Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Comparison of Surgical and Colonoscopy Tissue to Establish Colorectal Patient-derived Organoids

Author(s): Hong Chen, Yuping Yang, Jinsen Shi, Ting Yan, Jun Wang, Yuning Yang, Qin Lu, Hailan Feng, Jian Du, Zhiyun Cao* and Nathaniel Weygant*

Volume 24, Issue 5, 2024

Published on: 22 November, 2023

Page: [546 - 555] Pages: 10

DOI: 10.2174/0115680096263866231024112120

Price: $65

Abstract

Background: Patient-derived organoids (PDOs) are ex vivo models that retain the functions and characteristics of individualized source tissues, including a simulated tumor microenvironment. However, the potential impact of undiscovered differences between tissue sources on PDO growth and progression remains unclear.

Objective: This study aimed to compare the growth and condition of PDO models originating from surgical resection and colonoscopy and to provide practical insights for PDO studies.

Methods: Tissue samples and relevant patient clinical information were collected to establish organoid models. PDOs were derived from both surgical and colonoscopy tissues. The growth of the organoids, including their state, size, and success rate of establishment, was recorded and analyzed. The activity of the organoids at the end stage of growth was detected using calcein-AM fluorescence staining.

Results: The results showed that the early growth phase of 2/3 colonoscopy-derived organoids was faster compared to surgical PDOs, with a growth difference observed within 11-13 days of establishment. However, colonoscopy-derived organoids exhibited a diminished growth trend after this time. There were no significant differences observed in the terminal area and quantity between the two types of tissue-derived organoids. Immunofluorescence assays of the PDOs revealed that the surgical PDOs possessed a denser cell mass with relatively higher viability than colonoscopy-derived PDOs.

Conclusion: In the establishment of colorectal patient-derived organoids, surgically derived organoids require a slightly longer establishment period, while colonoscopy-derived organoids should be passaged prior to growth inhibition to preserve organoid viability.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Bommareddy, P.K.; Shettigar, M.; Kaufman, H.L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol., 2018, 18(8), 498-513.
[http://dx.doi.org/10.1038/s41577-018-0014-6] [PMID: 29743717]
[3]
Loveless, R.; Bloomquist, R.; Teng, Y. Pyroptosis at the forefront of anticancer immunity. J. Exp. Clin. Cancer Res., 2021, 40(1), 264.
[http://dx.doi.org/10.1186/s13046-021-02065-8] [PMID: 34429144]
[4]
Ding, L.; Yang, Y.; Lu, Q.; Cao, Z.; Weygant, N. Emerging prospects for the study of colorectal cancer stem cells using patient-derived organoids. Curr. Cancer Drug Targets, 2022, 22(3), 195-208.
[http://dx.doi.org/10.2174/1568009622666220117124546] [PMID: 35078398]
[5]
Kim, M.P.; Li, X.; Deng, J.; Zhang, Y.; Dai, B.; Allton, K.L.; Hughes, T.G.; Siangco, C.; Augustine, J.J.; Kang, Y.; McDaniel, J.M.; Xiong, S.; Koay, E.J.; McAllister, F.; Bristow, C.A.; Heffernan, T.P.; Maitra, A.; Liu, B.; Barton, M.C.; Wasylishen, A.R.; Fleming, J.B.; Lozano, G. Oncogenic KRAS recruits an expansive transcriptional network through mutant p53 to drive pancreatic cancer metastasis. Cancer Discov., 2021, 11(8), 2094-2111.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1228] [PMID: 33839689]
[6]
Cao, J.; Chan, W.; Chow, M. Use of conditional reprogramming cell, patient derived xenograft and organoid for drug screening for individualized prostate cancer therapy: Current and future perspectives (Review). Int. J. Oncol., 2022, 60(5), 52.
[http://dx.doi.org/10.3892/ijo.2022.5342] [PMID: 35322860]
[7]
Cai, W.; Ratnayake, R.; Gerber, M.H.; Chen, Q.Y.; Yu, Y.; Derendorf, H.; Trevino, J.G.; Luesch, H. Development of apratoxin S10 (Apra S10) as an anti-pancreatic cancer agent and its preliminary evaluation in an orthotopic patient-derived xenograft (PDX) model. Invest. New Drugs, 2019, 37(2), 364-374.
[http://dx.doi.org/10.1007/s10637-018-0647-0] [PMID: 30073464]
[8]
Lee, S.I.; Ko, Y.; Park, J.B. Evaluation of the osteogenic differentiation of gingiva-derived stem cells grown on culture plates or in stem cell spheroids: Comparison of two- and three-dimensional cultures. Exp. Ther. Med., 2017, 14(3), 2434-2438.
[http://dx.doi.org/10.3892/etm.2017.4813] [PMID: 28962178]
[9]
Xu, H.; Zhan, X. The application and perspectives of organoids in tumor research. Zhongguo Zhongliu Shengwu Zhiliao Zazhi, 2018, 25(6), 669-673.
[http://dx.doi.org/10.3872/j.issn.1007-385x.2018.07.002]
[10]
Zitter, R.; Chugh, R.M.; Saha, S. Patient derived Ex-Vivo cancer models in drug development, personalized medicine, and radiotherapy. Cancers, 2022, 14(12), 3006.
[http://dx.doi.org/10.3390/cancers14123006] [PMID: 35740672]
[11]
Mittal, R.; Woo, F.W.; Castro, C.S.; Cohen, M.A.; Karanxha, J.; Mittal, J.; Chhibber, T.; Jhaveri, V.M. Organ-on-chip models: Implications in drug discovery and clinical applications. J. Cell. Physiol., 2019, 234(6), 8352-8380.
[http://dx.doi.org/10.1002/jcp.27729] [PMID: 30443904]
[12]
Li, X.; Larsson, P.; Ljuslinder, I.; Öhlund, D.; Myte, R.; Löfgren-Burström, A.; Zingmark, C.; Ling, A.; Edin, S.; Palmqvist, R. Ex Vivo organoid cultures reveal the importance of the tumor microenvironment for maintenance of colorectal cancer stem cells. Cancers, 2020, 12(4), 923.
[http://dx.doi.org/10.3390/cancers12040923] [PMID: 32290033]
[13]
Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; Clevers, H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244), 262-265.
[http://dx.doi.org/10.1038/nature07935] [PMID: 19329995]
[14]
Karthaus, W.R.; Iaquinta, P.J.; Drost, J.; Gracanin, A.; van Boxtel, R.; Wongvipat, J.; Dowling, C.M.; Gao, D.; Begthel, H.; Sachs, N.; Vries, R.G.J.; Cuppen, E.; Chen, Y.; Sawyers, C.L.; Clevers, H.C. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell, 2014, 159(1), 163-175.
[http://dx.doi.org/10.1016/j.cell.2014.08.017] [PMID: 25201529]
[15]
Gao, D.; Vela, I.; Sboner, A.; Iaquinta, P.J.; Karthaus, W.R.; Gopalan, A.; Dowling, C.; Wanjala, J.N.; Undvall, E.A.; Arora, V.K.; Wongvipat, J.; Kossai, M.; Ramazanoglu, S.; Barboza, L.P.; Di, W.; Cao, Z.; Zhang, Q.F.; Sirota, I.; Ran, L.; MacDonald, T.Y.; Beltran, H.; Mosquera, J.M.; Touijer, K.A.; Scardino, P.T.; Laudone, V.P.; Curtis, K.R.; Rathkopf, D.E.; Morris, M.J.; Danila, D.C.; Slovin, S.F.; Solomon, S.B.; Eastham, J.A.; Chi, P.; Carver, B.; Rubin, M.A.; Scher, H.I.; Clevers, H.; Sawyers, C.L.; Chen, Y. Organoid cultures derived from patients with advanced prostate cancer. Cell, 2014, 159(1), 176-187.
[http://dx.doi.org/10.1016/j.cell.2014.08.016] [PMID: 25201530]
[16]
Barker, N.; Huch, M.; Kujala, P.; van de Wetering, M.; Snippert, H.J.; van Es, J.H.; Sato, T.; Stange, D.E.; Begthel, H.; van den Born, M.; Danenberg, E.; van den Brink, S.; Korving, J.; Abo, A.; Peters, P.J.; Wright, N.; Poulsom, R.; Clevers, H. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 2010, 6(1), 25-36.
[http://dx.doi.org/10.1016/j.stem.2009.11.013] [PMID: 20085740]
[17]
Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral organoids model human brain development and microcephaly. Nature, 2013, 501(7467), 373-379.
[http://dx.doi.org/10.1038/nature12517] [PMID: 23995685]
[18]
Huch, M.; Bonfanti, P.; Boj, S.F.; Sato, T.; Loomans, C.J.M.; van de Wetering, M.; Sojoodi, M.; Li, V.S.W.; Schuijers, J.; Gracanin, A.; Ringnalda, F.; Begthel, H.; Hamer, K.; Mulder, J.; van Es, J.H.; de Koning, E.; Vries, R.G.J.; Heimberg, H.; Clevers, H. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J., 2013, 32(20), 2708-2721.
[http://dx.doi.org/10.1038/emboj.2013.204] [PMID: 24045232]
[19]
Huch, M.; Gehart, H.; van Boxtel, R.; Hamer, K.; Blokzijl, F.; Verstegen, M.M.A.; Ellis, E.; van Wenum, M.; Fuchs, S.A.; de Ligt, J.; van de Wetering, M.; Sasaki, N.; Boers, S.J.; Kemperman, H.; de Jonge, J.; Ijzermans, J.N.M.; Nieuwenhuis, E.E.S.; Hoekstra, R.; Strom, S.; Vries, R.R.G.; van der Laan, L.J.W.; Cuppen, E.; Clevers, H. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 2015, 160(1-2), 299-312.
[http://dx.doi.org/10.1016/j.cell.2014.11.050] [PMID: 25533785]
[20]
Kim, M.; Mun, H.; Sung, C.O.; Cho, E.J.; Jeon, H.J.; Chun, S.M.; Jung, D.J.; Shin, T.H.; Jeong, G.S.; Kim, D.K.; Choi, E.K.; Jeong, S.Y.; Taylor, A.M.; Jain, S.; Meyerson, M.; Jang, S.J. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun., 2019, 10(1), 3991.
[http://dx.doi.org/10.1038/s41467-019-11867-6] [PMID: 31488816]
[21]
Zhang, Z.; Wang, H.; Ding, Q.; Xing, Y.; Xu, Z.; Lu, C.; Luo, D.; Xu, L.; Xia, W.; Zhou, C.; Shi, M. Establishment of patient-derived tumor spheroids for non-small cell lung cancer. PLoS One, 2018, 13(3), e0194016.
[http://dx.doi.org/10.1371/journal.pone.0194016] [PMID: 29543851]
[22]
Dekkers, J.F.; Whittle, J.R.; Vaillant, F.; Chen, H.R.; Dawson, C.; Liu, K.; Geurts, M.H.; Herold, M.J.; Clevers, H.; Lindeman, G.J.; Visvader, J.E. Modeling breast cancer using CRISPR-Cas9–mediated engineering of human breast organoids. J. Natl. Cancer Inst., 2020, 112(5), 540-544.
[http://dx.doi.org/10.1093/jnci/djz196] [PMID: 31589320]
[23]
Karakasheva, T.A.; Gabre, J.T.; Sachdeva, U.M.; Cruz-Acuña, R.; Lin, E.W.; DeMarshall, M.; Falk, G.W.; Ginsberg, G.G.; Yang, Z.; Kim, M.M.; Diffenderfer, E.S.; Pitarresi, J.R.; Li, J.; Muir, A.B.; Hamilton, K.E.; Nakagawa, H.; Bass, A.J.; Rustgi, A.K. Patient-derived organoids as a platform for modeling a patient’s response to chemoradiotherapy in esophageal cancer. Sci. Rep., 2021, 11(1), 21304.
[http://dx.doi.org/10.1038/s41598-021-00706-8] [PMID: 34716381]
[24]
Lin, M.; Gao, M.; Cavnar, M.J.; Kim, J. Utilizing gastric cancer organoids to assess tumor biology and personalize medicine. World J. Gastrointest. Oncol., 2019, 11(7), 509-517.
[http://dx.doi.org/10.4251/wjgo.v11.i7.509] [PMID: 31367270]
[25]
Clevers, H. Modeling development and disease with organoids. Cell, 2016, 165(7), 1586-1597.
[http://dx.doi.org/10.1016/j.cell.2016.05.082] [PMID: 27315476]
[26]
Duzagac, F.; Saorin, G.; Memeo, L.; Canzonieri, V.; Rizzolio, F. Microfluidic organoids-on-a-chip: Quantum leap in cancer research. Cancers, 2021, 13(4), 737.
[http://dx.doi.org/10.3390/cancers13040737] [PMID: 33578886]
[27]
Wang, Z.; He, X.; Qiao, H.; Chen, P. Global trends of organoid and organ-on-a-chip in the past decade: A bibliometric and comparative study. Tissue Eng. Part A, 2020, 26(11-12), 656-671.
[http://dx.doi.org/10.1089/ten.tea.2019.0251] [PMID: 31847719]
[28]
Park, S.E.; Georgescu, A.; Huh, D. Organoids-on-a-chip. Science, 2019, 364(6444), 960-965.
[http://dx.doi.org/10.1126/science.aaw7894] [PMID: 31171693]
[29]
Yu, F.; Hunziker, W.; Choudhury, D. Engineering microfluidic organoid-on-a-chip platforms. Micromachines, 2019, 10(3), 165.
[http://dx.doi.org/10.3390/mi10030165] [PMID: 30818801]
[30]
Pinho, D.; Santos, D.; Vila, A.; Carvalho, S. Establishment of colorectal cancer organoids in microfluidic-based system. Micromachines, 2021, 12(5), 497.
[http://dx.doi.org/10.3390/mi12050497] [PMID: 33924829]
[31]
Jalili-Firoozinezhad, S.; Gazzaniga, F.S.; Calamari, E.L.; Camacho, D.M.; Fadel, C.W.; Bein, A.; Swenor, B.; Nestor, B.; Cronce, M.J.; Tovaglieri, A.; Levy, O.; Gregory, K.E.; Breault, D.T.; Cabral, J.M.S.; Kasper, D.L.; Novak, R.; Ingber, D.E. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng., 2019, 3(7), 520-531.
[http://dx.doi.org/10.1038/s41551-019-0397-0] [PMID: 31086325]
[32]
Zhang, J.; Tavakoli, H.; Ma, L.; Li, X.; Han, L.; Li, X. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment. Adv. Drug Deliv. Rev., 2022, 187, 114365.
[http://dx.doi.org/10.1016/j.addr.2022.114365] [PMID: 35667465]
[33]
Rae, C.; Amato, F.; Braconi, C. Patient-derived organoids as a model for cancer drug discovery. Int. J. Mol. Sci., 2021, 22(7), 3483.
[http://dx.doi.org/10.3390/ijms22073483] [PMID: 33801782]
[34]
Fujii, M.; Shimokawa, M.; Date, S.; Takano, A.; Matano, M.; Nanki, K.; Ohta, Y.; Toshimitsu, K.; Nakazato, Y.; Kawasaki, K.; Uraoka, T.; Watanabe, T.; Kanai, T.; Sato, T. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell, 2016, 18(6), 827-838.
[http://dx.doi.org/10.1016/j.stem.2016.04.003] [PMID: 27212702]
[35]
Takebe, T.; Zhang, B.; Radisic, M. Synergistic engineering: Organoids meet organs-on-a-chip. Cell Stem Cell, 2017, 21(3), 297-300.
[http://dx.doi.org/10.1016/j.stem.2017.08.016] [PMID: 28886364]
[36]
Jung, D.J.; Shin, T.H.; Kim, M.; Sung, C.O.; Jang, S.J.; Jeong, G.S. A one-stop microfluidic-based lung cancer organoid culture platform for testing drug sensitivity. Lab Chip, 2019, 19(17), 2854-2865.
[http://dx.doi.org/10.1039/C9LC00496C] [PMID: 31367720]
[37]
Shirure, V.S.; Bi, Y.; Curtis, M.B.; Lezia, A.; Goedegebuure, M.M.; Goedegebuure, S.P.; Aft, R.; Fields, R.C.; George, S.C. Tumor-on-achip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab. Chip, 2018, 18(23), 3687-3702.
[http://dx.doi.org/10.1039/C8LC00596F] [PMID: 30393802]
[38]
Nuciforo, S.; Fofana, I.; Matter, M.S.; Blumer, T.; Calabrese, D.; Boldanova, T.; Piscuoglio, S.; Wieland, S.; Ringnalda, F.; Schwank, G.; Terracciano, L.M.; Ng, C.K.Y.; Heim, M.H. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep., 2018, 24(5), 1363-1376.
[http://dx.doi.org/10.1016/j.celrep.2018.07.001] [PMID: 30067989]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy