Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

Physiological and Pathological Roles of NTSR2 in Several Organs and Diseases (Review)

Author(s): Yuting Yang, Wenxin Zhang, Kun Wei, Fei Hu, Song Wu, Yuan Ma* and Qing Ouyang*

Volume 31, Issue 1, 2024

Published on: 14 November, 2023

Page: [3 - 10] Pages: 8

DOI: 10.2174/0109298665267989231024064200

Price: $65

Abstract

Neurotensin (NTS) and its receptors (NTSRs) have long been the subject of study and have shown to have a vital function in a variety of systems. They are specifically implicated in the development of tumors and have both oncogenic and anti-apoptotic effects. Neurotensin receptor 2 (NTSR2), like NTSR1, belongs to the G protein-coupled receptor family and has been linked to analgesia, mental disorders, and hematological cancers. However, several research reports have revealed that it exists in numerous different systems. As a result, it seems to be an extremely promising therapeutic target for a variety of diseases. As NTSR2 is particularly prevalent in the brain and has different distribution and developmental characteristics from NTSR1, it may play a specific role in the nervous system. The present review summarizes the expression and function of NTSR2 in different systems, to highlight its potential as a diagnostic tool or therapeutic target.

Graphical Abstract

[1]
Schotte, A.; Laduron, P.M. Different postnatal ontogeny of two [3H]neurotensin binding sites in rat brain. Brain Res., 1987, 408(1-2), 326-328.
[http://dx.doi.org/10.1016/0006-8993(87)90398-2] [PMID: 3036303]
[2]
Tanaka, K.; Masu, M.; Nakanishi, S. Structure and functional expression of the cloned rat neurotensin receptor. Neuron, 1990, 4(6), 847-854.
[http://dx.doi.org/10.1016/0896-6273(90)90137-5] [PMID: 1694443]
[3]
Chalon, P.; Vita, N.; Kaghad, M.; Guillemot, M.; Bonnin, J.; Delpech, B.; Le Fur, G.; Ferrara, P.; Caput, D. Molecular cloning of a levocabastine‐sensitive neurotensin binding site. FEBS Lett., 1996, 386(2-3), 91-94.
[http://dx.doi.org/10.1016/0014-5793(96)00397-3] [PMID: 8647296]
[4]
Mazella, J.; Botto, J.M.; Guillemare, E.; Coppola, T.; Sarret, P.; Vincent, J.P. Structure, functional expression, and cerebral localization of the levocabastine-sensitive neurotensin/neuromedin N receptor from mouse brain. J. Neurosci., 1996, 16(18), 5613-5620.
[http://dx.doi.org/10.1523/JNEUROSCI.16-18-05613.1996] [PMID: 8795617]
[5]
Vincent, J.P.; Mazella, J.; Kitabgi, P. Neurotensin and neurotensin receptors. Trends Pharmacol. Sci., 1999, 20(7), 302-309.
[http://dx.doi.org/10.1016/S0165-6147(99)01357-7] [PMID: 10390649]
[6]
Vita, N.; Oury-Donat, F.; Chalon, P.; Guillemot, M.; Kaghad, M.; Bachy, A.; Thurneyssen, O.; Garcia, S.; Poinot-Chazel, C.; Casellas, P.; Keane, P.; Le Fur, G.; Maffrand, J.P.; Soubrie, P.; Caput, D.; Ferrara, P. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells. Eur. J. Pharmacol., 1998, 360(2-3), 265-272.
[http://dx.doi.org/10.1016/S0014-2999(98)00678-5] [PMID: 9851594]
[7]
Mazella, J.; Zsürger, N.; Navarro, V.; Chabry, J.; Kaghad, M.; Caput, D.; Ferrara, P.; Vita, N.; Gully, D.; Maffrand, J.P.; Vincent, J.P. The 100-kDa neurotensin receptor is gp95/sortilin, a non-G-protein-coupled receptor. J. Biol. Chem., 1998, 273(41), 26273-26276.
[http://dx.doi.org/10.1074/jbc.273.41.26273] [PMID: 9756851]
[8]
Li, J.H.; Sicard, F.; Salam, M.A.; Baek, M.; LePrince, J.; Vaudry, H.; Kim, K.; Kwon, H.B.; Seong, J.Y. Molecular cloning and functional characterization of a type-I neurotensin receptor (NTR) and a novel NTR from the bullfrog brain. J. Mol. Endocrinol., 2005, 34(3), 793-807.
[http://dx.doi.org/10.1677/jme.1.01709] [PMID: 15956348]
[9]
Gully, D.; Canton, M.; Boigegrain, R.; Jeanjean, F.; Molimard, J.C.; Poncelet, M.; Gueudet, C.; Heaulme, M.; Leyris, R.; Brouard, A. Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. Proc. Natl. Acad. Sci. USA, 1993, 90(1), 65-69.
[http://dx.doi.org/10.1073/pnas.90.1.65] [PMID: 8380498]
[10]
Sánchez, M.L.; Coveñas, R. The neurotensinergic system: A target for cancer treatment. Curr. Med. Chem., 2022, 29(18), 3231-3260.
[http://dx.doi.org/10.2174/0929867328666211027124328] [PMID: 34711154]
[11]
Lépée-Lorgeoux, I.; Betancur, C.; Rostène, W.; Pélaprat, D. Differential ontogenetic patterns of levocabastine-sensitive neurotensin NT2 receptors and of NT1 receptors in the rat brain revealed by in situ hybridization. Dev. Brain Res., 1999, 113(1-2), 115-131.
[http://dx.doi.org/10.1016/S0165-3806(99)00009-7] [PMID: 10064881]
[12]
Strausberg, R.L.; Feingold, E.A.; Grouse, L.H.; Derge, J.G.; Klausner, R.D.; Collins, F.S.; Wagner, L.; Shenmen, C.M.; Schuler, G.D.; Altschul, S.F.; Zeeberg, B.; Buetow, K.H.; Schaefer, C.F.; Bhat, N.K.; Hopkins, R.F.; Jordan, H.; Moore, T.; Max, S.I.; Wang, J.; Hsieh, F.; Diatchenko, L.; Marusina, K.; Farmer, A.A.; Rubin, G.M.; Hong, L.; Stapleton, M.; Soares, M.B.; Bonaldo, M.F.; Casavant, T.L.; Scheetz, T.E.; Brownstein, M.J.; Usdin, T.B.; Toshiyuki, S.; Carninci, P.; Prange, C.; Raha, S.S.; Loquellano, N.A.; Peters, G.J.; Abramson, R.D.; Mullahy, S.J.; Bosak, S.A.; McEwan, P.J.; McKernan, K.J.; Malek, J.A.; Gunaratne, P.H.; Richards, S.; Worley, K.C.; Hale, S.; Garcia, A.M.; Gay, L.J.; Hulyk, S.W.; Villalon, D.K.; Muzny, D.M.; Sodergren, E.J.; Lu, X.; Gibbs, R.A.; Fahey, J.; Helton, E.; Ketteman, M.; Madan, A.; Rodrigues, S.; Sanchez, A.; Whiting, M.; Madan, A.; Young, A.C.; Shevchenko, Y.; Bouffard, G.G.; Blakesley, R.W.; Touchman, J.W.; Green, E.D.; Dickson, M.C.; Rodriguez, A.C.; Grimwood, J.; Schmutz, J.; Myers, R.M.; Butterfield, Y.S.; Krzywinski, M.I.; Skalska, U.; Smailus, D.E.; Schnerch, A.; Schein, J.E.; Jones, S.J.; Marra, M.A. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci., 2002, 99(26), 16899-16903.
[http://dx.doi.org/10.1073/pnas.242603899] [PMID: 12477932]
[13]
Sun, Y.J.; Maeno, H.; Aoki, S.; Wada, K. Mouse neurotensin receptor 2 gene (Ntsr2): Genomic organization, transcriptional regulation and genetic mapping on chromosome 12. Brain Res. Mol. Brain Res., 2001, 95(1-2), 167-171.
[http://dx.doi.org/10.1016/S0169-328X(01)00220-0] [PMID: 11687289]
[14]
Perron, A.; Sarret, P.; Gendron, L.; Stroh, T.; Beaudet, A. Identification and functional characterization of a 5-transmembrane domain variant isoform of the NTS2 neurotensin receptor in rat central nervous system. J. Biol. Chem., 2005, 280(11), 10219-10227.
[http://dx.doi.org/10.1074/jbc.M410557200] [PMID: 15637074]
[15]
Hwang, J.R.; Baek, M.W.; Sim, J.; Choi, H.S.; Han, J.M.; Kim, Y.L.; Hwang, J.I.; Kwon, H.B.; Beaudet, N.; Sarret, P.; Seong, J.Y. Intermolecular cross-talk between NTR1 and NTR2 neurotensin receptor promotes intracellular sequestration and functional inhibition of NTR1 receptors. Biochem. Biophys. Res. Commun., 2010, 391(1), 1007-1013.
[http://dx.doi.org/10.1016/j.bbrc.2009.12.007] [PMID: 19968961]
[16]
Perron, A.; Sharif, N.; Sarret, P.; Stroh, T.; Beaudet, A. NTS2 modulates the intracellular distribution and trafficking of NTS1 via heterodimerization. Biochem. Biophys. Res. Commun., 2007, 353(3), 582-590.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.062] [PMID: 17188644]
[17]
Sarret, P.; Perron, A.; Stroh, T.; Beaudet, A. Immunohistochemical distribution of NTS2 neurotensin receptors in the rat central nervous system. J. Comp. Neurol., 2003, 461(4), 520-538.
[http://dx.doi.org/10.1002/cne.10718] [PMID: 12746866]
[18]
Yamauchi, R.; Usui, H.; Yunden, J.; Takenaka, Y.; Tani, F.; Yoshikawa, M. Characterization of beta-lactotensin, a bioactive peptide derived from bovine beta-lactoglobulin, as a neurotensin agonist. Biosci. Biotechnol. Biochem., 2003, 67(4), 940-943.
[http://dx.doi.org/10.1271/bbb.67.940] [PMID: 12784648]
[19]
Yamauchi, R.; Sonoda, S.; Jinsmaa, Y.; Yoshikawa, M. Antinociception induced by β-lactotensin, a neurotensin agonist peptide derived from β-lactoglobulin, is mediated by NT2 and D1 receptors. Life Sci., 2003, 73(15), 1917-1923.
[http://dx.doi.org/10.1016/S0024-3205(03)00546-0] [PMID: 12899917]
[20]
Hou, I.C. Suzuki, C.; Kanegawa, N.; Oda, A.; Yamada, A.; Yoshikawa, M.; Yamada, D.; Sekiguchi, M.; Wada, E.; Wada, K.; Ohinata, K. β-Lactotensin derived from bovine β-lactoglobulin exhibits anxiolytic-like activity as an agonist for neurotensin NTS2 receptor via activation of dopamine D1 receptor in mice. J. Neurochem., 2011, 119(4), 785-790.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07472.x] [PMID: 21895659]
[21]
Yamauchi, R.; Wada, E.; Yamada, D.; Yoshikawa, M.; Wada, K. Effect of β-lactotensin on acute stress and fear memory. Peptides, 2006, 27(12), 3176-3182.
[http://dx.doi.org/10.1016/j.peptides.2006.08.009] [PMID: 17000030]
[22]
Yamauchi, R. Ohinata, K.; Yoshikawa, M. β-Lactotensin and neurotensin rapidly reduce serum cholesterol via NT2 receptor. Peptides, 2003, 24(12), 1955-1961.
[http://dx.doi.org/10.1016/j.peptides.2003.10.003] [PMID: 15127948]
[23]
Garlow, S.J.; Boone, E.; Kinkead, B.; Nemeroff, C.B. Genetic analysis of the hypothalamic neurotensin system. Neuropsychopharmacology, 2006, 31(3), 535-543.
[http://dx.doi.org/10.1038/sj.npp.1300870] [PMID: 16123747]
[24]
Dick, D.M.; Meyers, J.; Aliev, F.; Nurnberger, J., Jr; Kramer, J.; Kuperman, S.; Porjesz, B.; Tischfield, J.; Edenberg, H.J.; Foroud, T.; Schuckit, M.; Goate, A.; Hesselbrock, V.; Bierut, L. Evidence for genes on chromosome 2 contributing to alcohol dependence with conduct disorder and suicide attempts. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2010, 153(6), 1179-1188.
[http://dx.doi.org/10.1002/ajmg.b.31089] [PMID: 20468071]
[25]
Li, Z.; Liang, Y.; Boules, M.; Gordillo, A.; Richelson, E. Effect of amphetamine on extracellular concentrations of amino acids in striatum in neurotensin subtype 1 and 2 receptor null mice: A possible interaction between neurotensin receptors and amino acid systems for study of schizophrenia. Neuropharmacology, 2010, 58(7), 1174-1178.
[http://dx.doi.org/10.1016/j.neuropharm.2010.02.016] [PMID: 20193696]
[26]
Liang, Y.; Boules, M.; Li, Z.; Williams, K.; Miura, T.; Oliveros, A.; Richelson, E. Hyperactivity of the dopaminergic system in NTS1 and NTS2 null mice. Neuropharmacology, 2010, 58(8), 1199-1205.
[http://dx.doi.org/10.1016/j.neuropharm.2010.02.015] [PMID: 20211191]
[27]
Sanson, A.; Riva, M.A. Anti-stress properties of atypical antipsychotics. Pharmaceuticals, 2020, 13(10), 322.
[http://dx.doi.org/10.3390/ph13100322] [PMID: 33092112]
[28]
Voyer, D.; Einsiedel, J.; Gmeiner, P.; Lévesque, D.; Rompré, P.P. Sensitization to amphetamine psychostimulant effect: A key role for ventral tegmental area neurotensin type 2 receptors and MAP kinase pathway. Addict. Biol., 2021, 26(5), e13008.
[http://dx.doi.org/10.1111/adb.13008] [PMID: 33491227]
[29]
Gagnon, A.; Walsh, M.; Okuda, T.; Choe, K.Y.; Zaelzer, C.; Bourque, C.W. Modulation of spike clustering by NMDA receptors and neurotensin in rat supraoptic nucleus neurons. J. Physiol., 2014, 592(19), 4177-4186.
[http://dx.doi.org/10.1113/jphysiol.2014.275602] [PMID: 25063824]
[30]
Oliveros, A.; Heckman, M.G.; del Pilar Corena-McLeod, M.; Williams, K.; Boules, M.; Richelson, E. Sensorimotor gating in NTS1 and NTS2 null mice: Effects of d -amphetamine, dizocilpine, clozapine and NT69L. J. Exp. Biol., 2010, 213(24), 4232-4239.
[http://dx.doi.org/10.1242/jeb.046318] [PMID: 21113004]
[31]
Feifel, D.; Pang, Z.; Shilling, P.D.; Melendez, G.; Schreiber, R.; Button, D. Effects of neurotensin-2 receptor deletion on sensorimotor gating and locomotor activity. Behav. Brain Res., 2010, 212(2), 174-178.
[http://dx.doi.org/10.1016/j.bbr.2010.04.014] [PMID: 20399236]
[32]
Yamauchi, R.; Wada, E.; Kamichi, S.; Yamada, D.; Maeno, H.; Delawary, M.; Nakazawa, T.; Yamamoto, T.; Wada, K. Neurotensin type 2 receptor is involved in fear memory in mice. J. Neurochem., 2007, 102(5), 1669-1676.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04805.x] [PMID: 17697051]
[33]
McCullough, K.M.; Choi, D.; Guo, J.; Zimmerman, K.; Walton, J.; Rainnie, D.G.; Ressler, K.J. Molecular characterization of Thy1 expressing fear-inhibiting neurons within the basolateral amygdala. Nat. Commun., 2016, 7(1), 13149.
[http://dx.doi.org/10.1038/ncomms13149] [PMID: 27767183]
[34]
Lee, M.R.; Hinton, D.J.; Unal, S.S.; Richelson, E.; Choi, D.S. Increased ethanol consumption and preference in mice lacking neurotensin receptor type 2. Alcohol. Clin. Exp. Res., 2011, 35(1), 99-107.
[http://dx.doi.org/10.1111/j.1530-0277.2010.01326.x] [PMID: 21039631]
[35]
Pandey, S.; Barson, J.R. Heightened exploratory behavior following chronic excessive ethanol drinking: Mediation by neurotensin receptor type 2 in the anterior paraventricular thalamus. Alcohol. Clin. Exp. Res., 2020, 44(9), 1747-1759.
[http://dx.doi.org/10.1111/acer.14406] [PMID: 32623746]
[36]
Yamauchi, N.; Sato, K.; Sato, K.; Murakawa, S.; Hamasaki, Y.; Nomura, H.; Amano, T.; Minami, M. Chronic pain–induced neuronal plasticity in the bed nucleus of the stria terminalis causes maladaptive anxiety. Sci. Adv., 2022, 8(17), eabj5586.
[http://dx.doi.org/10.1126/sciadv.abj5586] [PMID: 35476439]
[37]
Normandeau, C.P.; Ventura-Silva, A.P.; Hawken, E.R.; Angelis, S.; Sjaarda, C.; Liu, X.; Pêgo, J.M.; Dumont, É.C. A key role for neurotensin in chronic-stress-induced anxiety-like behavior in rats. Neuropsychopharmacology, 2018, 43(2), 285-293.
[http://dx.doi.org/10.1038/npp.2017.134] [PMID: 28649992]
[38]
Normandeau, C.P.; Torruella Suárez, M.L.; Sarret, P.; McElligott, Z.A.; Dumont, E.C. Neurotensin and dynorphin bi-directionally modulate cea inhibition of oval bnst neurons in male mice. Neuropharmacology, 2018, 143, 113-121.
[http://dx.doi.org/10.1016/j.neuropharm.2018.09.031] [PMID: 30248304]
[39]
Steele, F.F., III; Whitehouse, S.C.; Aday, J.S.; Prus, A.J. Neurotensin NTS 1 and NTS 2 receptor agonists produce anxiolytic-like effects in the 22-kHz ultrasonic vocalization model in rats. Brain Res., 2017, 1658, 31-35.
[http://dx.doi.org/10.1016/j.brainres.2017.01.012] [PMID: 28089664]
[40]
Furutani, N.; Hondo, M.; Kageyama, H.; Tsujino, N.; Mieda, M.; Yanagisawa, M.; Shioda, S.; Sakurai, T. Neurotensin co-expressed in orexin-producing neurons in the lateral hypothalamus plays an important role in regulation of sleep/wakefulness states. PLoS One, 2013, 8(4), e62391.
[http://dx.doi.org/10.1371/journal.pone.0062391] [PMID: 23620827]
[41]
Schotte, A.; Leysen, J.E.; Laduron, P.M. Evidence for a displaceable non-specific [3H]neurotensin binding site in rat brain. Naunyn Schmiedebergs Arch. Pharmacol., 1986, 333(4), 400-405.
[http://dx.doi.org/10.1007/BF00500016] [PMID: 3022160]
[42]
Schotte, A.; Rostène, W.; Laduron, P.M. Different subcellular localization of neurotensin-receptor and neurotensin-acceptor sites in the rat brain dopaminergic system. J. Neurochem., 1988, 50(4), 1026-1031.
[http://dx.doi.org/10.1111/j.1471-4159.1988.tb10568.x] [PMID: 2831296]
[43]
Sarret, P.; Gendron, L.; Kilian, P.; Nguyen, H.M.K.; Gallo-Payet, N.; Payet, M.D.; Beaudet, A. Pharmacology and functional properties of NTS2 neurotensin receptors in cerebellar granule cells. J. Biol. Chem., 2002, 277(39), 36233-36243.
[http://dx.doi.org/10.1074/jbc.M202586200] [PMID: 12084713]
[44]
Hwang, J.I.; Kim, D.K.; Kwon, H.B.; Vaudry, H.; Seong, J.Y. Phylogenetic history, pharmacological features, and signal transduction of neurotensin receptors in vertebrates. Ann. N. Y. Acad. Sci., 2009, 1163(1), 169-178.
[http://dx.doi.org/10.1111/j.1749-6632.2008.03636.x] [PMID: 19456337]
[45]
Zhang, H.; Dong, H.; Cilz, N.I.; Kurada, L.; Hu, B.; Wada, E.; Bayliss, D.A.; Porter, J.E.; Lei, S. Neurotensinergic excitation of dentate gyrus granule cells via Gα q -coupled inhibition of TASK-3 channels. Cereb. Cortex, 2016, 26(3), 977-990.
[http://dx.doi.org/10.1093/cercor/bhu267] [PMID: 25405940]
[46]
Kyriatzis, G.; Bernard, A.; Bôle, A.; Pflieger, G.; Chalas, P.; Masse, M.; Lécorché, P.; Jacquot, G.; Ferhat, L.; Khrestchatisky, M. Neurotensin receptor 2 is induced in astrocytes and brain endothelial cells in relation to neuroinflammation following pilocarpine‐induced seizures in rats. Glia, 2021, 69(11), 2618-2643.
[http://dx.doi.org/10.1002/glia.24062] [PMID: 34310753]
[47]
Asselin, M.L.; Dubuc, I.; Coquerel, A.; Costentin, J. Localization of neurotensin NTS2 receptors in rat brain, using [3H]levocabastine. Neuroreport, 2001, 12(5), 1087-1091.
[http://dx.doi.org/10.1097/00001756-200104170-00044] [PMID: 11303751]
[48]
a) Previti, S.; Desgagné, M.; Tourwé, D.; Cavelier, F.; Sarret, P.; Ballet, S. Opening the amino acid toolbox for peptide‐based NTS2‐selective ligands as promising lead compounds for pain management. J. Pept. Sci., 2023, 29(6), e3471.
[http://dx.doi.org/10.1002/psc.3471] [PMID: 36539999];
b) Boules, M.; Li, Z.; Smith, K.; Fredrickson, P.; Richelson, E. Diverse roles of neurotensin agonists in the central nervous system. Front. Endocrinol. (Lausanne), 2013, 4, 36.
[http://dx.doi.org/10.3389/fendo.2013.00036] [PMID: 23526754]
[49]
Eiselt, E.; Gonzalez, S.; Martin, C.; Chartier, M.; Betti, C.; Longpré, J.M.; Cavelier, F.; Tourwé, D.; Gendron, L.; Ballet, S.; Sarret, P. Neurotensin analogues containing cyclic surrogates of tyrosine at position 11 improve NTS2 selectivity leading to analgesia without hypotension and hypothermia. ACS Chem. Neurosci., 2019, 10(11), 4535-4544.
[http://dx.doi.org/10.1021/acschemneuro.9b00390] [PMID: 31589400]
[50]
Smith, K.E.; Boules, M.; Williams, K.; Fauq, A.H.; Richelson, E. The role of NTS2 in the development of tolerance to NT69L in mouse models for hypothermia and thermal analgesia. Behav. Brain Res., 2011, 224(2), 344-349.
[http://dx.doi.org/10.1016/j.bbr.2011.06.014] [PMID: 21718721]
[51]
Boules, M.; Johnston, H.; Tozy, J.; Smith, K.; Li, Z.; Richelson, E. Analgesic synergy of neurotensin receptor subtype 2 agonist NT79 and morphine. Behav. Pharmacol., 2011, 22(5 and 6), 573-581.
[http://dx.doi.org/10.1097/FBP.0b013e3283474a3a] [PMID: 21691202]
[52]
Martin, L.; Ibrahim, M.; Gomez, K.; Yu, J.; Cai, S.; Chew, L.A.; Bellampalli, S.S.; Moutal, A.; Largent-Milnes, T.; Porreca, F.; Khanna, R.; Olivera, B.M.; Patwardhan, A. Conotoxin contulakin-G engages a neurotensin receptor 2/R-type calcium channel (Cav2.3) pathway to mediate spinal antinociception. Pain, 2022, 163(9), 1751-1762.
[http://dx.doi.org/10.1097/j.pain.0000000000002561] [PMID: 35050960]
[53]
Buhler, A.V.; Proudfit, H.K.; Gebhart, G.F. Neurotensin-produced antinociception in the rostral ventromedial medulla is partially mediated by spinal cord norepinephrine. Pain, 2008, 135(3), 280-290.
[http://dx.doi.org/10.1016/j.pain.2007.06.010] [PMID: 17664042]
[54]
Lafrance, M.; Roussy, G.; Belleville, K.; Maeno, H.; Beaudet, N.; Wada, K.; Sarret, P. Involvement of NTS2 receptors in stress-induced analgesia. Neuroscience, 2010, 166(2), 639-652.
[http://dx.doi.org/10.1016/j.neuroscience.2009.12.042] [PMID: 20035838]
[55]
Tétreault, P.; Beaudet, N.; Perron, A.; Belleville, K.; René, A.; Cavelier, F.; Martinez, J.; Stroh, T.; Jacobi, A.M.; Rose, S.D.; Behlke, M.A.; Sarret, P. Spinal NTS2 receptor activation reverses signs of neuropathic pain. FASEB J., 2013, 27(9), 3741-3752.
[http://dx.doi.org/10.1096/fj.12-225540] [PMID: 23756650]
[56]
Maeno, H.; Yamada, K.; Santo-Yamada, Y.; Aoki, K.; Sun, Y.J.; Sato, E.; Fukushima, T.; Ogura, H.; Araki, T.; Kamichi, S.; Kimura, I.; Yamano, M.; Maeno-Hikichi, Y.; Watase, K.; Aoki, S.; Kiyama, H.; Wada, E.; Wada, K. Comparison of mice deficient in the high- or low-affinity neurotensin receptors, Ntsr1 or Ntsr2, reveals a novel function for Ntsr2 in thermal nociception. Brain Res., 2004, 998(1), 122-129.
[http://dx.doi.org/10.1016/j.brainres.2003.11.039] [PMID: 14725975]
[57]
Delawary, M.; Tezuka, T.; Kiyama, Y.; Yokoyama, K.; Wada, E.; Wada, K.; Manabe, T.; Yamamoto, T.; Nakazawa, T. NMDAR2B tyrosine phosphorylation is involved in thermal nociception. Neurosci. Lett., 2012, 516(2), 270-273.
[http://dx.doi.org/10.1016/j.neulet.2012.04.007] [PMID: 22516462]
[58]
Schulz, S.; Röcken, C.; Ebert, M.P.A.; Schulz, S. Immunocytochemical identification of low-affinity NTS2 neurotensin receptors in parietal cells of human gastric mucosa. J. Endocrinol., 2006, 191(1), 121-128.
[http://dx.doi.org/10.1677/joe.1.06903] [PMID: 17065395]
[59]
Croci, T.; Aureggi, G.; Guagnini, F.; Manara, L.; Gully, D.; Le Fur, G.; Maffrand, J.P.; Mukenge, S.; Ferla, G.; Ferrara, P.; Chalon, P.; Vita, N. In vitro functional evidence of different neurotensin-receptors modulating the motor response of human colonic muscle strips. Br. J. Pharmacol., 1999, 127(8), 1922-1928.
[http://dx.doi.org/10.1038/sj.bjp.0702734] [PMID: 10482925]
[60]
Azriel, Y.; Liu, L.; Bucher, E. Complex actions of neurotensin in ascending and sigmoid colonic muscle: Involvement of enteric mediators. Eur. J. Pharmacol., 2010, 644(1-3), 195-202.
[http://dx.doi.org/10.1016/j.ejphar.2010.06.049] [PMID: 20615399]
[61]
Dong, X.; Bai, X.; Zhao, J.; Wang, L.; Wang, Q.; Li, L. The actions of neurotensin in rat bladder detrusor contractility. Sci. Rep., 2015, 5(1), 11192.
[http://dx.doi.org/10.1038/srep11192] [PMID: 26053252]
[62]
Shults, N.V.; Almansour, F.S.; Rybka, V.; Suzuki, D.I.; Suzuki, Y.J. Ligand-mediated dephosphorylation signaling for MAP kinase. Cell. Signal., 2018, 52, 147-154.
[http://dx.doi.org/10.1016/j.cellsig.2018.09.005] [PMID: 30213686]
[63]
Moody, T.W.; Ramos-Alvarez, I.; Jensen, R.T. Adding of neurotensin to non-small cell lung cancer cells increases tyrosine phosphorylation of HER3. Peptides, 2022, 156, 170858.
[http://dx.doi.org/10.1016/j.peptides.2022.170858] [PMID: 35932909]
[64]
Ayala-Sarmiento, A.E.; Martinez-Fong, D.; Segovia, J. The internalization of neurotensin by the low-affinity neurotensin receptors (NTSR2 and vNTSR2) activates ERK 1/2 in glioma cells and allows neurotensin-polyplex transfection of tGAS1. Cell. Mol. Neurobiol., 2015, 35(6), 785-795.
[http://dx.doi.org/10.1007/s10571-015-0172-z] [PMID: 25772140]
[65]
Saada, S.; Marget, P.; Fauchais, A.L.; Lise, M.C.; Chemin, G.; Sindou, P.; Martel, C.; Delpy, L.; Vidal, E.; Jaccard, A.; Troutaud, D.; Lalloué, F.; Jauberteau, M.O. Differential expression of neurotensin and specific receptors, NTSR1 and NTSR2, in normal and malignant human B lymphocytes. J. Immunol., 2012, 189(11), 5293-5303.
[http://dx.doi.org/10.4049/jimmunol.1102937] [PMID: 23109725]
[66]
Abbaci, A.; Talbot, H.; Saada, S.; Gachard, N.; Abraham, J.; Jaccard, A.; Bordessoule, D.; Fauchais, A.L.; Naves, T.; Jauberteau, M.O. Neurotensin receptor type 2 protects B-cell chronic lymphocytic leukemia cells from apoptosis. Oncogene, 2018, 37(6), 756-767.
[http://dx.doi.org/10.1038/onc.2017.365] [PMID: 29059151]
[67]
Talbot, H.; Saada, S.; Barthout, E.; Gallet, P.F.; Gachard, N.; Abraham, J.; Jaccard, A.; Troutaud, D.; Lalloué, F.; Naves, T.; Fauchais, A.L.; Jauberteau, M.O. BDNF belongs to the nurse-like cell secretome and supports survival of B chronic lymphocytic leukemia cells. Sci. Rep., 2020, 10(1), 12572.
[http://dx.doi.org/10.1038/s41598-020-69307-1] [PMID: 32724091]
[68]
Kim, J.T.; Li, J.; Song, J.; Lee, E.Y.; Weiss, H.L.; Townsend, C.M., Jr; Evers, B.M. Differential expression and tumorigenic function of neurotensin receptor 1 in neuroendocrine tumor cells. Oncotarget, 2015, 6(29), 26960-26970.
[http://dx.doi.org/10.18632/oncotarget.4745] [PMID: 26298774]
[69]
Kisfalvi, K.; Rey, O.; Young, S.H.; Sinnett-Smith, J.; Rozengurt, E. Insulin potentiates Ca2+ signaling and phosphatidylinositol 4,5-bisphosphate hydrolysis induced by Gq protein-coupled receptor agonists through an mTOR-dependent pathway. Endocrinology, 2007, 148(7), 3246-3257.
[http://dx.doi.org/10.1210/en.2006-1711] [PMID: 17379645]
[70]
Béraud-Dufour, S.; Coppola, T.; Massa, F.; Mazella, J. Neurotensin receptor-2 and -3 are crucial for the anti-apoptotic effect of neurotensin on pancreatic β-TC3 cells. Int. J. Biochem. Cell Biol., 2009, 41(12), 2398-2402.
[http://dx.doi.org/10.1016/j.biocel.2009.04.002] [PMID: 19891061]
[71]
Zygulska, A.L.; Furgala, A. Kaszuba-Zwoińska, J.; Krzemieniecki, K.; Gil, K. Changes in plasma levels of cholecystokinin, neurotensin, VIP and PYY in gastric and colorectal cancer – Preliminary results. Peptides, 2019, 122, 170148.
[http://dx.doi.org/10.1016/j.peptides.2019.170148] [PMID: 31541684]
[72]
Kitabgi, P.; Rostène, W.; Dussaillant, M.; Schotte, A.; Laduron, P.M.; Vincent, J.P. Two populations of neurotensin binding sites in murine brain: discrimination by the antihistamine levocabastine reveals markedly different radioautographic distribution. Eur. J. Pharmacol., 1987, 140(3), 285-293.
[http://dx.doi.org/10.1016/0014-2999(87)90285-8] [PMID: 2888670]
[73]
Dal Farra, C.; Sarret, P.; Navarro, V.; Botto, J.M.; Mazella, J.; Vincent, J.P. Involvement of the neurotensin receptor subtype NTR3 in the growth effect of neurotensin on cancer cell lines. Int. J. Cancer, 2001, 92(4), 503-509.
[http://dx.doi.org/10.1002/ijc.1225] [PMID: 11304684]
[74]
Kim, J.T.; Weiss, H.L.; Evers, B.M. Diverse expression patterns and tumorigenic role of neurotensin signaling components in colorectal cancer cells. Int. J. Oncol., 2017, 50(6), 2200-2206.
[http://dx.doi.org/10.3892/ijo.2017.3990] [PMID: 28498396]
[75]
Haase, C.; Bergmann, R.; Oswald, J.; Zips, D.; Pietzsch, J. Neurotensin receptors in adeno- and squamous cell carcinoma. Anticancer Res., 2006, 26(5A), 3527-3533.
[PMID: 17094477]
[76]
Qiu, S.; Nikolaou, S.; Zhu, J.; Jeffery, P.; Goldin, R.; Kinross, J.; Alexander, J.; Rasheed, S.; Tekkis, P.; Kontovounisios, C. Characterisation of the expression of neurotensin and its receptors in human colorectal cancer and its clinical implications. Biomolecules, 2020, 10(8), 1145.
[http://dx.doi.org/10.3390/biom10081145] [PMID: 32764278]
[77]
Körner, M.; Waser, B.; Strobel, O.; Büchler, M.; Reubi, J.C. Neurotensin receptors in pancreatic ductal carcinomas. EJNMMI Res., 2015, 5(1), 17.
[http://dx.doi.org/10.1186/s13550-015-0094-2] [PMID: 25859423]
[78]
Swift, S.L.; Burns, J.E.; Maitland, N.J. Altered expression of neurotensin receptors is associated with the differentiation state of prostate cancer. Cancer Res., 2010, 70(1), 347-356.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1252] [PMID: 20048080]
[79]
He, T.; Wang, M.; Wang, H.; Tan, H.; Tang, Y.; Smith, E.; Wu, Z.; Liao, W.; Hu, S.; Li, Z. Evaluation of neurotensin receptor 1 as potential biomarker for prostate cancer theranostic use. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(10), 2199-2207.
[http://dx.doi.org/10.1007/s00259-019-04355-y] [PMID: 31264168]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy