Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Dengue Fever Virus Envelope Glycoproteins Variability Characterized Bioinformatically

Author(s): Carlos Polanco*, Vladimir N. Uversky, Alberto Huberman, Enrique Hernandez-Lemus, Martha Rios Castro, Erika Jeannette López Oliva, Mireya Martínez-Garcia, Thomas Buhse, Francisco J. Roldan Gomez, Gilberto Vargas-Alarcon, Cecilia Zazueta and Claudia Pimentel-Hernández

Volume 19, Issue 9, 2023

Published on: 20 November, 2023

Page: [642 - 668] Pages: 27

DOI: 10.2174/0115734110260787231102101646

Price: $65

Abstract

Background: The infection caused by the dengue fever virus is a severe threat to public health on a global scale; nevertheless, there is currently no effective medical treatment or vaccine available to prevent or treat the condition.

Objective: To better understand the physicochemical regularities of these proteins, it is necessary to carry out a computational multiparametric study of the amino acid sequences of envelope proteins expressed by the dengue fever virus and obtain a bioinformatics method that can use the subsequences of the training protein group to figure out the preponderant function of a protein, up to its sequence.

Methods: Essentially, at the amino acid level, various computational programs were applied to the sequences expressing the dengue virus envelope glycoproteins to determine the PIM 2.0 v profile and the Protein Intrinsic Disorder Predisposition (PIDP) profile of each protein, and then, at the nucleotide level, a set of programs for genomic analysis was applied. Finally, these results were contrasted with statistical tests.

Results: The re-creation of structural morphological similarities provided by specific regularities in the PIM 2.0 v profile and PIDP of the proteins from diverse dengue fever virus envelopes made it possible to propose a computer method that employs the PIM 2.0 v profile to identify this group of proteins based on their sequences; based on our findings, this method is a "fingerprint" of this protein group.

Conclusion: The typical PIM 2.0 v profiles of the dengue fever virus proteins might be reproduced by computational tools. This knowledge will be helpful in gaining a better understanding of the newly discovered virus. Moreover, the method introduced here can identify, from the sequence, the predominant function of the protein.

Graphical Abstract

[1]
Chen, H.R.; Lai, Y.C.; Yeh, T.M. Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J. Biomed. Sci., 2018, 25(1), 58.
[http://dx.doi.org/10.1186/s12929-018-0462-0] [PMID: 30037331]
[2]
Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M.J.; Natale, D.A.; O’Donovan, C.; Redaschi, N.; Yeh, L.S. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2004, 32(90001), 115D-119.
[http://dx.doi.org/10.1093/nar/gkh131] [PMID: 14681372]
[3]
Mészáros, B.; Erdős, G.; Dosztányi, Z. IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res., 2018, 46(W1), W329-W337.
[http://dx.doi.org/10.1093/nar/gky384] [PMID: 29860432]
[4]
Obradovic, Z.; Peng, K.; Vucetic, S.; Radivojac, P.; Dunker, A.K. Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins, 2005, 61(S7), 176-182.
[http://dx.doi.org/10.1002/prot.20735] [PMID: 16187360]
[5]
Peng, K.; Radivojac, P.; Vucetic, S.; Dunker, A.K.; Obradovic, Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics, 2006, 7(1), 208.
[http://dx.doi.org/10.1186/1471-2105-7-208] [PMID: 16618368]
[6]
Romero, P.; Obradovic, Z.; Li, X.; Garner, E.C.; Brown, C.J.; Dunker, A.K. Sequence complexity of disordered protein. Proteins, 2001, 42(1), 38-48.
[http://dx.doi.org/10.1002/1097-0134(20010101)42:1<38:AID-PROT50>3.0.CO;2-3] [PMID: 11093259]
[7]
Xue, B.; Dunbrack, R.L.; Williams, R.W.; Dunker, A.K.; Uversky, V.N. PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(4), 996-1010.
[http://dx.doi.org/10.1016/j.bbapap.2010.01.011] [PMID: 20100603]
[8]
Kuhn, R.J.; Zhang, W.; Rossmann, M.G.; Pletnev, S.V.; Corver, J.; Lenches, E.; Jones, C.T.; Mukhopadhyay, S.; Chipman, P.R.; Strauss, E.G.; Baker, T.S.; Strauss, J.H. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 2002, 108(5), 717-725.
[http://dx.doi.org/10.1016/S0092-8674(02)00660-8] [PMID: 11893341]
[9]
Hahn, Y.S.; Caller, R.; Hunkapiller, T.; Dalrymple, J.M.; Strauss, J.H.; Strauss, E.G. Nucleotide sequence of dengue 2 RNA and comparison of the encoded proteins with those of other flaviviruses. Virology, 1988, 162(1), 167-180.
[http://dx.doi.org/10.1016/0042-6822(88)90406-0] [PMID: 2827375]
[10]
Samuel, S.; Koh, C.L.; Blok, J.; Pang, T.; Lam, S.K. Nucleotide sequence of the envelope protein gene of a Malaysian dengue-2 virus isolated from a patient with dengue haemorrhagic fever. Nucleic Acids Res., 1989, 17(21), 8875.
[http://dx.doi.org/10.1093/nar/17.21.8875] [PMID: 2587234]
[11]
Zhao, B.; Mackow, E.; Buckler-White, A.; Markoff, L.; Chanock, R.M.; Lai, C.J.; Making, Y. Cloning full-length dengue type 4 viral DNA sequences: Analysis of genes coding for structural proteins. Virology, 1986, 155(1), 77-88.
[http://dx.doi.org/10.1016/0042-6822(86)90169-8] [PMID: 3022479]
[12]
Peyrefitte, C.N.; Couissinier-Paris, P.; Mercier-Perennec, V.; Bessaud, M.; Martial, J.; Kenane, N.; Durand, J.P.A.; Tolou, H.J. Genetic characterization of newly reintroduced dengue virus type 3 in Martinique (French West Indies). J. Clin. Microbiol., 2003, 41(11), 5195-5198.
[http://dx.doi.org/10.1128/JCM.41.11.5195-5198.2003] [PMID: 14605161]
[13]
Blok, J.; McWilliam, S.M.; Butler, H.C.; Gibbs, A.J.; Weiller, G.; Herring, B.L.; Hemsley, A.C.; Aaskov, J.G.; Yoksan, S.; Bhamarapravati, N. Comparison of a dengue-2 virus and its candidate vaccine derivative: Sequence relationships with the flaviviruses and other viruses. Virology, 1992, 187(2), 573-590.
[http://dx.doi.org/10.1016/0042-6822(92)90460-7] [PMID: 1312269]
[14]
Osatomi, K.; Sumiyoshi, H. Complete nucleotide sequence of dengue type 3 virus genome RNA. Virology, 1990, 176(2), 643-647.
[http://dx.doi.org/10.1016/0042-6822(90)90037-R] [PMID: 2345967]
[15]
Klungthong, C.; Zhang, C.; Mammen, M.P., Jr; Ubol, S.; Holmes, E.C. The molecular epidemiology of dengue virus serotype 4 in Bangkok, Thailand. Virology, 2004, 329(1), 168-179.
[http://dx.doi.org/10.1016/j.virol.2004.08.003] [PMID: 15476884]
[16]
Midgley, C.M.; Flanagan, A.; Tran, H.B.; Dejnirattisai, W.; Chawansuntati, K.; Jumnainsong, A.; Wongwiwat, W.; Duangchinda, T.; Mongkolsapaya, J.; Grimes, J.M.; Screaton, G.R. Structural analysis of a dengue cross-reactive antibody complexed with envelope domain III reveals the molecular basis of cross-reactivity. J. Immunol., 2012, 188(10), 4971-4979.
[17]
Deubel, V.; Kinney, R.M.; Trent, D.W. Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of dengue type 2 virus, Jamaica genotype: Comparative analysis of the full-length genome. Virology, 1988, 165(1), 234-244.
[http://dx.doi.org/10.1016/0042-6822(88)90677-0] [PMID: 3388770]
[18]
Nascimento, V.A.; Souza, V.C.; Naveca, F.G. Complete genome of a dengue virus serotype 4 strain from Amazonas, Brazil. Mem. Inst. Oswaldo Cruz, 2016, 111(2), 141-143.
[http://dx.doi.org/10.1590/0074-02760150416] [PMID: 26841048]
[19]
Fu, J.; Tan, B.H.; Yap, E.H.; Chan, Y.C.; Tan, Y.H. Full-length cDNA sequence of dengue type 1 virus (Singapore strain S275/90). Virology, 1992, 188(2), 953-958.
[http://dx.doi.org/10.1016/0042-6822(92)90560-C] [PMID: 1585663]
[20]
Leitmeyer, K.C.; Vaughn, D.W.; Watts, D.M.; Salas, R.; Villalobos, I. de Chacon; Ramos, C.; Rico-Hesse, R. Dengue virus structural differences that correlate with pathogenesis. J. Virol., 1999, 73(6), 4738-4747.
[http://dx.doi.org/10.1128/JVI.73.6.4738-4747.1999] [PMID: 10233934]
[21]
Wang, X.; Ma, D.; Huang, X.; Li, L.; Li, D.; Zhao, Y.; Qiu, L.; Pan, Y.; Chen, J.; Xi, J.; Shan, X.; Sun, Q. Complete genome analysis of dengue virus type 3 isolated from the 2013 dengue outbreak in Yunnan, China. Virus Res., 2017, 238, 164-170.
[http://dx.doi.org/10.1016/j.virusres.2017.06.015] [PMID: 28648850]
[22]
Chu, M.C.; O’Rourke, E.J.; Trent, D.W. Genetic relatedness among structural protein genes of dengue 1 virus strains. J. Gen. Virol., 1989, 70(7), 1701-1712.
[http://dx.doi.org/10.1099/0022-1317-70-7-1701] [PMID: 2738579]
[23]
Zhou, J.; Oldfield, C.J.; Yan, W.; Shen, B.; Dunker, A.K. Identification of Intrinsic Disorder in Complexes from the Protein Data Bank. ACS Omega, 2020, 5(29), 17883-17891.
[http://dx.doi.org/10.1021/acsomega.9b03927] [PMID: 32743159]
[24]
Gautam, A.; Singh, H.; Tyagi, A.; Chaudhary, K.; Kumar, R.; Kapoor, P.; Raghava, G.P.S. CPPsite: a curated database of cell penetrating peptides. Database (Oxford), 2012, 2012, bas015.
[http://dx.doi.org/10.1093/database/bas015] [PMID: 22403286]
[25]
Polanco, C.; Castañón-González, J.A.; Uversky, V.N.; Buhse, T.; Samaniego Mendoza, J.L.; Calva, J.J. Electronegativity and intrinsic disorder of preeclampsia-related proteins. Acta Biochim. Pol., 2017, 64(1), 99-111.
[PMID: 27824362]
[26]
Polanco, C.; Huberman, A.; Hernández-Lemus, E.; Uversky, V.N.; Rios Castro, M.; Martnez-Garcia, M.; Vargas-Alarcón, G.; Buhse, T.; Pimentel Hernández, C.; Zazueta, C.; Roldan Gomez, F.R.; López Oliva, E.J. Bioinformatics-based characterization of the variability of MPOX virus proteins. Lett. Drug Des. Discov., 2024. (E-pub ahead)
[27]
Dayhoff, G.W., II; Uversky, V.N. Rapid prediction and analysis of protein intrinsic disorder. Protein Sci., 2022, 31(12), e4496.
[http://dx.doi.org/10.1002/pro.4496] [PMID: 36334049]
[28]
Ross, T.M. Dengue Virus. Clin. Lab. Med., 2010, 30(1), 149-160.
[http://dx.doi.org/10.1016/j.cll.2009.10.007] [PMID: 20513545]
[29]
Rothman, A.L. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol., 2011, 11(8), 532-543.
[http://dx.doi.org/10.1038/nri3014] [PMID: 21760609]
[30]
Meng, F.; Badierah, R.A.; Almehdar, H.A.; Redwan, E.M.; Kurgan, L.; Uversky, V.N. Unstructural biology of the dengue virus proteins. FEBS J., 2015, 282(17), 3368-3394.
[http://dx.doi.org/10.1111/febs.13349] [PMID: 26096987]
[31]
Petsko, G.A.; Ringe, D. Protein structure and function New Science; Sci Press, 2004.
[32]
Hark Gan, H.; Perlow, R.A.; Roy, S.; Ko, J.; Wu, M.; Huang, J.; Yan, S.; Nicoletta, A.; Vafai, J.; Sun, D.; Wang, L.; Noah, J.E.; Pasquali, S.; Schlick, T. Analysis of protein sequence/structure similarity relationships. Biophys. J., 2002, 83(5), 2781-2791.
[http://dx.doi.org/10.1016/S0006-3495(02)75287-9] [PMID: 12414710]
[33]
Khan, A.M.; Miotto, O.; Nascimento, E.J.M.; Srinivasan, K.N.; Heiny, A.T.; Zhang, G.L.; Marques, E.T.; Tan, T.W.; Brusic, V.; Salmon, J.; August, J.T. Conservation and variability of dengue virus proteins: implications for vaccine design. PLoS Negl. Trop. Dis., 2008, 2(8), e272.
[http://dx.doi.org/10.1371/journal.pntd.0000272] [PMID: 18698358]
[34]
Chakraborty, S.; Chakravorty, R.; Ahmed, M.; Rahman, A.; Waise, T.M.Z.; Hassan, F.; Rahman, M.; Shamsuzzaman, S. A computational approach for identification of epitopes in dengue virus envelope protein: a step towards designing a universal dengue vaccine targeting endemic regions. In Silico Biol., 2010, 10(5,6), 235-246.
[http://dx.doi.org/10.3233/ISB-2010-0435] [PMID: 22430357]
[35]
Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA, 2003, 100(12), 6986-6991.
[http://dx.doi.org/10.1073/pnas.0832193100] [PMID: 12759475]
[36]
Kampmann, T.; Yennamalli, R.; Campbell, P.; Stoermer, M.J.; Fairlie, D.P.; Kobe, B.; Young, P.R. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res., 2009, 84(3), 234-241.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.007] [PMID: 19781577]
[37]
Fibriansah, G.; Lim, X.N.; Lok, S.M. Morphological diversity and dynamics of dengue virus affecting antigenicity. Viruses, 2021, 13(8), 1446.
[http://dx.doi.org/10.3390/v13081446] [PMID: 34452312]
[38]
Lok, S.M. The interplay of dengue virus morphological diversity and human antibodies. Trends Microbiol., 2016, 24(4), 284-293.
[http://dx.doi.org/10.1016/j.tim.2015.12.004] [PMID: 26747581]
[39]
Metz, S.W.; Thomas, A.; White, L.; Stoops, M.; Corten, M.; Hannemann, H.; de Silva, A.M. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virol. J., 2018, 15(1), 60.
[http://dx.doi.org/10.1186/s12985-018-0970-2] [PMID: 29609659]
[40]
Parameswaran, P.; Charlebois, P.; Tellez, Y.; Nunez, A.; Ryan, E.M.; Malboeuf, C.M.; Levin, J.Z.; Lennon, N.J.; Balmaseda, A.; Harris, E.; Henn, M.R. Genome-wide patterns of intrahuman dengue virus diversity reveal associations with viral phylogenetic clade and interhost diversity. J. Virol., 2012, 86(16), 8546-8558.
[http://dx.doi.org/10.1128/JVI.00736-12] [PMID: 22647702]
[41]
Lin, S.R.; Zou, G.; Hsieh, S.C.; Qing, M.; Tsai, W.Y.; Shi, P.Y.; Wang, W.K. The helical domains of the stem region of dengue virus envelope protein are involved in both virus assembly and entry. J. Virol., 2011, 85(10), 5159-5171.
[http://dx.doi.org/10.1128/JVI.02099-10] [PMID: 21367896]
[42]
Datta, G.; Mitra, P. study on cardiac manifestations of dengue fever. J. Assoc. Physicians India, 2019, 67(7), 14-16.
[PMID: 31559761]
[43]
Araiza-Garaygordobil, D.; Garca-Martnez, C.E.; Burgos, L.M.; Saldarriaga, C.; Liblik, K.; Mendoza, I.; Martinez-Selles, M.; Scatularo, C.E.; Farina, J.M.; Baranchuk, A. Neglected tropical diseases and other infectious diseases affecting the heart (the NET-Heart) project. Cardiovasc. J. Afr., 2021, 32(5), 276-283.
[PMID: 34292294]
[44]
Guzman, M.G.; Harris, E. Dengue. Lancet, 2015, 385(9966), 453-465.
[http://dx.doi.org/10.1016/S0140-6736(14)60572-9] [PMID: 25230594]
[45]
Gupta, S.; Agarwal, A.; Biswas, D. Host genetic polymorphisms influencing susceptibility to dengue. DNA Cell Biol., 2018, 37(10), 805-807.
[PMID: 30679808]
[46]
Crill, W.D.; Hughes, H.R.; Delorey, M.J.; Chang, G.J.J. Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens. PLoS One, 2009, 4(4), e4991.
[http://dx.doi.org/10.1371/journal.pone.0004991] [PMID: 19337372]
[47]
Rathore, A.P.S.; St John, A.L. Cross-reactive immunity among flaviviruses. Front. Immunol., 2020, 11, 334.
[http://dx.doi.org/10.3389/fimmu.2020.00334] [PMID: 32174923]
[48]
St John, A.L.; Rathore, A.P.S. Adaptive immune responses to primary and secondary dengue virus infections. Nat. Rev. Immunol., 2019, 19(4), 218-230.
[http://dx.doi.org/10.1038/s41577-019-0123-x] [PMID: 30679808]
[49]
Tian, Y.; Grifoni, A.; Sette, A.; Weiskopf, D. Human T cell response to dengue virus infection. Front. Immunol., 2019, 10, 2125.
[http://dx.doi.org/10.3389/fimmu.2019.02125] [PMID: 31552052]
[50]
Laureti, M.; Narayanan, D.; Rodriguez-Andres, J.; Fazakerley, J.K.; Kedzierski, L. Flavivirus receptors: diversity, identity, and cell entry. Front. Immunol., 2018, 9, 2180.
[http://dx.doi.org/10.3389/fimmu.2018.02180] [PMID: 30319635]
[51]
Li, Q.; Kang, C. Structures and dynamics of dengue virus nonstructural membrane proteins. Membranes (Basel), 2022, 12(2), 231.
[http://dx.doi.org/10.3390/membranes12020231] [PMID: 35207152]
[52]
Yu, I.M.; Zhang, W.; Holdaway, H.A.; Li, L.; Kostyuchenko, V.A.; Chipman, P.R.; Kuhn, R.J.; Rossmann, M.G.; Chen, J. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science, 2008, 319(5871), 1834-1837.
[http://dx.doi.org/10.1126/science.1153264] [PMID: 18369148]
[53]
Perera, R.; Kuhn, R.J. Structural proteomics of dengue virus. Curr. Opin. Microbiol., 2008, 11(4), 369-377.
[http://dx.doi.org/10.1016/j.mib.2008.06.004] [PMID: 18644250]
[54]
Zhang, Y.; Zhang, W.; Ogata, S.; Clements, D.; Strauss, J.H.; Baker, T.S.; Kuhn, R.J.; Rossmann, M.G. Conformational changes of the flavivirus E glycoprotein. Structure, 2004, 12(9), 1607-1618.
[http://dx.doi.org/10.1016/j.str.2004.06.019] [PMID: 15341726]
[55]
Zhang, X.; Ge, P.; Yu, X.; Brannan, J.M.; Bi, G.; Zhang, Q.; Schein, S.; Zhou, Z.H. Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Nat. Struct. Mol. Biol., 2013, 20(1), 105-110.
[http://dx.doi.org/10.1038/nsmb.2463] [PMID: 23241927]
[56]
Stiasny, K.; Heinz, F.X. Flavivirus membrane fusion. J. Gen. Virol., 2006, 87(10), 2755-2766.
[http://dx.doi.org/10.1099/vir.0.82210-0] [PMID: 16963734]
[57]
Alen, M.M.F.; Dallmeier, K.; Balzarini, J.; Neyts, J.; Schols, D. Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN-mediated dengue virus infection. Antiviral Res., 2012, 96(3), 280-287.
[http://dx.doi.org/10.1016/j.antiviral.2012.10.007] [PMID: 23124109]
[58]
Lei, Y.; Yu, H.; Dong, Y.; Yang, J.; Ye, W.; Wang, Y.; Chen, W.; Jia, Z.; Xu, Z.; Li, Z.; Zhang, F. Characterization of N-Glycan Structures on the Surface of Mature Dengue 2 Virus Derived from Insect Cells. PLoS One, 2015, 10(7), e0132122.
[http://dx.doi.org/10.1371/journal.pone.0132122] [PMID: 26208004]
[59]
Dejnirattisai, W.; Wongwiwat, W.; Supasa, S.; Zhang, X.; Dai, X.; Rouvinski, A.; Jumnainsong, A.; Edwards, C.; Quyen, N.T.H.; Duangchinda, T.; Grimes, J.M.; Tsai, W.Y.; Lai, C.Y.; Wang, W.K.; Malasit, P.; Farrar, J.; Simmons, C.P.; Zhou, Z.H.; Rey, F.A.; Mongkolsapaya, J.; Screaton, G.R. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat. Immunol., 2015, 16(2), 170-177.
[http://dx.doi.org/10.1038/ni.3058] [PMID: 25501631]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy