Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Mechanism of Polygala-Acorus in Treating Autism Spectrum Disorder Based on Network Pharmacology and Molecular Docking

Author(s): Haozhi Chen, Changlin Zhou, Wen Li and Yaoyao Bian*

Volume 20, Issue 7, 2024

Published on: 20 November, 2023

Page: [1087 - 1099] Pages: 13

DOI: 10.2174/0115734099266308231108112058

Price: $65

Abstract

Background: Recent epidemic survey data have revealed a globally increasing prevalence of autism spectrum disorders (ASDs). Currently, while Western medicine mostly uses a combination of comprehensive intervention and rehabilitative treatment, patient outcomes remain unsatisfactory. Polygala-Acorus, used as a pair drug, positively affects the brain and kidneys, and can improve intelligence, wisdom, and awareness; however, the underlying mechanism of action is unclear.

Objective: We performed network pharmacology analysis of the mechanism of Polygala– Acorus in treating ASD and its potential therapeutic effects to provide a scientific basis for the pharmaceutical’s clinical application.

Methods: The chemical compositions and targets corresponding to Polygala–Acorus were obtained using the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform, Chemical Source Website, and PharmMapper database. Disease targets in ASD were screened using the DisGeNET, DrugBank, and GeneCards databases. Gene Ontology functional analysis and metabolic pathway analysis (Kyoto Encyclopedia of Genes and Genomes) were performed using the Metascape database and validated via molecular docking using AutoDock Vina and PyMOL software.

Results: Molecular docking analysis showed that the key active components of Polygala- Acorus interacted with the following key targets: EGFR, SRC, MAPK1, and ALB. Thus, the key active components of Polygala-Acorus (sibiricaxanthone A, sibiricaxanthone B tenuifolin, polygalic acid, cycloartenol, and 8-isopentenyl-kaempferol) have been found to bind to EGFR, SRC, MAPK1, and ALB.

Conclusion: This study has preliminarily revealed the active ingredients and underlying mechanism of Polygala-Acorus in the treatment of ASD, and our predictions need to be proven by further experimentation

[1]
Hirota, T.; King, B.H. Autism spectrum disorder. JAMA, 2023, 329(2), 157-168.
[http://dx.doi.org/10.1001/jama.2022.23661] [PMID: 36625807]
[2]
ZHANG, X.Y.; KONG, Y.M.; MA, B.X.; DANG, W.L.; ZHOU, R.Y.; SHI, W.L. Research progress in the neurobiology of animal models of autism spectrum disorder. Acta Laboratorium Animalis Scientia Sinica, 2022, 30(08), 1141-1149.
[3]
Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; Ladd-Acosta, C.M.; McArthur, D.; Pas, E.T.; Salinas, A.; Vehorn, A.; Williams, S.; Esler, A.; Grzybowski, A.; Hall-Lande, J.; Nguyen, R.H.N.; Pierce, K.; Zahorodny, W.; Hudson, A.; Hallas, L.; Mancilla, K.C.; Patrick, M.; Shenouda, J.; Sidwell, K.; DiRienzo, M.; Gutierrez, J.; Spivey, M.H.; Lopez, M.; Pettygrove, S.; Schwenk, Y.D.; Washington, A.; Shaw, K.A. Prevalence and characteristics of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2020. MMWR Surveill. Summ., 2023, 72(2), 1-14.
[http://dx.doi.org/10.15585/mmwr.ss7202a1] [PMID: 36952288]
[4]
Zhou, H.; Xu, X.; Yan, W.; Zou, X.; Wu, L.; Luo, X.; Li, T.; Huang, Y.; Guan, H.; Chen, X.; Mao, M.; Xia, K.; Zhang, L.; Li, E.; Ge, X.; Zhang, L.; Li, C.; Zhang, X.; Zhou, Y.; Ding, D.; Shih, A.; Fombonne, E.; Zheng, Y.; Han, J.; Sun, Z.; Jiang, Y.; Wang, Y. Prevalence of autism spectrum disorder in China: A nationwide multi-center population-based study among children aged 6 to 12 years. Neurosci. Bull., 2020, 36(9), 961-971.
[http://dx.doi.org/10.1007/s12264-020-00530-6] [PMID: 32607739]
[5]
Wang, L.; Ding, Y.R.; Wang, S.C. Experience of WANG Shou-chuan in treating and differentiating autism with syndrome of deficiency of both heart and spleen. Zhonghua Zhongyiyao Zazhi, 2018, 33(8), 3393-3395.
[6]
Guidelines for clinical diagnosis and treatment of pediatrics in traditional Chinese medicine; China Press of Traditional Chinese Medicine: Beijing, 2020.
[7]
Li, J.H.; Li, G.M.; Ou, F.J.; Huang, Y. Experience of HUANG yan on treating encephalopathy with TCM pair drugs. Zhonghua Zhongyiyao Xuekan, 2016, 34(06), 1309-1312.
[8]
JIANG, B.; JI, X.X.; YIN, L.; CHEN, H.; HUANG, X.Y.; ZHANG, K.W.; LI, Y.Q.; WEI, L.; WANG, S.M. Use of Kongsheng Zhenzhong Pill to treat 3 cases of children’s mental diseases by WANG Su-mei. Beijing J. Tradit Chin Med., 2020, 39(7), 765-766.
[9]
J.S. Shi Jinmo’s Pair Drugs; People's Military Medical Press: Beijing, 2010.
[10]
LI, Z. Analysis of insomnia pathogenesis from shi jinmo herb couples. J. Basic Clin. Med., 2017, 23(06), 883-884.
[11]
Wang, J.; Zhou, X.J.; Hu, Y.; Chen, C.; Duan, D.M.; Liu, P.; Dong, X.Z. Research progress on pharmacodynamic material basis and pharmacological action mechanism of Kai-Xin-San. Chin. Tradit. Herbal Drugs, 2020, 51(18), 4780-4788.
[12]
LI, X.Q.; ZHAO, J.Q.; TIAN, Y.J; HAN, C.; LI, Q.Q.; CHU, S.F.; HE, W.B. Memory-improving substances basis and mechanism of polygalae radix, acori tatarinowii rhizoma and its couplet medicines. Zhongguo Shiyan Fangjixue Zazhi, 2019, 25(3), 190-199.
[13]
Liu, Y.; Chen, Y.J.; Chen, W.Q.; Huang, X.B. Effects of Yuanzhi decoction on cognitive function and apoptosis-related protein in hippocampus of rats with chronic cerebral hypoperfusion. Journal of Capital Medical University, 2019, 40(3), 323-329.
[14]
Ma, Y.Y.; Liu, M.; Yu, M.F. Study on the prescription patterns for treatment of autism spectrum disorders and action mechanism of its core herbal combinations. GUTCM, 2023, 40(4), 965-974.
[15]
Hsin, K.Y.; Ghosh, S.; Kitano, H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One, 2013, 8(12), e83922.
[http://dx.doi.org/10.1371/journal.pone.0083922] [PMID: 24391846]
[16]
Gas-Pascual, E.; Berna, A.; Bach, T.J.; Schaller, H. Plant oxidosqualene metabolism: Cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana. PLoS One, 2014, 9(10), e109156.
[http://dx.doi.org/10.1371/journal.pone.0109156] [PMID: 25343375]
[17]
Zhang, L.Y.; Sun, J.; Chen, D.; Huang, Z.G. Kaempferol inhibits brain injury, inflammation, oxidation stress and apoptosis in the rats with cerebral ischemia/reperfusion. J. Histochem. Cytochem., 2022, 31(4), 381-386.
[18]
JIN, G.F.; YU, H.H.; LU, X.H.; HUANG, Z.G; YANG, H. Protective effects of tenuifolin on hippocampus neurons and neuronal mitochondria in APP/PS1 double transgenic mice. Chinese Journal of Geriatric Heart Brain and Vessel Diseases, 2022, 24(4), 426-429.
[19]
Peckham, H.; Giuffrida, L.; Wood, R.; Gonsalvez, D.; Ferner, A.; Kilpatrick, T.J.; Murray, S.S.; Xiao, J. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination. Glia, 2016, 64(2), 255-269.
[http://dx.doi.org/10.1002/glia.22927] [PMID: 26449489]
[20]
García-Domínguez, I.; Suárez-Pereira, I.; Santiago, M.; Pérez-Villegas, E.M.; Bravo, L.; López-Martín, C.; Roca-Ceballos, M.A.; García-Revilla, J.; Espinosa-Oliva, A.M.; Rodríguez-Gómez, J.A.; Joseph, B.; Berrocoso, E.; Armengol, J.Á.; Venero, J.L.; Ruiz, R.; de Pablos, R.M. Selective deletion of Caspase-3 gene in the dopaminergic system exhibits autistic-like behaviour. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 104, 110030.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110030] [PMID: 32634539]
[21]
Chang, J.; Zhang, Y.; Shen, N.; Zhou, J.; Zhang, H. MiR-129-5p prevents depressive-like behaviors by targeting MAPK1 to suppress inflammation. Exp. Brain Res., 2021, 239(11), 3359-3370.
[http://dx.doi.org/10.1007/s00221-021-06203-8] [PMID: 34482419]
[22]
Deng, Y.; Zhang, J.; Sun, X.; Ma, G.; Luo, G.; Miao, Z.; Song, L. miR 132 improves the cognitive function of rats with Alzheimer’s disease by inhibiting the MAPK1 signal pathway. Exp. Ther. Med., 2020, 20(6), 159.
[http://dx.doi.org/10.3892/etm.2020.9288] [PMID: 33093897]
[23]
Jayaswamy, P.K.; Vijaykrishnaraj, M.; Patil, P.; Alexander, L.M.; Kellarai, A.; Shetty, P. Implicative role of epidermal growth factor receptor and its associated signaling partners in the pathogenesis of Alzheimer’s disease. Ageing Res. Rev., 2023, 83, 101791.
[http://dx.doi.org/10.1016/j.arr.2022.101791] [PMID: 36403890]
[24]
Peng, S.C.; Lai, Y.T.; Huang, H.Y.; Huang, H.D.; Huang, Y.S. A novel role of CPEB3 in regulating EGFR gene transcription via association with Stat5b in neurons. Nucleic Acids Res., 2010, 38(21), 7446-7457.
[http://dx.doi.org/10.1093/nar/gkq634] [PMID: 20639532]
[25]
Wang, L.; Chen, J.; Hu, Y.; Liao, A.; Zheng, W.; Wang, X.; Lan, J.; Shen, J.; Wang, S.; Yang, F.; Wang, Y.; Li, Y.; Chen, D. Progranulin improves neural development via the PI3K/Akt/GSK-3β pathway in the cerebellum of a VPA-induced rat model of ASD. Transl. Psychiatry, 2022, 12(1), 114.
[http://dx.doi.org/10.1038/s41398-022-01875-4] [PMID: 35318322]
[26]
Zhang, J.; Zhang, J.X.; Zhang, Q.L. PI3K/AKT/mTOR-mediated autophagy in the development of autism spectrum disorder. Brain Res. Bull., 2016, 125, 152-158.
[http://dx.doi.org/10.1016/j.brainresbull.2016.06.007] [PMID: 27320472]
[27]
Gkogkas, C.G.; Khoutorsky, A.; Ran, I.; Rampakakis, E.; Nevarko, T.; Weatherill, D.B.; Vasuta, C.; Yee, S.; Truitt, M.; Dallaire, P.; Major, F.; Lasko, P.; Ruggero, D.; Nader, K.; Lacaille, J.C.; Sonenberg, N. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature, 2013, 493(7432), 371-377.
[http://dx.doi.org/10.1038/nature11628] [PMID: 23172145]
[28]
ZHANG, H.; DU, Y.S. Improving the behavioral and neuroanatomical phenotypes in mouse models of autism spectrum disorder by inhibiting the mammalian target of rapamycin 1 signaling pathway. J. Shanghai Med., 2017, 40(2), 114-117.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy