Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

The Integration of Top-down and Bottom-up Inputs to the Striatal Cholinergic Interneurons

Author(s): Yan-Feng Zhang* and John N.J. Reynolds

Volume 22, Issue 9, 2024

Published on: 29 February, 2024

Page: [1566 - 1575] Pages: 10

DOI: 10.2174/1570159X22666231115151403

Price: $65

Abstract

Background: Cholinergic interneurons (ChIs) are important for learning and memory. They exhibit a multiphasic excitation-pause-rebound response to reward or sensory cues indicating a reward, believed to gate dopamine-dependent learning. Although ChIs receive extensive top-down inputs from the cortex and bottom-up inputs from the thalamus and midbrain, it is unclear which inputs are involved in the development of ChI multiphasic activity.

Methods: We used a single-unit recording of putative ChIs (pChIs) in response to cortical and visual stimulation to investigate how top-down and bottom-up inputs regulate the firing pattern of ChIs.

Results: We demonstrated that cortical stimulation strongly regulates pChIs, with the maximum firing rate occurring at the peak of the inverted local field potential (iLFP), reflecting maximum cortical stimulation. Pauses in pChIs occurred during the descending phase of iLFP, indicating withdrawal of excitatory cortical input. Visual stimulation induced long pauses in pChIs, but it is unlikely that bottom- up inputs alone induce pauses in behaving animals. Also, the firing pattern of ChIs triggered by visual stimulation did not correlate with the iLFP as it did after cortical stimulation. Top-down and bottom-up inputs independently regulate the firing pattern of ChIs with similar efficacy but notably produce a well-defined pause in ChI firing.

Conclusion: This study provides in vivo evidence that the multiphasic ChI response may require both top-down and bottom-up inputs. The findings suggest that the firing pattern of ChIs correlated to the iLFP might be a useful tool for estimating the degree of contribution of top-down and bottom-up inputs in regulating the firing activity of ChIs.

« Previous
Graphical Abstract

[1]
Aosaki, T.; Graybiel, A.M.; Kimura, M. Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science, 1994, 265(5170), 412-415.
[http://dx.doi.org/10.1126/science.8023166] [PMID: 8023166]
[2]
Aosaki, T.; Tsubokawa, H.; Ishida, A.; Watanabe, K.; Graybiel, A.M.; Kimura, M. Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. J. Neurosci., 1994, 14(6), 3969-3984.
[http://dx.doi.org/10.1523/JNEUROSCI.14-06-03969.1994] [PMID: 8207500]
[3]
Apicella, P. Leading tonically active neurons of the striatum from reward detection to context recognition. Trends Neurosci., 2007, 30(6), 299-306.
[http://dx.doi.org/10.1016/j.tins.2007.03.011] [PMID: 17420057]
[4]
Bradfield, L.A.; Bertran-Gonzalez, J.; Chieng, B.; Balleine, B.W. The thalamostriatal pathway and cholinergic control of goal-directed action: interlacing new with existing learning in the striatum. Neuron, 2013, 79(1), 153-166.
[http://dx.doi.org/10.1016/j.neuron.2013.04.039] [PMID: 23770257]
[5]
Cragg, S.J. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci., 2006, 29(3), 125-131.
[http://dx.doi.org/10.1016/j.tins.2006.01.003] [PMID: 16443285]
[6]
Reynolds, J.N.J.; Avvisati, R.; Dodson, P.D.; Fisher, S.D.; Oswald, M.J.; Wickens, J.R.; Zhang, Y.F. Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum. Nat. Commun., 2022, 13(1), 1296.
[http://dx.doi.org/10.1038/s41467-022-28950-0] [PMID: 35277506]
[7]
Aosaki, T.; Miura, M.; Suzuki, T.; Nishimura, K.; Masuda, M. Acetylcholine-dopamine balance hypothesis in the striatum: An update. Geriatr. Gerontol. Int., 2010, 10(s1)(Suppl. 1), S148-S157.
[http://dx.doi.org/10.1111/j.1447-0594.2010.00588.x] [PMID: 20590830]
[8]
Apicella, P.; Ravel, S.; Deffains, M.; Legallet, E. The role of striatal tonically active neurons in reward prediction error signaling during instrumental task performance. J. Neurosci., 2011, 31(4), 1507-1515.
[http://dx.doi.org/10.1523/JNEUROSCI.4880-10.2011] [PMID: 21273435]
[9]
Joshua, M.; Adler, A.; Mitelman, R.; Vaadia, E.; Bergman, H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J. Neurosci., 2008, 28(45), 11673-11684.
[http://dx.doi.org/10.1523/JNEUROSCI.3839-08.2008] [PMID: 18987203]
[10]
Morris, G.; Arkadir, D.; Nevet, A.; Vaadia, E.; Bergman, H. Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron, 2004, 43(1), 133-143.
[http://dx.doi.org/10.1016/j.neuron.2004.06.012] [PMID: 15233923]
[11]
Cachope, R.; Mateo, Y.; Mathur, B.N.; Irving, J.; Wang, H.L.; Morales, M.; Lovinger, D.M.; Cheer, J.F. Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Rep., 2012, 2(1), 33-41.
[http://dx.doi.org/10.1016/j.celrep.2012.05.011] [PMID: 22840394]
[12]
Kosillo, P.; Zhang, Y.F.; Threlfell, S.; Cragg, S.J. Cortical control of striatal dopamine transmission via striatal cholinergic interneurons. Cereb. Cortex, 2016, 26(11), 4160-4169.
[http://dx.doi.org/10.1093/cercor/bhw252] [PMID: 27566978]
[13]
Threlfell, S.; Lalic, T.; Platt, N.J.; Jennings, K.A.; Deisseroth, K.; Cragg, S.J. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron, 2012, 75(1), 58-64.
[http://dx.doi.org/10.1016/j.neuron.2012.04.038] [PMID: 22794260]
[14]
Liu, C.; Cai, X.; Ritzau-Jost, A.; Kramer, P.F.; Li, Y.; Khaliq, Z.M.; Hallermann, S.; Kaeser, P.S. An action potential initiation mechanism in distal axons for the control of dopamine release. Science, 2022, 375(6587), 1378-1385.
[http://dx.doi.org/10.1126/science.abn0532] [PMID: 35324301]
[15]
Kramer, P.F.; Brill-Weil, S.G.; Cummins, A.C.; Zhang, R.; Camacho-Hernandez, G.A.; Newman, A.H.; Eldridge, M.A.G.; Averbeck, B.B.; Khaliq, Z.M. Synaptic-like axo-axonal transmission from striatal cholinergic interneurons onto dopaminergic fibers. Neuron, 2022, 110(18), 2949-2960.e4.
[http://dx.doi.org/10.1016/j.neuron.2022.07.011] [PMID: 35931070]
[16]
Zhang, Y.F.; Cragg, S.J. Pauses in striatal cholinergic interneurons: What is revealed by their common themes and variations? Front. Syst. Neurosci., 2017, 11, 80.
[http://dx.doi.org/10.3389/fnsys.2017.00080] [PMID: 29163075]
[17]
Klug, J.R.; Engelhardt, M.D.; Cadman, C.N.; Li, H.; Smith, J.B.; Ayala, S.; Williams, E.W.; Hoffman, H.; Jin, X. Differential inputs to striatal cholinergic and parvalbumin interneurons imply functional distinctions. eLife, 2018, 7, e35657.
[http://dx.doi.org/10.7554/eLife.35657] [PMID: 29714166]
[18]
Reynolds, J.N.J.; Wickens, J.R. The corticostriatal input to giant aspiny interneurons in the rat: a candidate pathway for synchronising the response to reward-related cues. Brain Res., 2004, 1011(1), 115-128.
[http://dx.doi.org/10.1016/j.brainres.2004.03.026] [PMID: 15140651]
[19]
Coizet, V.; Graham, J.H.; Moss, J.; Bolam, J.P.; Savasta, M.; McHaffie, J.G.; Redgrave, P.; Overton, P.G. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci., 2009, 29(17), 5701-5709.
[http://dx.doi.org/10.1523/JNEUROSCI.0247-09.2009] [PMID: 19403836]
[20]
Ding, J.B.; Guzman, J.N.; Peterson, J.D.; Goldberg, J.A.; Surmeier, D.J. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron, 2010, 67(2), 294-307.
[http://dx.doi.org/10.1016/j.neuron.2010.06.017] [PMID: 20670836]
[21]
Johansson, Y.; Silberberg, G. The functional organization of cortical and thalamic inputs onto five types of striatal neurons is determined by source and target cell identities. Cell Rep., 2020, 30(4), 1178-1194.e3.
[http://dx.doi.org/10.1016/j.celrep.2019.12.095] [PMID: 31995757]
[22]
Oz, O.; Matityahu, L.; Mizrahi-Kliger, A.; Kaplan, A.; Berkowitz, N.; Tiroshi, L.; Bergman, H.; Goldberg, J.A. Non-uniform distribution of dendritic nonlinearities differentially engages thalamostriatal and corticostriatal inputs onto cholinergic interneurons. eLife, 2022, 11, e76039.
[http://dx.doi.org/10.7554/eLife.76039] [PMID: 35815934]
[23]
Reynolds, J.N.J.; Hyland, B.I.; Wickens, J.R. Modulation of an afterhyperpolarization by the substantia nigra induces pauses in the tonic firing of striatal cholinergic interneurons. J. Neurosci., 2004, 24(44), 9870-9877.
[http://dx.doi.org/10.1523/JNEUROSCI.3225-04.2004] [PMID: 15525771]
[24]
Zhang, Y.F.; Reynolds, J.N.J.; Cragg, S.J. Pauses in cholinergic interneuron activity are driven by excitatory input and delayed rectification, with dopamine modulation. Neuron, 2018, 98(5), 918-925.e3.
[http://dx.doi.org/10.1016/j.neuron.2018.04.027] [PMID: 29754751]
[25]
Chuhma, N.; Mingote, S.; Moore, H.; Rayport, S. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron, 2014, 81(4), 901-912.
[http://dx.doi.org/10.1016/j.neuron.2013.12.027] [PMID: 24559678]
[26]
Chuhma, N.; Mingote, S.; Yetnikoff, L.; Kalmbach, A.; Ma, T.; Ztaou, S.; Sienna, A.C.; Tepler, S.; Poulin, J.F.; Ansorge, M.; Awatramani, R.; Kang, U.J.; Rayport, S. Dopamine neuron glutamate cotransmission evokes a delayed excitation in lateral dorsal striatal cholinergic interneurons. eLife, 2018, 7, e39786.
[http://dx.doi.org/10.7554/eLife.39786] [PMID: 30295607]
[27]
Brown, M.T.C.; Tan, K.R.; O’Connor, E.C.; Nikonenko, I.; Muller, D.; Lüscher, C. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature, 2012, 492(7429), 452-456.
[http://dx.doi.org/10.1038/nature11657] [PMID: 23178810]
[28]
Schulz, J.M.; Oswald, M.J.; Reynolds, J.N.J. Visual-induced excitation leads to firing pauses in striatal cholinergic interneurons. J. Neurosci., 2011, 31(31), 11133-11143.
[http://dx.doi.org/10.1523/JNEUROSCI.0661-11.2011] [PMID: 21813675]
[29]
Lapper, S.R.; Bolam, J.P. Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience, 1992, 51(3), 533-545.
[http://dx.doi.org/10.1016/0306-4522(92)90293-B] [PMID: 1488113]
[30]
Doig, N.M.; Magill, P.J.; Apicella, P.; Bolam, J.P.; Sharott, A. Cortical and thalamic excitation mediate the multiphasic responses of striatal cholinergic interneurons to motivationally salient stimuli. J. Neurosci., 2014, 34(8), 3101-3117.
[http://dx.doi.org/10.1523/JNEUROSCI.4627-13.2014] [PMID: 24553950]
[31]
Aceves Buendia, J.J.; Tiroshi, L.; Chiu, W.H.; Goldberg, J.A. Selective remodeling of glutamatergic transmission to striatal cholinergic interneurons after dopamine depletion. Eur. J. Neurosci., 2019, 49(6), 824-833.
[http://dx.doi.org/10.1111/ejn.13715] [PMID: 28922504]
[32]
Sharott, A.; Doig, N.M.; Mallet, N.; Magill, P.J. Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo. J. Neurosci., 2012, 32(38), 13221-13236.
[http://dx.doi.org/10.1523/JNEUROSCI.2440-12.2012] [PMID: 22993438]
[33]
Sharott, A.; Moll, C.K.E.; Engler, G.; Denker, M.; Grün, S.; Engel, A.K. Different subtypes of striatal neurons are selectively modulated by cortical oscillations. J. Neurosci., 2009, 29(14), 4571-4585.
[http://dx.doi.org/10.1523/JNEUROSCI.5097-08.2009] [PMID: 19357282]
[34]
Wilson, C.J.; Chang, H.T.; Kitai, S.T. Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J. Neurosci., 1990, 10(2), 508-519.
[http://dx.doi.org/10.1523/JNEUROSCI.10-02-00508.1990] [PMID: 2303856]
[35]
Dommett, E.; Coizet, V.; Blaha, C.D.; Martindale, J.; Lefebvre, V.; Walton, N.; Mayhew, J.E.W.; Overton, P.G.; Redgrave, P. How visual stimuli activate dopaminergic neurons at short latency. Science, 2005, 307(5714), 1476-1479.
[http://dx.doi.org/10.1126/science.1107026] [PMID: 15746431]
[36]
Schulz, J.M.; Redgrave, P.; Mehring, C.; Aertsen, A.; Clements, K.M.; Wickens, J.R.; Reynolds, J.N.J. Short-latency activation of striatal spiny neurons via subcortical visual pathways. J. Neurosci., 2009, 29(19), 6336-6347.
[http://dx.doi.org/10.1523/JNEUROSCI.4815-08.2009] [PMID: 19439610]
[37]
Goldberg, J.A.; Reynolds, J.N.J. Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience, 2011, 198, 27-43.
[http://dx.doi.org/10.1016/j.neuroscience.2011.08.067] [PMID: 21925242]
[38]
Apicella, P.; Deffains, M.; Ravel, S.; Legallet, E. Tonically active neurons in the striatum differentiate between delivery and omission of expected reward in a probabilistic task context. Eur. J. Neurosci., 2009, 30(3), 515-526.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06872.x] [PMID: 19656171]
[39]
Matsumoto, N.; Minamimoto, T.; Graybiel, A.M.; Kimura, M. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J. Neurophysiol., 2001, 85(2), 960-976.
[http://dx.doi.org/10.1152/jn.2001.85.2.960] [PMID: 11160526]
[40]
Aosaki, T.; Kimura, M.; Graybiel, A.M. Temporal and spatial characteristics of tonically active neurons of the primate’s striatum. J. Neurophysiol., 1995, 73(3), 1234-1252.
[http://dx.doi.org/10.1152/jn.1995.73.3.1234] [PMID: 7608768]
[41]
Chantranupong, L.; Beron, C.C.; Zimmer, J.A.; Wen, M.J.; Wang, W.; Sabatini, B.L. Local and long-distance inputs dynamically regulate striatal acetylcholine during decision making. bioRxiv, 2022, 2022.2009.2009.507130.
[http://dx.doi.org/10.1101/2022.09.09.507130]
[42]
Krok, A.C.; Mistry, P.; Li, Y.; Tritsch, N.X. Intrinsic reward-like dopamine and acetylcholine dynamics in striatum. bioRxiv, 2022, 2022.2009.2009.507300.
[http://dx.doi.org/10.1101/2022.09.09.507300]
[43]
Wilson, C.J. The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons. Neuron, 2005, 45(4), 575-585.
[http://dx.doi.org/10.1016/j.neuron.2004.12.053] [PMID: 15721243]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy