Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Review Article

A Quick Review of the Prevalence of Important Infectious Poultry Diseases all Around the World

Author(s): Siyavash Ghadiri Harat and Fereshteh Ansari*

Volume 15, Issue 1, 2024

Published on: 20 November, 2023

Page: [46 - 58] Pages: 13

DOI: 10.2174/012772574X273102231020111604

Price: $65

Abstract

The poultry industry is one of the fastest growing industries in the world. Poultry breeding has developed significantly to meet the food needs of the increasing population and it is expected that this growth will continue in the coming years. Prevalent poultry diseases are of great importance as they are responsible for vast economic losses and public health concerns. They also affect the national and international trade of the poultry products. This review will provide a quick and general view of different important poultry diseases for poultry breeders, scientists and decision makers. Based on this review, Campylobacteriosis and infectious bursal disease (IBD) in the Asian continent, and Campylobacteriosis, Newcastle disease (ND) and coccidiosis in the African continent were the most prevalent diseases. In Europe, Campylobacter species and in America, Escherichia coli species are widespread in poultry meat. Infectious Bronchitis (IB) in Europe and Coccidiosis in America were high-incident.

Graphical Abstract

[1]
Shahbandeh M. Global number of chicken. 2023; 1990-2021. Available from: https://www.statista.com/statistics/263962/number-of-chickensworldwide-since-1990/#:~:text=How
[2]
FAO. Gateway to poultry production and products Poultry species. 2019. Available from: https://www.fao.org/poultry-productionproducts/en/#:~:text=What
[3]
Landman WJM, van Eck JHH. The incidence and economic impact of the Escherichia coli peritonitis syndrome in Dutch poultry farming. Avian Pathol 2015; 44(5): 370-8.
[http://dx.doi.org/10.1080/03079457.2015.1060584] [PMID: 26083823]
[4]
Asfaw YT, Ameni G, Medhin G, Gumi B, Hagos Y, Wieland B. Poultry disease occurrences and their impacts in Ethiopia. Trop Anim Health Prod 2021; 53(1): 54.
[http://dx.doi.org/10.1007/s11250-020-02465-6] [PMID: 33389207]
[5]
Mehrabadi MHF, Ghalyanchilangeroudi A, Tehrani F, et al. Assessing the economic burden of multi-causal respiratory diseases in broiler farms in Iran. Trop Anim Health Prod 2022; 54(2): 117.
[http://dx.doi.org/10.1007/s11250-022-03110-0] [PMID: 35224709]
[6]
Gompo TR, Pokhrel U, Shah BR, Bhatta DD. Epidemiology of important poultry diseases in nepal. Nepalese Veterinary Journal 2019; 36: 8-14.
[http://dx.doi.org/10.3126/nvj.v36i0.27746]
[7]
Ahmad I, Anjum MS, Hanif M. Prevalence of poultry diseases at high altitudes of district Poonch Azad Jammu & Kashmir. Pak J Sci 2012; 64(4): 334-6.
[8]
Uddin MB, Ahmed SSU, Hassan MM, Khan SA, Mamun MA. Prevalence of poultry diseases at Narsingdi, Bangladesh. Inter J Bio Res 2010; 1(6): 9-13.
[9]
Hassan MK, Kabir MH, Hasan MAA, Sultana S, Khokon MSI, Kabir SML. Prevalence of poultry diseases in Gazipur district of Bangladesh. Asian J Med Bio Res 2016; 2(1): 107-12.
[http://dx.doi.org/10.3329/ajmbr.v2i1.27575]
[10]
Islam M, Islam M, Fakhruzzaman M. Isolation and identification of Escherichia coli and Salmonella from poultry litter and feed. Inter J Nat Soc Sci 2014; 1(June): 1-7.
[11]
Abbas G, Khan S, Hassan M, Mahmood S, Naz S, Gilani S. Incidence of poultry diseases in different seasons in Khushab district, Pakistan. J Adv Vet Anim Res 2015; 2(2): 141-5.
[http://dx.doi.org/10.5455/javar.2015.b65]
[12]
Lee GY, Jang HI, Hwang IG, Rhee MS. Prevalence and classification of pathogenic Escherichia coli isolated from fresh beef, poultry, and pork in Korea. Int J Food Microbiol 2009; 134(3): 196-200.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.06.013] [PMID: 19665813]
[13]
Eyi A, Arslan S. Prevalence of Escherichia coli in retail poultry meat, ground beef and beef. Med Weter 2012; 68(4): 237-40.
[14]
Akbar A, Sitara U, Khan SA, Ali I, Khan MI, Phadungchob T, et al. Presence of Escherichia coli in poultry meat: A potential food safety threat. Int Food Res J 2014; 21(3): 941-5.
[15]
Dehkordi FS, Yahaghi E, Darian EK. Prevalence of antibiotic resistance in escherichia coli isolated from poultry meat supply in isfahan. Iranian J Med Micro 2014; 8(2): 41-7.
[16]
Mashak Z. Prevalence and Antibiotic Resistance of <i>Escherichia coli</i> O157:H7 Isolated from Raw Meat Samples of Ruminants and Poultry. J Food Nutr Res 2018; 6(2): 96-102.
[http://dx.doi.org/10.12691/jfnr-6-2-5]
[17]
Shecho M, Thomas N, Kemal J, Muktar Y. Cloacael carriage and multidrug resistance Escherichia coli O157:H7 from poultry farms, eastern ethiopia. J Vet Med 2017; 2017: 1-9.
[http://dx.doi.org/10.1155/2017/8264583] [PMID: 28349121]
[18]
Joseph Fuh N. Prevalence and antibiotic resistance of <i>escherichia coli</i> o157: h7 serotype from chicken droppings produced by free - ranged and poultry birds in cross river, nigeria. American J Biomed Life Sci 2018; 6(3): 51.
[http://dx.doi.org/10.11648/j.ajbls.20180603.13]
[19]
Adenipekun EO, Jackson CR, Oluwadun A, et al. Prevalence and antimicrobial resistance in Escherichia coli from food animals in lagos, nigeria. Microb Drug Resist 2015; 21(3): 358-65.
[http://dx.doi.org/10.1089/mdr.2014.0222] [PMID: 25658418]
[20]
Maciuca IE, Williams NJ, Tuchilus C, et al. High prevalence of Escherichia coli-producing CTX-M-15 extended-spectrum betalactamases in poultry and human clinical isolates in Romania. Microb Drug Resist 2015; 21(6): 651-62.
[http://dx.doi.org/10.1089/mdr.2014.0248] [PMID: 25734920]
[21]
Davis GS, Waits K, Nordstrom L, et al. Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims. BMC Microbiol 2018; 18(1): 174.
[http://dx.doi.org/10.1186/s12866-018-1322-5] [PMID: 30390618]
[22]
Fancher CA, Thames HT, Colvin MG, et al. Research Note: Prevalence and molecular characteristics of Clostridium perfringens in “no antibiotics ever” broiler farms. Poult Sci 2021; 100(11): 101414.
[http://dx.doi.org/10.1016/j.psj.2021.101414] [PMID: 34534849]
[23]
Ansari-Lari M, Hosseinzadeh S, Manzari M, Khaledian S. Survey of Salmonella in commercial broiler farms in Shiraz, southern Iran. Preventive Veterinary Medicine 2022.
[http://dx.doi.org/10.1016/j.prevetmed.2021.105550]
[24]
Magwedere K, Rauff D, De Klerk G, Keddy KH, Dziva F. Incidence of nontyphoidal salmonella in food-producing animals, animal feed, and the associated environment in South Africa, 2012-2014. Clin Infect Dis 2015; 61 (Suppl. 4): S283-9.
[http://dx.doi.org/10.1093/cid/civ663] [PMID: 26449943]
[25]
Olobatoke RY, Mulugeta SD. Incidence of non-typhoidal Salmonella in poultry products in the North West Province, South Africa. S Afr J Sci 2015; 111(11/12): 7.
[http://dx.doi.org/10.17159/sajs.2015/20140233]
[26]
Kagambèga A, Lienemann T, Aulu L, et al. Prevalence and characterization of Salmonella enterica from the feces of cattle, poultry, swine and hedgehogs in Burkina Faso and their comparison to human Salmonella isolates. BMC Microbiol 2013; 13(1): 253.
[http://dx.doi.org/10.1186/1471-2180-13-253] [PMID: 24215206]
[27]
Thomas KM, de Glanville WA, Barker GC, Benschop J, Buza JJ, Cleaveland S, et al. Prevalence of Campylobacter and Salmonella in African food animals and meat: A systematic review and meta-analysis. International Journal of Food Microbiology 2020; 315: 108382.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2019.108382]
[28]
Ramtahal MA, Somboro AM, Amoako DG, Abia ALK, Perrett K, Bester LA, et al. Molecular epidemiology of salmonella enterica in poultry in south africa using the farm-to-fork approach. International Journal of Microbiology 2022; 2022
[http://dx.doi.org/10.1155/2022/5121273]
[29]
Gonçalves-Tenório A, Silva B, Rodrigues V, Cadavez V, Gonzales-Barron U. Prevalence of pathogens in poultry meat: A metaanalysis of European published surveys. Foods 2018; 7(5): 69.
[http://dx.doi.org/10.3390/foods7050069] [PMID: 29751496]
[30]
Donado-Godoy P, Gardner I, Byrne BA, et al. Prevalence, risk factors, and antimicrobial resistance profiles of Salmonella from commercial broiler farms in two important poultry-producing regions of Colombia. J Food Prot 2012; 75(5): 874-83.
[http://dx.doi.org/10.4315/0362-028x.jfp-11-458] [PMID: 22564936]
[31]
Diaz D, Hernandez-Carreño PE, Velazquez DZ, et al. Prevalence, main serovars and anti‐microbial resistance profiles of non‐typhoidal Salmonella in poultry samples from the Americas: A systematic review and meta‐analysis. Transbound Emerg Dis 2022; 69(5): 2544-58.
[http://dx.doi.org/10.1111/tbed.14362] [PMID: 34724337]
[32]
Kottawatta K, Van Bergen M, Abeynayake P, Wagenaar J, Veldman K, Kalupahana R. Campylobacter in broiler chicken and broiler meat in Sri Lanka: Influence of semi-automated vs. wet market processing on Campylobacter contamination of broiler neck skin samples. Foods 2017; 6(12): 105.
[http://dx.doi.org/10.3390/foods6120105] [PMID: 29186018]
[33]
Carrique-Mas JJ, Bryant JE, Cuong NV, et al. An epidemiological investigation of Campylobacter in pig and poultry farms in the Mekong delta of Vietnam. Epidemiol Infect 2014; 142(7): 1425-36.
[http://dx.doi.org/10.1017/S0950268813002410] [PMID: 24067502]
[34]
Sison FB, Chaisowwong W, Alter T, et al. Loads and antimicrobial resistance of Campylobacter spp. on fresh chicken meat in Nueva Ecija, Philippines. Poult Sci 2014; 93(5): 1270-3.
[http://dx.doi.org/10.3382/ps.2013-03791] [PMID: 24795322]
[35]
Zendehbad B, Khayatzadeh J, Alipour A. Prevalence, seasonality and antibiotic susceptibility of Campylobacter spp. isolates of retail broiler meat in Iran. Food Control 2015; 53: 41-5.
[http://dx.doi.org/10.1016/j.foodcont.2015.01.008]
[36]
Rouhi Jahromi R, Moradi F, Erfanian S, Pourahmadi M. Evaluation of the contamination of poultry carcasses with campylobacter jejuni and campylobacter coli in southern iran: A molecular study. Jundishapur Journal of Health Sciences 2021; 13(3)
[http://dx.doi.org/10.5812/jjhs.116991]
[37]
Mousavinafchi SB, Rahimi E, Shakerian A. Campylobacter spp. isolated from poultry in Iran: Antibiotic resistance profiles, virulence genes, and molecular mechanisms. Food Sci Nutr 2023; 11(2): 1142-53.
[http://dx.doi.org/10.1002/fsn3.3152] [PMID: 36789060]
[38]
Kouglenou SD, Agbankpe AJ, Dougnon V, et al. Prevalence and susceptibility to antibiotics from Campylobacter jejuni and Campylobacter coli isolated from chicken meat in southern Benin, West Africa. BMC Res Notes 2020; 13(1): 305.
[http://dx.doi.org/10.1186/s13104-020-05150-x] [PMID: 32591026]
[39]
Karikari AB, Saba CKS, Kpordze SW. Biotyping of multidrug resistant &lt;i&gt;Campylobacter jejuni&lt;/i&gt; from poultry and humans in northern region of ghana. Open J Med Microbiol 2021; 11(1): 18-31.
[http://dx.doi.org/10.4236/ojmm.2021.111002]
[40]
Nwankwo IO, Faleke OO, Salihu MD, Magaji AA, Musa U, Garba J. Epidemiology of Campylobacter species in poultry and humans in the four agricultural zones of Sokoto State, Nigeria. J Public Health Epidemiol 2016; 8(9): 184-90.
[41]
Osimani A, Aquilanti L, Pasquini M, Clementi F. Prevalence and risk factors for thermotolerant species of Campylobacter in poultry meat at retail in Europe. Poult Sci 2017; 96(9): 3382-91.
[http://dx.doi.org/10.3382/ps/pex143] [PMID: 28854745]
[42]
Schweitzer PM, Susta L, Varga C, Brash ML, Guerin MT. Demographic, husbandry, and biosecurity factors associated with the presence of campylobacter spp. In small poultry flocks in Ontario, Canada. Pathogens 2021; 10(11): 1471.
[http://dx.doi.org/10.3390/pathogens10111471] [PMID: 34832626]
[43]
Rodrigues CS, Armendaris PM, de Sá CVGC, Haddad JPA, de Melo CB. Prevalence of campylobacter spp. in chicken carcasses in slaughterhouses from south of brazil. Curr Microbiol 2021; 78(6): 2242-50.
[http://dx.doi.org/10.1007/s00284-021-02478-w] [PMID: 33830320]
[44]
Schreyer ME, Olivero CR, Rossler E, et al. Prevalence and antimicrobial resistance of Campylobacter jejuni and C. coli identified in a slaughterhouse in Argentina. Current Research in Food Science 2022; 5(March): 590-7.
[http://dx.doi.org/10.1016/j.crfs.2022.03.005] [PMID: 35340997]
[45]
Plishka M, Sargeant JM, Greer AL, Hookey S, Winder C. The Prevalence of Campylobacter in live cattle, turkey, chicken, and swine in the united states and canada: A systematic review and meta-analysis. Foodborne Pathog Dis 2021; 18(4): 230-42.
[http://dx.doi.org/10.1089/fpd.2020.2834] [PMID: 33290141]
[46]
Rahman MM. Prevalence of diseases in commercial chickens at sylhet division of bangladesh. Int Clin Pathol J 2015; 1(5)
[http://dx.doi.org/10.15406/icpjl.2015.01.00023]
[47]
Tan MF, Li HQ, Yang Q, et al. Prevalence and antimicrobial resistance profile of bacterial pathogens isolated from poultry in Jiangxi Province, China from 2020 to 2022. Poult Sci 2023; 102(8): 102830.
[http://dx.doi.org/10.1016/j.psj.2023.102830] [PMID: 37343345]
[48]
Elalamy RA, Tartor YH, Ammar AM, Eldesouky IE, Esawy AEI. Molecular characterization of extensively drug-resistant pasteurella multocida isolated from apparently healthy and diseased chickens in Egypt. Pak Vet J 2020; 40(3): 319-24.
[49]
Bedier ET, Labib SR, Ahmed AM. Characterization of antimicrobial resistance genes of pasteurella multocida isolated from diseased chickens in egypt. J Hell Vet Med Soc 2022; 73(2): 4165-72.
[http://dx.doi.org/10.12681/jhvms.26851]
[50]
Abood MS, Ibrahim AAEH, Abd El Hamid AK, Mohamed MMS. Ibrahim aaeh, abd el hamid ak, mohamed mms. detection and pathogenicity of pasteurella multocida isolated from layer farms in egypt. Magallat Asyut al-Tibiyyat al-Baytariyyat 2021; 67(171): 174-81.
[http://dx.doi.org/10.21608/avmj.2021.205283]
[51]
Taunde P, Timbe P, Lucas AF, et al. Serological evidence of avian encephalomyelitis virus and Pasteurella multocida infections in free-range indigenous chickens in Southern Mozambique. Trop Anim Health Prod 2017; 49(5): 1047-50.
[http://dx.doi.org/10.1007/s11250-017-1304-x] [PMID: 28474290]
[52]
Victor A, Mathew B, Adekemi O, Ayo A, Odunayo A. Prevalence and antibiotic resistance of Pasteurella multocida isolated from chicken in Ado-Ekiti metropolis. Intern J Sci World 2016; 4(2): 40.
[http://dx.doi.org/10.14419/ijsw.v4i2.6273]
[53]
Brown JD, Dunn P, Wallner-Pendleton E, et al. Surveillance for pasteurella multocida in ring-necked pheasants (Phasianus colchicus) after an outbreak of avian cholera and apparently successful antibiotic treatment. Avian Dis 2016; 60(1): 87-9.
[http://dx.doi.org/10.1637/11301-101315-Case.1] [PMID: 26953951]
[54]
Dessalegn B, Bitew M, Asfaw D, et al. Gamma-Irradiated fowl cholera mucosal vaccine: Potential vaccine candidate for safe and effective immunization of chicken against fowl cholera. Front Immunol 2021; 12(November): 768820.
[http://dx.doi.org/10.3389/fimmu.2021.768820] [PMID: 34917086]
[55]
Mostaan S, Ghasemzadeh A, Sardari S, et al. Pasteurella multocida vaccine candidates: A systematic review. Avicenna J Med Biotechnol 2020; 12(3): 140-7.
[PMID: 32695276]
[56]
Haji-Abdolvahab H, Ghalyanchilangeroudi A, Bahonar A, et al. Prevalence of avian influenza, Newcastle disease, and infectious bronchitis viruses in broiler flocks infected with multifactorial respiratory diseases in Iran, 2015–2016. Trop Anim Health Prod 2019; 51(3): 689-95.
[http://dx.doi.org/10.1007/s11250-018-1743-z] [PMID: 30377950]
[57]
Lawal J, Jajere S, Mustapha M, et al. Prevalence of newcastle disease in gombe, northeastern nigeria: A ten-year retrospective study (2004 – 2013). Br Microbiol Res J 2015; 6(6): 367-75.
[http://dx.doi.org/10.9734/BMRJ/2015/15955]
[58]
Sadiq MB, Mohammed BR. economic impact of some poultry diseases in Nigeria. Sokoto J Vet Sci 2017; 15(2): 7-17.
[http://dx.doi.org/10.4314/sokjvs.v15i2.2]
[59]
Mngumi EB, Mpenda FN, Buza J. Epidemiology of newcastle disease in poultry in africa: systematic review and meta-analysis. Trop Anim Health Prod 2022; 54(4): 214.
[http://dx.doi.org/10.1007/s11250-022-03198-4] [PMID: 35705876]
[60]
Thai TN, Yoo DS, Jang I, Kwon YK, Kim HR. Dynamics of the emerging genogroup of infectious bursal disease virus infection in broiler farms in south korea: A nationwide study. Viruses 2022; 14(8): 1604.
[http://dx.doi.org/10.3390/v14081604] [PMID: 35893669]
[61]
Lawal JR, Jajere SM, Bello AM, et al. Prevalence of infectious bursal disease (gumboro) antibodies in village chickens in gombe state, northeastern nigeria. Int J Poult Sci 2014; 13(12): 703-8.
[http://dx.doi.org/10.3923/ijps.2014.703.708]
[62]
Daodu OB, Oludairo OO, Aiyedun JO, et al. Assessment of antibody assay methods in determination of prevalence of infectious bursal disease among local chickens and guinea fowls in Kwara state, North Central Nigeria. Vet World 2018; 11(8): 1183-7.
[http://dx.doi.org/10.14202/vetworld.2018.1183-1187] [PMID: 30250382]
[63]
Wahome MW, Njagi LW, Nyaga PN, Mbuthia PG, Bebora LC, Bwana MO. Occurrence of antibodies to infectious bursal disease virus in non-vaccinated indigenous chicken, ducks and Turkeys in Kenya. Int J Vet Sci 2017; 6(3): 159-62.
[64]
Orakpoghenor O, Oladele SB, Abdu PA. Research Note: Detection of infectious bursal disease virus antibodies in free-living wild birds in Zaria, Nigeria. Poult Sci 2020; 99(4): 1975-7.
[http://dx.doi.org/10.1016/j.psj.2019.11.036] [PMID: 32241478]
[65]
Zachar T, Popowich S, Goodhope B, et al. A 5-year study of the incidence and economic impact of variant infectious bursal disease viruses on broiler production in Saskatchewan, Canada. Can J Vet Res 2016; 80(4): 255-61.
[PMID: 27733779]
[66]
Eregae ME, Dewey CE, McEwen SA, Ouckama R, Ojkić D, Guerin MT. Flock prevalence of exposure to avian adenoassociated virus, chicken anemia virus, fowl adenovirus, and infectious bursal disease virus among Ontario broiler chicken flocks. Avian Dis 2014; 58(1): 71-7.
[http://dx.doi.org/10.1637/10612-071113-Reg.1] [PMID: 24758116]
[67]
Bhuiyan ZA, Ali MZ, Moula MM, Giasuddin M, Khan ZUM. Prevalence and molecular characterization of infectious bronchitis virus isolated from chicken in Bangladesh. Vet World 2019; 12(6): 909-15.
[http://dx.doi.org/10.14202/vetworld.2019.909-915] [PMID: 31440013]
[68]
Ym S, Ad EY, My Z, et al. Serological evidence of infectious bronchitis virus among some poultry species in maiduguri, nigeria. Alex J Vet Sci 2016; 51(1): 135.
[http://dx.doi.org/10.5455/ajvs.233895]
[69]
Birhan M, Temesgen M, Shite A, Berhane N, Bitew M, Gelaye E, et al. Seroprevalence and associated risk factors of infectious bronchitis virus in chicken in northwest ethiopia. Sci World J 2021; 2021
[http://dx.doi.org/10.1155/2021/4553890]
[70]
Tegegne D, Deneke Y, Sori T, et al. Molecular epidemiology and genotyping of infectious bronchitis virus and avian metapneumovirus in backyard and commercial chickens in Jimma Zone, Southwestern Ethiopia. Vet Sci 2020; 7(4): 187.
[http://dx.doi.org/10.3390/vetsci7040187] [PMID: 33255570]
[71]
Shiferaw J, Dego T, Tefera M, Tamiru Y. Seroprevalence of infectious bronchitis virus in broiler and layer farms of central ethiopia. BioMed Research International 2022; 2022
[http://dx.doi.org/10.1155/2022/8915400]
[72]
Haesendonck R, Verlinden M, Devos G, et al. High seroprevalence of respiratory pathogens in hobby poultry. Avian Dis 2014; 58(4): 623-7.
[http://dx.doi.org/10.1637/10870-052314-ResNote.1] [PMID: 25619008]
[73]
Andreopoulou M, Franzo G, Tucciarone CM, et al. Molecular epidemiology of infectious bronchitis virus and avian metapneumovirus in Greece. Poult Sci 2019; 98(11): 5374-84.
[http://dx.doi.org/10.3382/ps/pez360] [PMID: 31264704]
[74]
Cortés V, Sevilla-Navarro S, García C, Marín C, Catalá-Gregori P. Seroprevalence and prevalence of Infectious Bronchitis Virus in broilers, laying hens and broiler breeders in Spain. Poult Sci 2022; 101(5): 101760.
[http://dx.doi.org/10.1016/j.psj.2022.101760] [PMID: 35378349]
[75]
Balestrin E, Fraga AP, Ikuta N, Canal CW, Fonseca ASK, Lunge VR. Infectious bronchitis virus in different avian physiological systems—A field study in Brazilian poultry flocks. Poult Sci 2014; 93(8): 1922-9.
[http://dx.doi.org/10.3382/ps.2014-03875] [PMID: 24894532]
[76]
Brochu NM, Guerin MT, Varga C, Lillie BN, Brash ML, Susta L. A two-year prospective study of small poultry flocks in Ontario, Canada, part 1: prevalence of viral and bacterial pathogens. J Vet Diagn Invest 2019; 31(3): 327-35.
[http://dx.doi.org/10.1177/1040638719843577] [PMID: 30973091]
[77]
Cheng KL, Wu J, Shen WL, et al. Avian influenza virus detection rates in poultry and environment at live poultry markets, Guangdong, China. Emerg Infect Dis 2020; 26(3): 591-5.
[http://dx.doi.org/10.3201/eid2603.190888] [PMID: 31922954]
[78]
Ntakiyisumba E, Lee S, Park BY, Tae HJ, Won G. Prevalence, seroprevalence and risk factors of avian influenza in wild bird populations in korea: A systematic review and meta-analysis. Viruses 2023; 15(2): 472.
[http://dx.doi.org/10.3390/v15020472] [PMID: 36851686]
[79]
Kalonda A, Saasa N, Nkhoma P, et al. Avian influenza viruses detected in birds in sub-saharan africa: A systematic review. Viruses 2020; 12(9): 993.
[http://dx.doi.org/10.3390/v12090993] [PMID: 32906666]
[80]
Daodu OB, Jegede HO, Aiyedun JO, et al. Surveillance for avian influenza virus in captive wild birds and indigenous chickens in Nigeria. Trop Anim Health Prod 2020; 52(5): 2387-93.
[http://dx.doi.org/10.1007/s11250-020-02265-y] [PMID: 32193749]
[81]
Kalonda A, Saasa N, Kajihara M, et al. Surveillance and phylogenetic characterisation of avian influenza viruses isolated from wild waterfowl in zambia in 2015, 2020, and 2021. Transbound Emerg Dis 2023; 2023: 1-16.
[http://dx.doi.org/10.1155/2023/4606850]
[82]
El-Sayed MM, Arafa AS, Abdelmagid M, Youssef AI. Epidemiological surveillance of H9N2 avian influenza virus infection among chickens in farms and backyards in Egypt 2015-2016. Vet World 2021; 14(4): 949-55.
[http://dx.doi.org/10.14202/vetworld.2021.949-955] [PMID: 34083945]
[83]
Aznar I, Baldinelli F, Papanikolaou A, Stoicescu A, Van der Stede Y. Annual Report on surveillance for avian influenza in poultry and wild birds in Member States of the European Union in 2020. EFSA J 2021; 19(12): e06953.
[PMID: 34925561]
[84]
Wade D, Ashton-Butt A, Scott G, et al. High pathogenicity avian influenza: Targeted active surveillance of wild birds to enable early detection of emerging disease threats. Epidemiol Infect 2023; 151: e15.
[http://dx.doi.org/10.1017/S0950268822001856] [PMID: 36502812]
[85]
De Marco MA, Delogu M, Facchini M, et al. Serologic evidence of occupational exposure to avian influenza viruses at the wildfowl/poultry/human interface. Microorganisms 2021; 9(10): 2153.
[http://dx.doi.org/10.3390/microorganisms9102153] [PMID: 34683475]
[86]
Araujo J, Petry MV, Fabrizio T, et al. Migratory birds in southern Brazil are a source of multiple avian influenza virus subtypes. Influenza Other Respir Viruses 2018; 12(2): 220-31.
[http://dx.doi.org/10.1111/irv.12519] [PMID: 29143465]
[87]
Di Pillo F, Baumberger C, Salazar C, et al. Novel low pathogenic avian influenza h6n1 in backyard chicken in easter island (rapa nui), chilean polynesia. Viruses 2022; 14(4): 718.
[http://dx.doi.org/10.3390/v14040718] [PMID: 35458448]
[88]
Afanador-Villamizar A, Gomez-Romero C, Diaz A, Ruiz-Saenz J. Avian influenza in Latin America: A systematic review of serological and molecular studies from 2000-2015. PLoS One 2017; 12(6): e0179573.
[http://dx.doi.org/10.1371/journal.pone.0179573] [PMID: 28632771]
[89]
Nematollahi A, Moghaddam G, Niyazpour F. Prevalence of eimeria sp. among broiler chicks in tabriz (Northwest of Iran). Res J Poultry Sci 2008; 2(3): 72-4.
[90]
Shirzad MR, Seifi S, Gheisari HR, Hachesoo BA, Habibi H, Bujmehrani H. Prevalence and risk factors for subclinical coccidiosis in broiler chicken farms in Mazandaran province, Iran. Trop Anim Health Prod 2011; 43(8): 1601-4.
[http://dx.doi.org/10.1007/s11250-011-9876-3] [PMID: 21626064]
[91]
Gebretensae H, Gebreyohannes M, Tesfaye A. Prevalence of poultry coccidiosis in gondar town, north west ethiopia. Am Eurasian J Sci Res 2014; 9: 129-35.
[92]
Mohammed B, Sunday O. An overview of the prevalence of avian coccidiosis in poultry production and its economic importance in nigeria. Vet Res 2015; 3(3): 35-45.
[93]
Wondimu A, Mesfin E, Bayu Y. Prevalence of poultry coccidiosis and associated risk factors in intensive farming system of gondar town, ethiopia. Veterinary Medicine International 2019; 2019
[94]
Mio JB, Moktar OSM, Ahmed ZA, Salah HM, Abdulkadir BA, Hussein AH, et al. Prevalence of poultry coccidiosis and associated risk factors in intensive farm and individual small holder poultry farm in benadir region, somalia. Integrated Journal for Research in Arts and Humanities 2022; 2(4): 71-6.
[http://dx.doi.org/10.55544/ijrah.2.4.44]
[95]
Andreopoulou M, Chaligiannis I, Sotiraki S, Daugschies A, Bangoura B. Prevalence and molecular detection of Eimeria species in different types of poultry in Greece and associated risk factors. Parasitol Res 2022; 121(7): 2051-63.
[http://dx.doi.org/10.1007/s00436-022-07525-4] [PMID: 35499632]
[96]
Gottardo Balestrin PW, Balestrin E, Santiani F, et al. Prevalence of Eimeria sp. in broiler poultry houses with positive and negative pressure ventilation systems in southern brazil. Avian Dis 2021; 65(3): 469-73.
[http://dx.doi.org/10.1637/aviandiseases-D-21-00044] [PMID: 34699145]
[97]
Duff AF, Briggs WN, Bielke JC, et al. PCR identification and prevalence of Eimeria species in commercial turkey flocks of the Midwestern United States. Poult Sci 2022; 101(9): 101995.
[http://dx.doi.org/10.1016/j.psj.2022.101995] [PMID: 35841643]
[98]
MacDonald AM, Jardine CM, Rejman E, et al. High prevalence of Mycoplasma and Eimeria species in free-ranging eastern wild turkeys (Meleagris gallopavo silvestris) in Ontario, Canada. J Wildl Dis 2019; 55(1): 54-63.
[http://dx.doi.org/10.7589/2017-11-273] [PMID: 29949400]
[99]
Imai RK. Diversity and cross-immunity of Eimeria species infecting turkeys in commercial flocks in Canada. University of Guelph 2018.
[100]
Mesa C, Gómez-Osorio LM, López-Osorio S, Williams SM, Chaparro-Gutiérrez JJ. Survey of coccidia on commercial broiler farms in Colombia: Frequency of Eimeria species, anticoccidial sensitivity, and histopathology. Poult Sci 2021; 100(8): 101239.
[http://dx.doi.org/10.1016/j.psj.2021.101239] [PMID: 34214749]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy