Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Advances in Understanding the Notch Signaling Pathway in the Cochlea

Author(s): Xiaoying Chen, Huanzhi Wan, Yutong Bai, Yuanyuan Zhang* and Qingquan Hua*

Volume 29, Issue 41, 2023

Published on: 21 November, 2023

Page: [3266 - 3273] Pages: 8

DOI: 10.2174/0113816128273532231103110910

Price: $65

Abstract

The cochlear structure is highly complex and specific, and its development is regulated by multiple signaling pathways. Abnormalities in cochlear development can lead to different degrees of loss of function. Hair cells (HCs), which are difficult to regenerate in the mature mammalian cochlea, are susceptible to damage from noise and ototoxic drugs, and damage to HCs can cause hearing loss to varying degrees. Notch, a classical developmental signaling molecule, has been shown to be closely associated with embryonic cochlear development and plays an important role in HC regeneration in mammals, suggesting that the Notch signaling pathway may be a potential therapeutic target for cochlear development and hearing impairment due to HC damage. In recent years, the important role of the Notch signaling pathway in the cochlea has received increasing attention. In this paper, we review the role of Notch signaling in cochlear development and HC regeneration, with the aim of providing new research ideas for the prevention and treatment of related diseases.

[1]
Jacques BE, Puligilla C, Weichert RM, et al. A dual function for canonical Wnt/β-catenin signaling in the developing mammalian cochlea. Development 2012; 139(23): 4395-404.
[http://dx.doi.org/10.1242/dev.080358] [PMID: 23132246]
[2]
Kolla L, Kelly MC, Mann ZF, et al. Characterization of the development of the mouse cochlear epithelium at the single cell level. Nat Commun 2020; 11(1): 2389.
[http://dx.doi.org/10.1038/s41467-020-16113-y] [PMID: 32404924]
[3]
Ashmore J, Gale J. The cochlea. Curr Biol 2000; 10(9): R325-7.
[http://dx.doi.org/10.1016/S0960-9822(00)00457-7] [PMID: 10801449]
[4]
Raphael Y, Altschuler RA. Structure and innervation of the cochlea. Brain Res Bull 2003; 60(5-6): 397-422.
[http://dx.doi.org/10.1016/S0361-9230(03)00047-9] [PMID: 12787864]
[5]
Wagner EL, Shin JB. Mechanisms of hair cell damage and repair. Trends Neurosci 2019; 42(6): 414-24.
[http://dx.doi.org/10.1016/j.tins.2019.03.006] [PMID: 30992136]
[6]
Vlajkovic SM, Thorne PR. Purinergic signalling in the cochlea. Int J Mol Sci 2022; 23(23): 14874.
[http://dx.doi.org/10.3390/ijms232314874] [PMID: 36499200]
[7]
Mammano F, Bortolozzi M. Ca2+ signaling, apoptosis and autophagy in the developing cochlea: Milestones to hearing acquisition. Cell Calcium 2018; 70: 117-26.
[http://dx.doi.org/10.1016/j.ceca.2017.05.006] [PMID: 28578918]
[8]
Köppl C, Manley GA. A functional perspective on the evolution of the cochlea. Cold Spring Harb Perspect Med 2019; 9(6): a033241.
[http://dx.doi.org/10.1101/cshperspect.a033241] [PMID: 30181353]
[9]
Basch ML, Brown RM II, Jen HI, Groves AK. Where hearing starts: The development of the mammalian cochlea. J Anat 2016; 228(2): 233-54.
[http://dx.doi.org/10.1111/joa.12314] [PMID: 26052920]
[10]
Janesick AS, Heller S. Stem cells and the bird cochlea-Where is everybody? Cold Spring Harb Perspect Med 2019; 9(4): a033183.
[http://dx.doi.org/10.1101/cshperspect.a033183] [PMID: 30249599]
[11]
Zhang KD, Coate TM. Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear. Semin Cell Dev Biol 2017; 65: 80-7.
[http://dx.doi.org/10.1016/j.semcdb.2016.09.017] [PMID: 27760385]
[12]
Coate TM, Kelley MW. Making connections in the inner ear: Recent insights into the development of spiral ganglion neurons and their connectivity with sensory hair cells. Semin Cell Dev Biol 2013; 24(5): 460-9.
[http://dx.doi.org/10.1016/j.semcdb.2013.04.003] [PMID: 23660234]
[13]
Daudet N, Żak M. Notch signalling: The multitask manager of inner ear development and regeneration. Adv Exp Med Biol 2020; 1218: 129-57.
[http://dx.doi.org/10.1007/978-3-030-34436-8_8] [PMID: 32060875]
[14]
Driver EC, Kelley MW. Development of the cochlea. Development 2020; 147(12): dev162263.
[http://dx.doi.org/10.1242/dev.162263] [PMID: 32571852]
[15]
Jiang L, Romero-Carvajal A, Haug JS, Seidel CW, Piotrowski T. Gene-expression analysis of hair cell regeneration in the zebrafish lateral line. Proc Natl Acad Sci USA 2014; 111(14): E1383-92.
[http://dx.doi.org/10.1073/pnas.1402898111] [PMID: 24706903]
[16]
Maass JC, Gu R, Basch ML, et al. Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea. Front Cell Neurosci 2015; 9: 110.
[http://dx.doi.org/10.3389/fncel.2015.00110] [PMID: 25873862]
[17]
Holley M, Rhodes C, Kneebone A, Herde MK, Fleming M, Steel KP. Emx2 and early hair cell development in the mouse inner ear. Dev Biol 2010; 340(2): 547-56.
[http://dx.doi.org/10.1016/j.ydbio.2010.02.004] [PMID: 20152827]
[18]
Huang J, Sun X, Wang H, et al. Conditional overexpression of neuritin in supporting cells (SCs) mitigates hair cell (HC) damage and induces HC regeneration in the adult mouse cochlea after drug-induced ototoxicity. Hear Res 2022; 420: 108515.
[http://dx.doi.org/10.1016/j.heares.2022.108515] [PMID: 35584572]
[19]
Gilels FA, Wang J, Bullen A, White PM, Kiernan AE. Deletion of the Notch ligand Jagged1 during cochlear maturation leads to inner hair cell defects and hearing loss. Cell Death Dis 2022; 13(11): 971.
[http://dx.doi.org/10.1038/s41419-022-05380-w] [PMID: 36400760]
[20]
Shu Y, Li W, Huang M, et al. Renewed proliferation in adult mouse cochlea and regeneration of hair cells. Nat Commun 2019; 10(1): 5530.
[http://dx.doi.org/10.1038/s41467-019-13157-7] [PMID: 31797926]
[21]
Samarajeewa A, Jacques BE, Dabdoub A. Therapeutic potential of wnt and notch signaling and epigenetic regulation in mammalian sensory hair cell regeneration. Mol Ther 2019; 27(5): 904-11.
[http://dx.doi.org/10.1016/j.ymthe.2019.03.017] [PMID: 30982678]
[22]
Fiorini E, Merck E, Wilson A, et al. Dynamic regulation of notch 1 and notch 2 surface expression during T cell development and activation revealed by novel monoclonal antibodies. J Immunol 2009; 183(11): 7212-22.
[http://dx.doi.org/10.4049/jimmunol.0902432] [PMID: 19915064]
[23]
Tang LS, Alger HM, Pereira FA. COUP-TFI controls Notch regulation of hair cell and support cell differentiation. Development 2006; 133(18): 3683-93.
[http://dx.doi.org/10.1242/dev.02536] [PMID: 16914494]
[24]
Baron M. An overview of the Notch signalling pathway. Semin Cell Dev Biol 2003; 14(2): 113-9.
[http://dx.doi.org/10.1016/S1084-9521(02)00179-9] [PMID: 12651094]
[25]
Gasperowicz M, Otto F. The notch signalling pathway in the development of the mouse placenta. Placenta 2008; 29(8): 651-9.
[http://dx.doi.org/10.1016/j.placenta.2008.06.004] [PMID: 18603295]
[26]
Engler A, Rolando C, Giachino C, et al. Notch2 signaling maintains NSC Quiescence in the murine ventricular-subventricular zone. Cell Rep 2018; 22(4): 992-1002.
[http://dx.doi.org/10.1016/j.celrep.2017.12.094] [PMID: 29386140]
[27]
Fan X, Mikolaenko I, Elhassan I, et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 2004; 64(21): 7787-93.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1446] [PMID: 15520184]
[28]
Kiernan AE. Notch signaling during cell fate determination in the inner ear. Semin Cell Dev Biol 2013; 24(5): 470-9.
[http://dx.doi.org/10.1016/j.semcdb.2013.04.002] [PMID: 23578865]
[29]
Tveriakhina L, Schuster-Gossler K, Jarrett SM, et al. The ectodomains determine ligand function in vivo and selectivity of DLL1 and DLL4 toward NOTCH1 and NOTCH2 in vitro. eLife 2018; 7: e40045.
[http://dx.doi.org/10.7554/eLife.40045] [PMID: 30289388]
[30]
Brooker R, Hozumi K, Lewis J. Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development 2006; 133(7): 1277-86.
[http://dx.doi.org/10.1242/dev.02284] [PMID: 16495313]
[31]
Liu Z, Brunskill E, Varnum-Finney B, et al. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis. Development 2015; 142(14): 2452-63.
[PMID: 26062937]
[32]
Kiernan AE, Cordes R, Kopan R, Gossler A, Gridley T. The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development 2005; 132(19): 4353-62.
[http://dx.doi.org/10.1242/dev.02002] [PMID: 16141228]
[33]
Niessen K, Karsan A. Notch signaling in cardiac development. Circ Res 2008; 102(10): 1169-81.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.174318] [PMID: 18497317]
[34]
Demehri S, Liu Z, Lee J, et al. Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity. PLoS Biol 2008; 6(5): e123.
[http://dx.doi.org/10.1371/journal.pbio.0060123] [PMID: 18507503]
[35]
Geisler F, Nagl F, Mazur PK, et al. Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology 2008; 48(2): 607-16.
[http://dx.doi.org/10.1002/hep.22381] [PMID: 18666240]
[36]
McCright B, Lozier J, Gridley T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 2002; 129(4): 1075-82.
[http://dx.doi.org/10.1242/dev.129.4.1075] [PMID: 11861489]
[37]
Morimoto M, Nishinakamura R, Saga Y, Kopan R. Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development 2012; 139(23): 4365-73.
[http://dx.doi.org/10.1242/dev.083840] [PMID: 23132245]
[38]
Fujimaki S, Seko D, Kitajima Y, et al. Notch1 and Notch2 coordinately regulate stem cell function in the Quiescent and activated states of muscle satellite cells. Stem Cells 2018; 36(2): 278-85.
[http://dx.doi.org/10.1002/stem.2743] [PMID: 29139178]
[39]
Gifford GB, Demitrack ES, Keeley TM, et al. Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis. Gut 2017; 66(6): 1001-11.
[http://dx.doi.org/10.1136/gutjnl-2015-310811] [PMID: 26933171]
[40]
Romero-Wolf M, Shin B, Zhou W, Koizumi M, Rothenberg EV, Hosokawa H. Notch2 complements Notch1 to mediate inductive signaling that initiates early T cell development. J Cell Biol 2020; 219(10): e202005093.
[http://dx.doi.org/10.1083/jcb.202005093] [PMID: 32756905]
[41]
Baumgart A, Mazur PK, Anton M, et al. Opposing role of Notch1 and Notch2 in a KrasG12D-driven murine non-small cell lung cancer model. Oncogene 2015; 34(5): 578-88.
[http://dx.doi.org/10.1038/onc.2013.592] [PMID: 24509876]
[42]
Chu D, Zhang Z, Zhou Y, et al. Notch1 and Notch2 have opposite prognostic effects on patients with colorectal cancer. Ann Oncol 2011; 22(11): 2440-7.
[http://dx.doi.org/10.1093/annonc/mdq776] [PMID: 21378202]
[43]
Puligilla C, Kelley MW. Building the world’s best hearing aid; regulation of cell fate in the cochlea. Curr Opin Genet Dev 2009; 19(4): 368-73.
[http://dx.doi.org/10.1016/j.gde.2009.06.004] [PMID: 19604683]
[44]
Żak M, Klis SFL, Grolman W. The Wnt and Notch signalling pathways in the developing cochlea: Formation of hair cells and induction of regenerative potential. Int J Dev Neurosci 2015; 47(Part B): 247-58.
[http://dx.doi.org/10.1016/j.ijdevneu.2015.09.008] [PMID: 26471908]
[45]
Jayasena CS, Ohyama T, Segil N, Groves AK. Notch signaling augments the canonical Wnt pathway to specify the size of the otic placode. Development 2008; 135(13): 2251-61.
[http://dx.doi.org/10.1242/dev.017905] [PMID: 18495817]
[46]
Kiernan AE, Xu J, Gridley T. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet 2006; 2(1): e4.
[http://dx.doi.org/10.1371/journal.pgen.0020004] [PMID: 16410827]
[47]
Chrysostomou E, Zhou L, Darcy YL, Graves KA, Doetzlhofer A, Cox BC. The notch ligand jagged1 is required for the formation, maintenance, and survival of Hensen’s cells in the mouse cochlea. J Neurosci 2020; 40(49): 9401-13.
[http://dx.doi.org/10.1523/JNEUROSCI.1192-20.2020] [PMID: 33127852]
[48]
Brown R, Groves AK. Hear, hear for notch: Control of cell fates in the inner ear by notch signaling. Biomolecules 2020; 10(3): 370.
[http://dx.doi.org/10.3390/biom10030370] [PMID: 32121147]
[49]
Zhai S, Shi L, Wang B, et al. Isolation and culture of hair cell progenitors from postnatal rat cochleae. J Neurobiol 2005; 65(3): 282-93.
[http://dx.doi.org/10.1002/neu.20190] [PMID: 16155904]
[50]
Tateya T, Sakamoto S, Imayoshi I, Kageyama R. In vivo overactivation of the Notch signaling pathway in the developing cochlear epithelium. Hear Res 2015; 327: 209-17.
[http://dx.doi.org/10.1016/j.heares.2015.07.012] [PMID: 26209882]
[51]
Mizutari K, Fujioka M, Hosoya M, et al. Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron 2013; 77(1): 58-69.
[http://dx.doi.org/10.1016/j.neuron.2012.10.032] [PMID: 23312516]
[52]
Driver EC, Sillers L, Coate TM, Rose MF, Kelley MW. The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Dev Biol 2013; 376(1): 86-98.
[http://dx.doi.org/10.1016/j.ydbio.2013.01.005] [PMID: 23318633]
[53]
Zine A, Aubert A, Qiu J, et al. Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J Neurosci 2001; 21(13): 4712-20.
[http://dx.doi.org/10.1523/JNEUROSCI.21-13-04712.2001] [PMID: 11425898]
[54]
Zheng JL, Shou J, Guillemot F, Kageyama R, Gao WQ. Hes1 is a negative regulator of inner ear hair cell differentiation. Development 2000; 127(21): 4551-60.
[http://dx.doi.org/10.1242/dev.127.21.4551] [PMID: 11023859]
[55]
Romero-Carvajal A, Navajas Acedo J, Jiang L, et al. Regeneration of sensory hair cells requires localized interactions between the notch and Wnt pathways. Dev Cell 2015; 34(3): 267-82.
[http://dx.doi.org/10.1016/j.devcel.2015.05.025] [PMID: 26190147]
[56]
Iyer AA, Hosamani I, Nguyen JD, et al. Cellular reprogramming with ATOH1, GFI1, and POU4F3 implicate epigenetic changes and cell-cell signaling as obstacles to hair cell regeneration in mature mammals. eLife 2022; 11: e79712.
[http://dx.doi.org/10.7554/eLife.79712] [PMID: 36445327]
[57]
McGovern MM, Randle MR, Cuppini CL, Graves KA, Cox BC. Multiple supporting cell subtypes are capable of spontaneous hair cell regeneration in the neonatal mouse cochlea. Development 2019; 146(4): dev171009.
[http://dx.doi.org/10.1242/dev.171009] [PMID: 30770379]
[58]
Chi F, Yang J, Luo W, Han Z, Ren D, Wang X. Notch pathway inhibitor DAPT enhances Atoh1 activity to generate new hair cells in situ in rat cochleae. Neural Regen Res 2017; 12(12): 2092-9.
[http://dx.doi.org/10.4103/1673-5374.221169] [PMID: 29323051]
[59]
Cheng YF. Atoh1 regulation in the cochlea: More than just transcription. J Zhejiang Univ Sci B 2019; 20(2): 146-55.
[http://dx.doi.org/10.1631/jzus.B1600438] [PMID: 29770645]
[60]
Costa A, Powell LM, Lowell S, Jarman AP. Atoh1 in sensory hair cell development: Constraints and cofactors. Semin Cell Dev Biol 2017; 65: 60-8.
[http://dx.doi.org/10.1016/j.semcdb.2016.10.003] [PMID: 27751776]
[61]
Lanford PJ, Lan Y, Jiang R, et al. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 1999; 21(3): 289-92.
[http://dx.doi.org/10.1038/6804] [PMID: 10080181]
[62]
Pan W, Jin Y, Stanger B, Kiernan AE. Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proc Natl Acad Sci USA 2010; 107(36): 15798-803.
[http://dx.doi.org/10.1073/pnas.1003089107] [PMID: 20733081]
[63]
Hartman BH, Reh TA, Bermingham-McDonogh O. Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear. Proc Natl Acad Sci USA 2010; 107(36): 15792-7.
[http://dx.doi.org/10.1073/pnas.1002827107] [PMID: 20798046]
[64]
Liu Z, Owen T, Fang J, Zuo J. Overactivation of Notch1 signaling induces ectopic hair cells in the mouse inner ear in an age-dependent manner. PLoS One 2012; 7(3): e34123.
[http://dx.doi.org/10.1371/journal.pone.0034123] [PMID: 22448289]
[65]
Du X, Cai Q, West MB, et al. Regeneration of cochlear hair cells and hearing recovery through hes1 modulation with siRNA nanoparticles in adult guinea pigs. Mol Ther 2018; 26(5): 1313-26.
[http://dx.doi.org/10.1016/j.ymthe.2018.03.004] [PMID: 29680697]
[66]
Groves AK, Zhang KD, Fekete DM. The genetics of hair cell development and regeneration. Annu Rev Neurosci 2013; 36(1): 361-81.
[http://dx.doi.org/10.1146/annurev-neuro-062012-170309] [PMID: 23724999]
[67]
Jacques BE, Montgomery WH IV, Uribe PM, et al. The role of Wnt/β-catenin signaling in proliferation and regeneration of the developing basilar papilla and lateral line. Dev Neurobiol 2014; 74(4): 438-56.
[http://dx.doi.org/10.1002/dneu.22134] [PMID: 24115534]
[68]
Shi F, Hu L, Edge ASB. Generation of hair cells in neonatal mice by β-catenin overexpression in Lgr5-positive cochlear progenitors. Proc Natl Acad Sci USA 2013; 110(34): 13851-6.
[http://dx.doi.org/10.1073/pnas.1219952110] [PMID: 23918377]
[69]
Li W, Wu J, Yang J, et al. Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proc Natl Acad Sci USA 2015; 112(1): 166-71.
[http://dx.doi.org/10.1073/pnas.1415901112] [PMID: 25535395]
[70]
Groves AK, Fekete DM. Shaping sound in space: The regulation of inner ear patterning. Development 2012; 139(2): 245-57.
[http://dx.doi.org/10.1242/dev.067074] [PMID: 22186725]
[71]
Mulvaney J, Dabdoub A. Atoh1, an essential transcription factor in neurogenesis and intestinal and inner ear development: Function, regulation, and context dependency. J Assoc Res Otolaryngol 2012; 13(3): 281-93.
[http://dx.doi.org/10.1007/s10162-012-0317-4] [PMID: 22370966]
[72]
Shi F, Cheng Y, Wang XL, Edge ASB. Beta-catenin up-regulates Atoh1 expression in neural progenitor cells by interaction with an Atoh1 3′ enhancer. J Biol Chem 2010; 285(1): 392-400.
[http://dx.doi.org/10.1074/jbc.M109.059055] [PMID: 19864427]
[73]
Shi F, Hu L, Jacques BE, Mulvaney JF, Dabdoub A, Edge ASB. β-Catenin is required for hair-cell differentiation in the cochlea. J Neurosci 2014; 34(19): 6470-9.
[http://dx.doi.org/10.1523/JNEUROSCI.4305-13.2014] [PMID: 24806673]
[74]
Atkinson PJ, Huarcaya Najarro E, Sayyid ZN, Cheng AG. Sensory hair cell development and regeneration: Similarities and differences. Development 2015; 142(9): 1561-71.
[http://dx.doi.org/10.1242/dev.114926] [PMID: 25922522]
[75]
Ebeid M, Huh SH. FGF signaling: Diverse roles during cochlear development. BMB Rep 2017; 50(10): 487-95.
[http://dx.doi.org/10.5483/BMBRep.2017.50.10.164] [PMID: 28855028]
[76]
Munnamalai V, Hayashi T, Bermingham-McDonogh O. Notch prosensory effects in the Mammalian cochlea are partially mediated by Fgf20. J Neurosci 2012; 32(37): 12876-84.
[http://dx.doi.org/10.1523/JNEUROSCI.2250-12.2012] [PMID: 22973011]
[77]
Condorelli AG, El Hachem M, Zambruno G, Nystrom A, Candi E, Castiglia D. Notch-ing up knowledge on molecular mechanisms of skin fibrosis: Focus on the multifaceted Notch signalling pathway. J Biomed Sci 2021; 28(1): 36.
[http://dx.doi.org/10.1186/s12929-021-00732-8] [PMID: 33966637]
[78]
Hyde LA, McHugh NA, Chen J, et al. Studies to investigate the in vivo therapeutic window of the γ-secretase inhibitor N2-[(2 S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-l-alaninamide (LY- 411,575) in the CRND8 mouse. J Pharmacol Exp Ther 2006; 319(3): 1133-43.
[http://dx.doi.org/10.1124/jpet.106.111716] [PMID: 16946102]
[79]
Moellering RE, Cornejo M, Davis TN, et al. Direct inhibition of the NOTCH transcription factor complex. Nature 2009; 462(7270): 182-8.
[http://dx.doi.org/10.1038/nature08543] [PMID: 19907488]
[80]
Wu Y, Cain-Hom C, Choy L, et al. Therapeutic antibody targeting of individual Notch receptors. Nature 2010; 464(7291): 1052-7.
[http://dx.doi.org/10.1038/nature08878] [PMID: 20393564]
[81]
Astudillo L, Da Silva TG, Wang Z, et al. The small molecule IMR-1 inhibits the notch transcriptional activation complex to suppress tumorigenesis. Cancer Res 2016; 76(12): 3593-603.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0061] [PMID: 27197169]
[82]
Gómez-Galeno JE, Hurtado C, Cheng J, Yardimci C, Mercola M, Cashman JR. b-Annulated 1,4-dihydropyridines as notch inhibitors. Bioorg Med Chem Lett 2018; 28(20): 3363-7.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.002] [PMID: 30201292]
[83]
Hurtado C, Safarova A, Smith M, et al. Disruption of NOTCH signaling by a small molecule inhibitor of the transcription factor RBPJ. Sci Rep 2019; 9(1): 10811.
[http://dx.doi.org/10.1038/s41598-019-46948-5] [PMID: 31346210]
[84]
Masiero M, Li D, Whiteman P, et al. Development of therapeutic anti-JAGGED1 antibodies for cancer therapy. Mol Cancer Ther 2019; 18(11): 2030-42.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1176] [PMID: 31395687]
[85]
Zeng X, Kirkpatrick R, Hofmann G, et al. Screen for modulators of atonal homolog 1 gene expression using notch pathway-relevant gene transcription based cellular assays. PLoS One 2018; 13(12): e0207140.
[http://dx.doi.org/10.1371/journal.pone.0207140] [PMID: 30540745]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy