and, consequently, the susceptibility to Omicron subvariants.

[1]
Shi Z. [From SARS, MERS to COVID-19: A journey to understand bat coronaviruses]. Bull Acad Natl Med 2021; 205(7): 732-6.
[http://dx.doi.org/10.1016/j.banm.2021.05.008] [PMID: 34075253]
[2]
Choi JY, Smith DM. SARS-CoV-2 variants of concern. Yonsei Med J 2021; 62(11): 961-8.
[http://dx.doi.org/10.3349/ymj.2021.62.11.961] [PMID: 34672129]
[3]
Aleem A, Akbar Samad AB, Slenker AK. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). StatPearls. Treasure Island, FL: StatPearls Publishing 2022. Retrieved from: http://www.ncbi.nlm.nih.gov/books/ NBK570580/
[4]
Ren SY, Wang WB, Gao RD, Zhou AM. Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance. World J Clin Cases 2022; 10(1): 1-11.
[http://dx.doi.org/10.12998/wjcc.v10.i1.1] [PMID: 35071500]
[5]
Poudel S, Ishak A, Perez-Fernandez J, et al. Highly mutated SARS-CoV-2 Omicron variant sparks significant concern among global experts – What is known so far? Travel Med Infect Dis 2022; 45: 102234.
[http://dx.doi.org/10.1016/j.tmaid.2021.102234] [PMID: 34896326]
[6]
Cao Y, Qu C, Chen Y, Li L, Wang X. Association of ABCB1 polymorphisms and ulcerative colitis susceptibility. Int J Clin Exp Pathol 2015; 8(1): 943-7.
[PMID: 25755800]
[7]
Samanta A, Alam SSM, Ali S, Hoque M. Analyzing the interaction of human ACE2 and RBD of spike protein of SARS-CoV-2 in perspective of omicron variant. EXCLI J 2022; 21: 610-20.
[http://dx.doi.org/10.17179/excli2022-4721] [PMID: 35651657]
[8]
Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: Angiotensin- converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis 2021; 40(5): 905-19.
[http://dx.doi.org/10.1007/s10096-020-04138-6] [PMID: 33389262]
[9]
Lupala CS, Ye Y, Chen H, Su XD, Liu H. Mutations on RBD of SARS-CoV-2 omicron variant result in stronger binding to human ACE2 receptor. Biochem Biophys Res Commun 2022; 590: 34-41.
[http://dx.doi.org/10.1016/j.bbrc.2021.12.079] [PMID: 34968782]
[10]
Barton MI, MacGowan SA, Kutuzov MA, Dushek O, Barton GJ, van der Merwe PA. Effects of common mutations in the SARS- CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. eLife 2021; 10: e70658.
[http://dx.doi.org/10.7554/eLife.70658] [PMID: 34435953]
[11]
Chen F, Zhang Y, Li X, Li W, Liu X, Xue X. The impact of ACE2 polymorphisms on COVID-19 disease: Susceptibility, severity, and therapy. Front Cell Infect Microbiol 2021; 11: 753721.https://www.frontiersin.org/articles/10.3389/fcimb.2021.753721
[http://dx.doi.org/10.3389/fcimb.2021.753721] [PMID: 34746028]
[12]
Anand A, Sharma NK, Gupta A, et al. Single nucleotide polymorphisms in MCP-1 and its receptor are associated with the risk of age related macular degeneration. PLoS One 2012; 7(11): e49905.
[http://dx.doi.org/10.1371/journal.pone.0049905] [PMID: 23185481]
[13]
Luo YS, Luo L, Li W, et al. Evaluation of a functional single nucleotide polymorphism of the SARS-CoV-2 receptor ACE2 That is potentially involved in long COVID. Front Genet 2022; 13: 931562.
[http://dx.doi.org/10.3389/fgene.2022.931562] [PMID: 35923692]
[14]
Khalid Z, Naveed H. Identification of destabilizing SNPs in SARS-CoV2-ACE2 protein and spike glycoprotein: Implications for virus entry mechanisms. J Biomol Struct Dyn 2022; 40(3): 1205-15.
[http://dx.doi.org/10.1080/07391102.2020.1823885] [PMID: 32964802]
[15]
Zaharan NL, Muhamad NH, Jalaludin MY, et al. Non-synonymous single-nucleotide polymorphisms and physical activity interactions on adiposity parameters in malaysian adolescents. Front Endocrinol 2018; 9: 209.
[http://dx.doi.org/10.3389/fendo.2018.00209] [PMID: 29755414]
[16]
Chatterjee S, Bhattacharya M, Nag S, Dhama K, Chakraborty C. A detailed overview of SARS-CoV-2 omicron: Its subvariants, mutations and pathophysiology, clinical characteristics, immunological landscape, immune escape, and therapies. Viruses 2023; 15(1): 167.
[http://dx.doi.org/10.3390/v15010167] [PMID: 36680207]
[17]
Liu Y, He H, Huang H. The role and significance of angiotensin- converting enzyme 2 peptides in the treatment of coronavirus disease 2019. J Clin Lab Anal 2021; 35(6): e23789.
[http://dx.doi.org/10.1002/jcla.23789] [PMID: 33951227]
[18]
Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 2012; 40(W1): W452-7.
[http://dx.doi.org/10.1093/nar/gks539] [PMID: 22689647]
[19]
Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res 2001; 11(5): 863-74.
[http://dx.doi.org/10.1101/gr.176601] [PMID: 11337480]
[20]
Ng PC, Henikoff S. Accounting for human polymorphisms predicted to affect protein function. Genome Res 2002; 12(3): 436-46.
[http://dx.doi.org/10.1101/gr.212802] [PMID: 11875032]
[21]
Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013; 76(1): 20.
[http://dx.doi.org/10.1002/0471142905.hg0720s76] [PMID: 23315928]
[22]
Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One 2012; 7(10): e46688.
[http://dx.doi.org/10.1371/journal.pone.0046688] [PMID: 23056405]
[23]
Bromberg Y, Rost B. SNAP: Predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 2007; 35(11): 3823-35.
[http://dx.doi.org/10.1093/nar/gkm238] [PMID: 17526529]
[24]
Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 2006; 22(22): 2729-34.
[http://dx.doi.org/10.1093/bioinformatics/btl423] [PMID: 16895930]
[25]
Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R. Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat 2009; 30(8): 1237-44.
[http://dx.doi.org/10.1002/humu.21047] [PMID: 19514061]
[26]
Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 2006; 62(4): 1125-32.
[http://dx.doi.org/10.1002/prot.20810] [PMID: 16372356]
[27]
Capriotti E, Fariselli P, Casadio R. I-Mutant 2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 2005; 33: W306-10.
[http://dx.doi.org/10.1093/nar/gki375]
[28]
Kellogg EH, Leaver-Fay A, Baker D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 2011; 79(3): 830-8.
[http://dx.doi.org/10.1002/prot.22921] [PMID: 21287615]
[29]
Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 2010; 38: W529-33.
[http://dx.doi.org/10.1093/nar/gkq399]
[30]
Ashkenazy H, Abadi S, Martz E, et al. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 2016; 44(W1): W344-50.
[http://dx.doi.org/10.1093/nar/gkw408] [PMID: 27166375]
[31]
Du Z, Su H, Wang W, et al. The trRosetta server for fast and accurate protein structure prediction. Nat Protoc 2021; 16(12): 5634-51.
[http://dx.doi.org/10.1038/s41596-021-00628-9] [PMID: 34759384]
[32]
Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein-protein docking. Nat Protoc 2017; 12(2): 255-78.
[http://dx.doi.org/10.1038/nprot.2016.169] [PMID: 28079879]
[33]
Laskowski RA. PDBsum: Summaries and analyses of PDB structures. Nucleic Acids Res 2001; 29(1): 221-2.
[http://dx.doi.org/10.1093/nar/29.1.221] [PMID: 11125097]
[34]
Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function. Genome Biol 2008; 9(Suppl 1): S4.
[http://dx.doi.org/10.1186/gb-2008-9-s1-s4] [PMID: 18613948]
[35]
Ramírez-Bello J, Jiménez-Morales M. Functional implications of single nucleotide polymorphisms (SNPs) in protein-coding and non-coding RNA genes in multifactorial diseases. Gac Med Mex 2017; 153(2): 238-50.
[PMID: 28474710]
[36]
Yates CM, Sternberg MJE. The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein-protein interactions. J Mol Biol 2013; 425(21): 3949-63.
[http://dx.doi.org/10.1016/j.jmb.2013.07.012] [PMID: 23867278]
[37]
Bian J, Li Z. Angiotensin-converting enzyme 2 (ACE2): SARS- CoV-2 receptor and RAS modulator. Acta Pharm Sin B 2021; 11(1): 1-12.
[http://dx.doi.org/10.1016/j.apsb.2020.10.006] [PMID: 33072500]
[38]
Hou Y, Zhao J, Martin W, et al. New insights into genetic susceptibility of COVID-19: An ACE2 and TMPRSS2 polymorphism analysis. BMC Med 2020; 18(1): 216.
[http://dx.doi.org/10.1186/s12916-020-01673-z] [PMID: 32664879]
[39]
Möhlendick B, Schönfelder K, Breuckmann K, et al. ACE2 polymorphism and susceptibility for SARS-CoV-2 infection and severity of COVID-19. Pharmacogenet Genomics 2021; 31(8): 165-71.
[http://dx.doi.org/10.1097/FPC.0000000000000436] [PMID: 34001841]
[40]
Samanta A, Alam SSM, Ali S, Hoque M. Evaluating the transmission feasibility of SARS-CoV-2 Omicron (B.1.1.529) variant to 143 mammalian hosts: Insights from S protein RBD and host ACE2 interaction studies. Funct Integr Genomics 2023; 23(1): 36.
[http://dx.doi.org/10.1007/s10142-023-00962-z] [PMID: 36631570]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy