Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Design, Synthesis, Reactions, Molecular Docking, Antitumor Activities of Novel Naphthopyran, Naphthopyranopyrimidines, and Naphthoyranotriazolopyrimidine Derivatives

Author(s): Rita Mohammed Ahmed Borik, Nasser Jaber Hadi Amri, Yousef Essa Mukhrish, Ashraf Hassan Fekry Abd El-Wahab*, Hany Mostafa Mohamed, Diaa Abd El-Samie Ibrahim and Ahmed Deeb Hassan Deeb

Volume 27, Issue 19, 2023

Published on: 13 November, 2023

Page: [1717 - 1727] Pages: 11

DOI: 10.2174/0113852728264994231018063921

Price: $65

Abstract

In ethanolic piperidine solution, the interaction of 6-bromonaphthalen-2-ol (1) with α- cyano-p-chlorocinnamonitrile (2a) or ethyl α-cyano-p-chlorocinnamate (2b) yielded 4Hnaphtho[ 2,1-b]pyran-3-carbonitrile (3a) and 4H-naphtho[2,1-b]pyran-3-carboxylate (3b). The naphthopyran derivatives (3a, b) reacted with electrophilic reagents afforded naphthopyranopyrimidines and naphthopyrano-triazolopyrimidine derivatives. The structures of the newly synthesized compounds are confirmed through spectral analysis using NMR, IR, and MS spectroscopy. The anticancer efficacy of all compounds was investigated against three cancer cell lines: MCF- 7, HeLa, and PC-3, along with a molecular docking study.

Graphical Abstract

[1]
Piazzi, L.; Cavalli, A.; Belluti, F.; Bisi, A.; Gobbi, S.; Rizzo, S.; Bartolini, M.; Andrisano, V.; Recanatini, M.; Rampa, A. Extensive SAR and computational studies of 3-4-[(Benzylmethylamino)methyl]phenyl-6,7-dimethoxy-2 H -2-chromenone (AP2238) derivatives. J. Med. Chem., 2007, 50(17), 4250-4254.
[http://dx.doi.org/10.1021/jm070100g] [PMID: 17655212]
[2]
Teodori, E.; Braconi, L.; Bua, S.; Lapucci, A.; Bartolucci, G.; Manetti, D.; Romanelli, M.N.; Dei, S.; Supuran, C.T.; Coronnello, M. Dual P-glycoprotein and CA XII inhibitors: a new strategy to reverse the P-gp mediated multidrug resistance (MDR) in cancer cells. Molecules, 2020, 25(7), 1748.
[http://dx.doi.org/10.3390/molecules25071748] [PMID: 32290281]
[3]
Braconi, L.; Teodori, E.; Riganti, C.; Coronnello, M.; Nocentini, A.; Bartolucci, G.; Pallecchi, M.; Contino, M.; Manetti, D.; Romanelli, M.N.; Supuran, C.T.; Dei, S. New dual P-glycoprotein (P-gp) and human carbonic anhydrase XII (hCA XII) inhibitors as multidrug resistance (MDR) reversers in cancer cells, cancer cells. J. Med. Chem., 2022, 65(21), 14655-14672.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01175] [PMID: 36269278]
[4]
Wang, S.; Wang, S.Q.; Teng, Q.X. Structure-based design, synthesis, and biological evaluation of new triazolo[1,5-a]pyrimidine derivatives as highly potent and orally active ABCB1 modulators. J. Med. Chem., 2020, 63(24), 15979-15996.
[5]
Hong, D.J.; Jung, S.H.; Kim, J.; Jung, D.; Ahn, Y.G.; Suh, K.H.; Min, K.H. Synthesis and biological evaluation of novel thienopyrimidine derivatives as diacylglycerol acyltransferase 1 (DGAT-1) inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 227-234.
[http://dx.doi.org/10.1080/14756366.2019.1693555] [PMID: 31752563]
[6]
Callaghan, R.; Luk, F.; Bebawy, M. Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metab. Dispos., 2014, 42(4), 623-631.
[http://dx.doi.org/10.1124/dmd.113.056176] [PMID: 24492893]
[7]
Slobbe, P.; Ruijter, E.; Orru, R.V.A. Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm, 2012, 3(10), 1189-1218.
[http://dx.doi.org/10.1039/c2md20089a]
[8]
Batran, R.Z.; Dawood, D.H.; El-Seginy, S.A.; Maher, T.J.; Gugnani, K.S.; Rondon-Ortiz, A.N. Coumarinyl pyranopyrimidines as new neuropeptide S receptor antagonists; design, synthesis, homology and molecular docking. Bioorg. Chem., 2017, 75, 274-290.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.017] [PMID: 29055857]
[9]
Kamdar, N.R.; Haveliwala, D.D.; Mistry, P.T.; Patel, S.K. Synthesis and evaluation of in vitro antitubercular activity and antimicrobial activity of some novel 4H-chromeno[2,3-d]pyrimidine via 2-amino-4-phenyl-4H-chromene-3-carbonitriles. Med. Chem. Res., 2011, 20(7), 854-864.
[http://dx.doi.org/10.1007/s00044-010-9399-x]
[10]
Foroumadi, A.; Emami, S.; Sorkhi, M.; Nakhjiri, M.; Nazarian, Z.; Heydari, S.; Ardestani, S.K.; Poorrajab, F.; Shafiee, A. Chromene-based synthetic chalcones as potent antileishmanial agents: synthesis and biological activity. Chem. Biol. Drug Des., 2010, 75(6), 590-596.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00959.x] [PMID: 20337782]
[11]
Singh, G.; Sharma, A.; Kaur, H.; Ishar, M.P.S. Chromanyl-isoxazolidines as antibacterial agents: Synthesis, biological evaluation, quantitative structure activity relationship, and molecular docking studies. Chem. Biol. Drug Des., 2016, 87(2), 213-223.
[http://dx.doi.org/10.1111/cbdd.12653] [PMID: 26301627]
[12]
Sashidhara, K.V.; Kumar, M.; Modukuri, R.K.; Srivastava, A.; Puri, A. Discovery and synthesis of novel substituted benzocoumarins as orally active lipid modulating agents. Bioorg. Med. Chem. Lett., 2011, 21(22), 6709-6713.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.053] [PMID: 21983443]
[13]
Gupta, S.; Maurya, P.; Upadhyay, A.; Kushwaha, P.; Krishna, S.; Siddiqi, M.I.; Sashidhara, K.V.; Banerjee, D. Synthesis and bio-evaluation of indole-chalcone based benzopyrans as promising antiligase and antiproliferative agents. Eur. J. Med. Chem., 2018, 143, 1981-1996.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.015] [PMID: 29146133]
[14]
Kamdar, N.R.; Haveliwala, D.D.; Mistry, P.T.; Patel, S.K. Design, synthesis and in vitro evaluation of antitubercular and antimicrobial activity of some novel pyranopyrimidines. Eur. J. Med. Chem., 2010, 45(11), 5056-5063.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.014] [PMID: 20805011]
[15]
Termentzi, A.; Khouri, I.; Gaslonde, T.; Prado, S.; Saint-Joanis, B.; Bardou, F.; Amanatiadou, E.P.; Vizirianakis, I.S.; Kordulakova, J.; Jackson, M.; Brosch, R.; Janin, Y.L.; Daffé, M.; Tillequin, F.; Michel, S. Synthesis, biological activity, and evaluation of the mode of action of novel antitubercular benzofurobenzopyrans substituted on A ring. Eur. J. Med. Chem., 2010, 45(12), 5833-5847.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.048] [PMID: 20961671]
[16]
Lasemi, Z.; Azimi, R.; Azizi Amiri, M. Efficient synthesis of 9,10-dihydropyrano[2,3-h]chromene-2,8-dione derivatives in ionic liquid and the study of their antioxidant activity. Nat. Prod. Res., 2017, 31(1), 1-6.
[http://dx.doi.org/10.1080/14786419.2016.1166493] [PMID: 27080044]
[17]
Dgachi, Y.; Bautista-Aguilera, O.; Benchekroun, M.; Martin, H.; Bonet, A.; Knez, D.; Godyń, J.; Malawska, B.; Gobec, S.; Chioua, M.; Janockova, J.; Soukup, O.; Chabchoub, F.; Marco-Contelles, J.; Ismaili, L. Synthesis and biological evaluation of benzochromenopyri-midinones as cholinesterase inhibitors and potent antioxidant, non-hepatotoxic agents for Alzheimer’s disease. Molecules, 2016, 21(5), 634.
[http://dx.doi.org/10.3390/molecules21050634] [PMID: 27187348]
[18]
Srinivas Lavanya Kumar, M.; Singh, J.; Manna, S.K.; Maji, S.; Konwar, R.; Panda, G. Diversity oriented synthesis of chromene-xanthene hybrids as anti-breast cancer agents. Bioorg. Med. Chem. Lett., 2018, 28(4), 778-782.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.065] [PMID: 29352645]
[19]
Rajanarendar, E.; Nagi Reddy, M.; Rama Krishna, S.; Rama Murthy, K.; Reddy, Y.N.; Rajam, M.V. Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolyl pyrimido[4,5-b]quinolines and isoxazolyl chromeno[2,3-d]pyrimidin-4-ones. Eur. J. Med. Chem., 2012, 55, 273-283.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.029] [PMID: 22846796]
[20]
Eberhardt, L.; Kumar, K.; Waldmann, H. Exploring and exploiting biologically relevant chemical space. Curr. Drug Targets, 2011, 12(11), 1531-1546.
[http://dx.doi.org/10.2174/138945011798109482] [PMID: 21561426]
[21]
Ali, T.E.S.; Ibrahim, M.A.; Abdel-Kariem, S.M. Synthesis of biologically active 4-oxo-4H-chromene derivatives containing sulfur-nitrogen heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(9), 2358-2392.
[http://dx.doi.org/10.1080/10426500802473094]
[22]
Smith, C.W.; Bailey, J.M.; Billingham, M.E.J.; Chandrasekhar, S.; Dell, C.P.; Harvey, A.K.; Hicks, C.A.; Kingston, A.E.; Wishart, G.N. The anti-rheumatic potential of a series of 2,4-di-substituted-4H-naphtho[1,2-b]pyran-3-carbonitriles. Bioorg. Med. Chem. Lett., 1995, 5(23), 2783-2788.
[http://dx.doi.org/10.1016/0960-894X(95)00487-E]
[23]
Ahn, J.; Lee, H.; Jang, J.; Kim, S.; Ha, T. Anti-obesity effects of glabridin-rich supercritical carbon dioxide extract of licorice in high-fat-fed obese mice. Food Chem. Toxicol., 2013, 51, 439-445.
[http://dx.doi.org/10.1016/j.fct.2012.08.048] [PMID: 22967722]
[24]
Ahmed, H.E.A.; El-Nassag, M.A.A.; Hassan, A.H.; Okasha, R.M.; Ihmaid, S.; Fouda, A.M.; Afifi, T.H.; Aljuhani, A.; El-Agrody, A.M. Introducing novel potent anticancer agents of 1H-benzo[ f]chromene scaffolds, targeting c-Src kinase enzyme with MDA-MB-231 cell line anti-invasion effect. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1074-1088.
[http://dx.doi.org/10.1080/14756366.2018.1476503] [PMID: 29923425]
[25]
Fouda, A.M.; Okasha, R.M.; Alblewi, F.F.; Mora, A.; Afifi, T.H.; El-Agrody, A.M. A proficient microwave synthesis with structure elucidation and the exploitation of the biological behavior of the newly halogenated 3-amino-1H-benzo[f]chromene molecules, targeting dual inhibition of topoisomerase II and microtubules. Bioorg. Chem., 2020, 95, 103549.
[http://dx.doi.org/10.1016/j.bioorg.2019.103549] [PMID: 31887476]
[26]
Fouda, A.M.; Assiri, M.A.; Mora, A.; Ali, T.E.; Afifi, T.H.; El-Agrody, A.M. Microwave synthesis of novel halogenated β-enaminonitriles linked 9-bromo-1H-benzo[f]chromene moieties: Induces cell cycle arrest and apoptosis in human cancer cells via dual inhibition of topoisomerase I and II. Bioorg. Chem., 2019, 93, 103289.
[http://dx.doi.org/10.1016/j.bioorg.2019.103289] [PMID: 31586716]
[27]
Gorle, S.; Maddila, S.; Maddila, S.; Naicker, K.; Singh, M.; Singh, P.; Jonnalagadda, S. Synthesis, molecular docking study and in vitro anticancer activity of tetrazole linked benzochromene derivatives. Anticancer. Agents Med. Chem., 2017, 17(3), 464-470.
[http://dx.doi.org/10.2174/1871520616666160627090249] [PMID: 27357544]
[28]
Ahagh, M.H.; Dehghan, G.; Mehdipour, M.; Teimuri-Mofrad, R.; Payami, E.; Sheibani, N.; Ghaffari, M.; Asadi, M. Synthesis, characterization, anti-proliferative properties and DNA binding of benzochromene derivatives: Increased Bax/Bcl-2 ratio and caspase-dependent apoptosis in colorectal cancer cell line. Bioorg. Chem., 2019, 93, 103329.
[http://dx.doi.org/10.1016/j.bioorg.2019.103329] [PMID: 31590040]
[29]
Elgaafary, M.; Fouda, A.M.; Mohamed, H.M. Synthesis ofb-enaminonitrile-linked8-methoxy-1H-benzo[f]chromenemoieties and analysis of their antitumor mechanisms. Front Chem., 2021, 9, 759148.
[30]
El Gaafary, M.; Lehner, J.; Fouda, A.M.; Hamed, A.; Ulrich, J.; Simmet, T.; Syrovets, T.; El-Agrody, A.M. Synthesis and evaluation of antitumor activity of 9-methoxy-1H-benzo[f]chromene derivatives. Bioorg. Chem., 2021, 116, 105402.
[http://dx.doi.org/10.1016/j.bioorg.2021.105402] [PMID: 34670333]
[31]
Rafinejad, A.; Fallah-Tafti, A.; Tiwari, R.; Shirazi, A.N.; Mandal, D.; Shafiee, A.; Parang, K.; Foroumadi, A.; Akbarzadeh, T. 4-Aryl-4H-naphthopyrans derivatives: one-pot synthesis, evaluation of Src kinase inhibitory and anti-proliferative activities. Daru, 2012, 20(1), 100-107.
[http://dx.doi.org/10.1186/2008-2231-20-100] [PMID: 23351304]
[32]
Kheirollahi, A.; Pordeli, M.; Safavi, M.; Mashkouri, S.; Naimi-Jamal, M.R.; Ardestani, S.K. Cytotoxic and apoptotic effects of synthetic benzochromene derivatives on human cancer cell lines. Naunyn Schmiedebergs Arch. Pharmacol., 2014, 387(12), 1199-1208.
[http://dx.doi.org/10.1007/s00210-014-1038-5] [PMID: 25261336]
[33]
El-Agrody, A.M.; Abd El-Mawgoud, H.K.; Fouda, A.M.; Khattab, E.S.A.E.H. Synthesis, in-vitro cytotoxicity of 4H-benzo[h]chromene derivatives and structure-activity relationships of 4-aryl group and 3-, 7-positions. Chem. Pap., 2016, 70(9), 1279-1292.
[http://dx.doi.org/10.1515/chempap-2016-0049]
[34]
Afifi, T.H.; Okasha, R.M.; Ahmed, H.E.A.; Ilaš, J.; Saleh, T.; Abd-El-Aziz, A.S. Structure-activity relationships and molecular docking studies of chromene and chromene based azo chromophores: A novel series of potent antimicrobial and anticancer agents. EXCLI J., 2017, 16, 868-902.
[PMID: 28828001]
[35]
Halawa, A.H.; Fouda, A.M.; Al-Dies, A.A.M.; El-Agrody, A.M. Synthesis, biological evaluation and molecular docking studies of 4H-benzo[h]chromenes, 7H-benzo[h]-chromeno[2,3-d]pyrimidines as antitumor agents. Lett. Drug Des. Discov., 2016, 13(1), 77-88.
[http://dx.doi.org/10.2174/1570180812666150611185830]
[36]
El-Agrody, A.M.; Fouda, A.M.; Khattab, E.S.A.E.H. Halogenated 2-amino-4H-benzo[h]chromene derivatives as antitumor agents and the relationship between lipophilicity and antitumor activity. Med. Chem. Res., 2017, 26(4), 691-700.
[http://dx.doi.org/10.1007/s00044-016-1773-x]
[37]
Alblewi, F.; Okasha, R.; Eskandrani, A.; Afifi, T.; Mohamed, H.; Halawa, A.; Fouda, A.; Al-Dies, A.A.; Mora, A.; El-Agrody, A. Design and synthesis of novel heterocyclic-based 4H-benzo[h]chromene moieties: targeting antitumor caspase 3/7 activities and cell cycle analysis. Molecules, 2019, 24(6), 1060.
[http://dx.doi.org/10.3390/molecules24061060] [PMID: 30889862]
[38]
El-Agrody, A.M.; Halawa, A.H.; Fouda, A.M.; Al-Dies, A.A.M. The anti-proliferative activity of novel 4H-benzo[h]chromenes, 7H-benzo[h]-chromeno[2,3-d]pyrimidines and the structure-activity relationships of the 2-, 3-positions and fused rings at the 2, 3-positions. J. Saudi Chem. Soc., 2017, 21(1), 82-90.
[http://dx.doi.org/10.1016/j.jscs.2016.03.002]
[39]
Heba, K.A.E.; Ahmed, M.F.; Mohammed, A.A.E.; Ahmed, A.E.; Mohammed, Y.A.; Ahmed, M.E. Discovery of novel rigid analogs of 2-naphthol with potent anticancer activity through multi-target topoisomerase I & II and tyrosine kinase receptor EGFR & VEGFR-2 inhibition mechanism. Chem. Biol. Interact., 2022, 55, 109819.
[40]
Arif, N.; Shafiq, Z.; Mahmood, K.; Rafiq, M.; Naz, S.; Shahzad, S.A.; Farooq, U.; Bahkali, A.H.; Elgorban, A.M.; Yaqub, M.; El-Gokha, A. Synthesis, biological evaluation, and in silico studies of novel coumarin-based 4 H,5H-pyrano[3,2-c]chromenes as potent β-glucuronidase and carbonic anhydrase inhibitors. ACS Omega, 2022, 7(32), 28605-28617.
[http://dx.doi.org/10.1021/acsomega.2c03528] [PMID: 35990487]
[41]
Haiba, M.E.; Al-Abdullah, E.S.; Ghabbour, H.A.; Riyadh, S.M.; Abdel-Kader, R.M. Inhibitory activity of benzo[h]quinoline and benzo[h]chromene in human glioblastoma cells. Trop. J. Pharm. Res., 2016, 15(11), 2337-2343.
[http://dx.doi.org/10.4314/tjpr.v15i11.6]
[42]
Ahmed, H.E.A.; El-Nassag, M.A.A.; Hassan, A.H.; Mohamed, H.M.; Halawa, A.H.; Okasha, R.M.; Ihmaid, S.; Abd El-Gilil, S.M.; Khattab, E.S.A.E.H.; Fouda, A.M. Eveloping lipophilic aromatic halogenated fused systems with specific ring orientations, leading to potent anticancer analogs and targeting the c-Src kinase enzyme. J. Mol. Struct., 2019, 1186, 212-223.
[http://dx.doi.org/10.1016/j.molstruc.2019.03.012]
[43]
Okasha, R.; Alblewi, F.; Afifi, T.; Naqvi, A.; Fouda, A.; Al-Dies, A.A.; El-Agrody, A. Design of new benzo[h]chromene derivatives: Antitumor activities and structure-activity relationships of the 2,3-positions and fused rings at the 2,3-positions. Molecules, 2017, 22(3), 479.
[http://dx.doi.org/10.3390/molecules22030479] [PMID: 28335470]
[44]
El-Agrody, A.; Abd El-Latif, M.; El-Hady, N.; Fakery, A.; Bedair, A. Heteroaromatization with 4-Hydroxycoumarin Part II: Synthesis of some new pyrano[2,3-d]pyrimidines, [1,2,4]triazolo[1,5-c]pyrimidines and pyrimido[1,6-b]-[1,2,4]triazine Derivatives. Molecules, 2001, 6(6), 519-527.
[http://dx.doi.org/10.3390/60600519]
[45]
Bedair, A.H.; El-Hadd, A.N.; Abd El-Latif, S.M.; Fakery, H.A.; El-agrody, M.A. 4-Hydroxycoumarin in heterocyclic synthesis: Part III. Synthesis of some new pyrano[2,3-d]pyrimidine, 2-substituted[1,2,4]triazolo[1,5-c]pyrimidine and pyrimido[1,6-b][1,2,4]triazine derivatives. IL Farmaco, 2000, 55, 708-714.
[http://dx.doi.org/10.1016/S0014-827X(00)00097-5] [PMID: 11204946]
[46]
El-Agrody, M.A.; El-Hakim, H.M.; Abd El-Latif, S.M.; Fakery, H.A.; El-Sayed, M.S.F.; El-Ghareab, K.A. Synthesis of pyrano[2,3-d]pyrimidine and pyrano[3,2-e][1,2,4]triazolo[2,3-c]pyrimidine derivatives with promising antibacterial activities. Acta Pharm., 2000, 50, 111-120.
[47]
Abd El-Wahab, A.H.F. Synthesis, reactions and evaluation of the antimicrobial activity of some 4-(p-Halophenyl)-4H-naphthopyran, pyranopyrimidine and pyranotriazolopyrimidine derivatives. Pharmaceuticals, 2012, 5(7), 745-757.
[http://dx.doi.org/10.3390/ph5070745] [PMID: 24281710]
[48]
Bedair, A.H.; Emam, H.A.; El-Hady, N.A.; Ahmed, K.A.R.; El-Agrody, A.M. Synthesis and antimicrobial activities of novel naphtho[2,1-b]pyran, pyrano[2,3-d]pyrimidine and pyrano[3,2-e][1,2,4]triazolo[2,3-c]-pyrimidine derivatives. Farmaco, 2001, 56(12), 965-973.
[http://dx.doi.org/10.1016/S0014-827X(01)01168-5] [PMID: 11829118]
[49]
Khafagy, M.M.; Abd El-Wahab, A.H.F.; Eid, F.A.; El-Agrody, A.M. Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities. Farmaco, 2002, 57(9), 715-722.
[http://dx.doi.org/10.1016/S0014-827X(02)01263-6] [PMID: 12385521]
[50]
Radini, I.A.; Abd El-Wahab, A.H.F. Heteroaromatization with 4-phenyldiazenyl-1-naphthol. Part I: Synthesis of some new naphthopyrans and naphthopyranopyrimidines. Eur. J. Chem., 2016, 7(2), 230-237.
[http://dx.doi.org/10.5155/eurjchem.7.2.230-237.1432]
[51]
Ashraf, H.F.A.; Mosa, H.M.K.; Ali, H.H.A.; Mohammad, Y.M.A. Synthesis, antimicrobial, and antitumor activity of some new chromene compounds. Indian J. Heterocycl. Chem., 2020, 30, 369-379.
[52]
El-Wahab, A.H.F.A.; Mohamed, H.M.; El-Agrody, A.M.; El-Nassag, M.A.; Bedair, A.H. Synthesis and biological screening of 4-benzyl-2H-phthalazine deriva-tives. Pharmaceuticals (Basel), 2011, 4(8), 1158-1170.
[http://dx.doi.org/10.3390/ph4081158]
[53]
Mohamed, H.M. EL-Wahab, A.H.F.A.; EL-Agrody, A.M.; Bedair, A.H.; Eid, F.A.; Khafagy, M.M.; Abd-EL-Rehem, K.A. Synthesis and characterization of new diiodocoumarin derivatives with promising antimicrobial activities. Beilstein J. Org. Chem., 2011, 7(1), 1688-1696.
[http://dx.doi.org/10.3762/bjoc.7.199] [PMID: 22238548]
[54]
Kuete, V.; Krusche, B.; Youns, M.; Voukeng, I.; Fankam, A.G.; Tankeo, S.; Lacmata, S.; Efferth, T. Cytotoxicity of some Cameroonian spices and selected medicinal plant extracts. J. Ethnopharmacol., 2011, 134(3), 803-812.
[http://dx.doi.org/10.1016/j.jep.2011.01.035] [PMID: 21291988]
[55]
Youns, M.; Fu, Y.J.; Zu, Y.G.; Kramer, A.; Konkimalla, V.B.; Radlwimmer, B.; Sültmann, H.; Efferth, T. Sensitivity and resistance towards isoliquiritigenin, doxorubicin and methotrexate in T cell acute lymphoblastic leukaemia cell lines by pharmacogenomics. Naunyn Schmiedebergs Arch. Pharmacol., 2010, 382(3), 221-234.
[http://dx.doi.org/10.1007/s00210-010-0541-6] [PMID: 20668838]
[56]
Zhang, Y.; Zhang, T.; Tu, S.; Zhang, Z.; Meng, F. Identification of novel Src inhibitors: Pharmacophore-based virtual screening, molecular docking and molecular dynamics simulations. Molecules, 2020, 25(18), 4094.
[http://dx.doi.org/10.3390/molecules25184094] [PMID: 32911607]
[57]
Corbeil, C.R.; Williams, C.I.; Labute, P. Variability in docking success rates due to dataset preparation. J. Comput. Aided Mol. Des., 2012, 26(6), 775-786.
[http://dx.doi.org/10.1007/s10822-012-9570-1] [PMID: 22566074]
[58]
Morris, G.M.; Lim-Wilby, M. Molecular Modeling of Proteins; Springer, 2008, pp. 365-382.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy