Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

High Level of Adropin Promotes the Progression of Pancreatic Ductal Adenocarcinoma

Author(s): Jilong Hu, Qinrong Wu, Qunhua Ding, Weibo Wu, Qiyun Li* and Zhinan Zheng*

Volume 24, Issue 6, 2024

Published on: 21 November, 2023

Page: [629 - 641] Pages: 13

DOI: 10.2174/0115680096267203231024093601

Price: $65

Abstract

Background and Objectives: Preliminary experiments have revealed the abnormally high expression level of adropin in pancreatic ductal adenocarcinoma (PDA). This study investigated the role of adropin in the progression of PDA.

Methods: The paraffin-embedded samples of 20 patients with PDA were obtained from the hospital biobank, and immunohistochemistry was used to evaluate adropin expression. PDA cell lines were cultured and treated with recombinant adropin or adropin knockdown. Cell behavior was assessed, and the expression of phospho-vascular endothelial growth factor receptor (p-VEGFR2) and other related proteins was detected. The cell-derived xenograft (CDX) of PDA was established, and the effects of adropin or adropin knockdown on tumor growth were observed.

Results: The PDA cancer tissues exhibited elevated adropin protein expression compared with the paracancerous tissues, and the expression was positively correlated with carbohydrate antigen 19-9 levels in patients. Adropin significantly promoted the proliferation and migration of PDA cells and upregulated the expression of p-VEGFR2, Ki67, cyclin D1, and matrix metalloprotein 2 (MMP2). After the knockdown of adropin expression or blockade of VEGFR2, the above effects of adropin were significantly reversed. Adropin supplementation significantly accelerated tumor growth in PDA CDX; upregulated the expression of p-VEGFR2, Ki67, cyclin D1, and MMP2; and promoted angiogenesis in tumor tissue microenvironment. However, CDX inoculated with adropin knockdown cells produced the opposite results.

Conclusion: Adropin overexpression in PDA promotes cancer cell proliferation and angiogenesis in tumor microenvironment by continuously activating VEGFR2 signaling, thereby creating conditions for tumor progression. Thus, targeting adropin may be an effective anti-PDA strategy.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Torphy, R.J.; Fujiwara, Y.; Schulick, R.D. Pancreatic cancer treatment: Better, but a long way to go. Surg. Today, 2020, 50(10), 1117-1125.
[http://dx.doi.org/10.1007/s00595-020-02028-0] [PMID: 32474642]
[3]
Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet, 2020, 395(10242), 2008-2020.
[http://dx.doi.org/10.1016/S0140-6736(20)30974-0] [PMID: 32593337]
[4]
Roth, M.T.; Cardin, D.B.; Berlin, J.D. Recent advances in the treatment of pancreatic cancer. F1000 Res., 2020, 9, 131.
[http://dx.doi.org/10.12688/f1000research.21981.1] [PMID: 32148767]
[5]
Sun, M.; Ye, H.; Shi, Q.; Xie, J.; Yu, X.; Ling, H.; You, S.; He, Z.; Qin, B.; Sun, J. Both-in-one hybrid bacteria suppress the tumor metastasis and relapse via tandem-amplifying reactive oxygen species-immunity responses. Adv. Healthc. Mater., 2021, 10(21), 2100950.
[http://dx.doi.org/10.1002/adhm.202100950] [PMID: 34541825]
[6]
Zhao, J.; Ye, H.; Lu, Q.; Wang, K.; Chen, X.; Song, J.; Wang, H.; Lu, Y.; Cheng, M.; He, Z.; Zhai, Y.; Zhang, H.; Sun, J. Inhibition of post-surgery tumour recurrence via a sprayable chemo-immunotherapy gel releasing PD-L1 antibody and platelet-derived small EVs. J. Nanobiotechnology, 2022, 20(1), 62.
[http://dx.doi.org/10.1186/s12951-022-01270-7] [PMID: 35109878]
[7]
Jiang, S.; Fagman, J.B.; Ma, Y.; Liu, J.; Vihav, C.; Engstrom, C.; Liu, B.; Chen, C. A comprehensive review of pancreatic cancer and its therapeutic challenges. Aging, 2022, 14(18), 7635-7649.
[http://dx.doi.org/10.18632/aging.204310] [PMID: 36173644]
[8]
Weiss, F.; Lauffenburger, D.; Friedl, P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat. Rev. Cancer, 2022, 22(3), 157-173.
[http://dx.doi.org/10.1038/s41568-021-00427-0] [PMID: 35013601]
[9]
Cervantes-Villagrana, R.D.; Albores-García, D.; Cervantes-Villagrana, A.R.; García-Acevez, S.J. Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduct. Target. Ther., 2020, 5(1), 99.
[http://dx.doi.org/10.1038/s41392-020-0205-z] [PMID: 32555170]
[10]
Banh, R.S.; Biancur, D.E.; Yamamoto, K.; Sohn, A.S.W.; Walters, B.; Kuljanin, M.; Gikandi, A.; Wang, H.; Mancias, J.D.; Schneider, R.J.; Pacold, M.E.; Kimmelman, A.C. Neurons release serine to support mRNA translation in pancreatic cancer. Cell, 2020, 183(5), 1202-1218.e25.
[http://dx.doi.org/10.1016/j.cell.2020.10.016] [PMID: 33142117]
[11]
Rao, A.; Herr, D.R. G protein-coupled receptor GPR19 regulates E-cadherin expression and invasion of breast cancer cells. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(7), 1318-1327.
[http://dx.doi.org/10.1016/j.bbamcr.2017.05.001] [PMID: 28476646]
[12]
Tuna, B.G.; Atalay, P.B.; Altunbek, M.; Kalkan, B.M.; Dogan, S. Effects of chronic and intermittent calorie restriction on adropin levels in breast cancer. Nutr. Cancer, 2017, 69(7), 1003-1010.
[http://dx.doi.org/10.1080/01635581.2017.1359314] [PMID: 28922017]
[13]
Nergiz, S.; Altinkaya, S.O.; Kurt Ömürlü, İ.; Yuksel, H.; Küçük, M.; Demircan Sezer, S. Circulating adropin levels in patients with endometrium cancer. Gynecol. Endocrinol., 2015, 31(9), 730-735.
[http://dx.doi.org/10.3109/09513590.2015.1065480] [PMID: 26172926]
[14]
Ali, I.I.; D’Souza, C.; Singh, J.; Adeghate, E. Adropin’s role in energy homeostasis and metabolic disorders. Int. J. Mol. Sci., 2022, 23(15), 8318.
[http://dx.doi.org/10.3390/ijms23158318] [PMID: 35955453]
[15]
He, K.; Wu, L.; Ding, Q.; Haider, F.; Yu, H.; Wang, H.; Xiang, G. Apatinib promotes apoptosis of pancreatic cancer cells through downregulation of hypoxia-inducible factor-1α and increased levels of reactive oxygen species. Oxid. Med. Cell. Longev., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/5152072] [PMID: 30863481]
[16]
Hu, J.; Zheng, Z.; Lei, J.; Cao, Y.; Li, Q.; Zheng, Z.; Chen, C. Targeting the EZH2-PPAR axis Is a potential therapeutic pathway for pancreatic cancer. PPAR Res., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/5589342] [PMID: 34335707]
[17]
Alzoughool, F.; Al-Zghoul, M.B. Optimal therapeutic adropin dose intervention in mice and rat animal models: A systematic review. Vet. World, 2021, 14(6), 1426-1429.
[http://dx.doi.org/10.14202/vetworld.2021.1426-1429] [PMID: 34316188]
[18]
Stelcer, E.; Milecka, P.; Komarowska, H.; Jopek, K.; Tyczewska, M.; Szyszka, M.; Lesniczak, M.; Suchorska, W.; Bekova, K.; Szczepaniak, B.; Ruchala, M.; Karczewski, M.; Wierzbicki, T.; Szaflarski, W.; Malendowicz, L.K.; Rucinski, M. Adropin stimulates proliferation and inhibits adrenocortical steroidogenesis in the human adrenal carcinoma (HAC15) cell line. Front. Endocrinol., 2020, 11, 561370.
[http://dx.doi.org/10.3389/fendo.2020.561370] [PMID: 33133015]
[19]
Li, L.; Xie, W.; Zheng, X.L.; Yin, W.D.; Tang, C.K. A novel peptide adropin in cardiovascular diseases. Clin. Chim. Acta, 2016, 453, 107-113.
[http://dx.doi.org/10.1016/j.cca.2015.12.010] [PMID: 26683354]
[20]
Cross, M.J.; Dixelius, J.; Matsumoto, T.; Claesson-Welsh, L. VEGF-receptor signal transduction. Trends Biochem. Sci., 2003, 28(9), 488-494.
[http://dx.doi.org/10.1016/S0968-0004(03)00193-2] [PMID: 13678960]
[21]
Olsson, A.K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling? in control of vascular function. Nat. Rev. Mol. Cell Biol., 2006, 7(5), 359-371.
[http://dx.doi.org/10.1038/nrm1911] [PMID: 16633338]
[22]
Büchler, P.; Reber, H.A.; Büchler, M.W.; Friess, H.; Hines, O.J. VEGF-RII influences the prognosis of pancreatic cancer. Ann Surg., 2002, 236(6), 738-749.
[23]
Schmitz-Winnenthal, F.H.; Hohmann, N.; Schmidt, T.; Podola, L.; Friedrich, T.; Lubenau, H.; Springer, M.; Wieckowski, S.; Breiner, K.M.; Mikus, G.; Büchler, M.W.; Keller, A.V.; Koc, R.; Springfeld, C.; Knebel, P.; Bucur, M.; Grenacher, L.; Haefeli, W.E.; Beckhove, P. A phase 1 trial extension to assess immunologic efficacy and safety of prime-boost vaccination with VXM01, an oral T cell vaccine against VEGFR2, in patients with advanced pancreatic cancer. OncoImmunology, 2018, 7(4), e1303584.
[http://dx.doi.org/10.1080/2162402X.2017.1303584] [PMID: 29632710]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy