Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Identification of Diagnosis and Typological Characteristics Associated with Ferroptosis for Ulcerative Colitis via Bioinformatics and Machine Learning

Author(s): Weihao Wang, Xujiao Song, Shanshan Ding and Hao Ma*

Volume 24, Issue 8, 2024

Published on: 10 November, 2023

Page: [946 - 957] Pages: 12

DOI: 10.2174/0118715303263609231101074056

Price: $65

Abstract

Objective: To investigate and validate ferroptosis genes (FRGs) in ulcerative colitis (UC) for diagnostic, subtype, and biological agent reactivity, with the goal of providing a foundation for the identification of novel therapeutic targets and the rational use of infliximab in clinical practice.

Methods: UC datasets and FRGs were selected from the Gene Expression Omnibus (GEO) and FerrDb databases. WGCNA was used to identify characteristic genes of UC. LASSO and SVM models were used to discover key FRGs in UC. A nomogram was constructed for diagnosing UC using logistic regression (LR), We performed internal and external validation for the model. Furthermore, we constructed a hub-gene-signature prediction model for the effectiveness of infliximab in treating UC and deployed it on the website. Finally, the hub gene-drug interaction networks were constructed.

Results: Nineteen ferroptosis-related genes associated with UC were identified through bioinformatics analysis. FTH1 and GPX4 were two of the down-regulated genes.The seventeen upregulated genes consisted of DUOX1, DUOX2, SOCS1, LPIN1, QSOX1, TRIM21, IDO1, SLC7A11, MUC1, HSPA5, SCD, ACSL3, NOS2, PARP9, PARP14, LCN2, and TRIB2. Five hub genes, including LCN2, QSOX1, MUC1, IDO1, and TRIB2, were acquried via machine learning. The mean auc of internal validation was 0.964 and 0.965 respectively, after using cross-validation and bootstrap in the training set based on the 5 hub-gene diagnostic models. In the external validation set, the AUC reached 0.976 and 0.858. RF model performs best in predicting infliximab effectiveness. In addition, we identified two ferroptosis subtypes. Cluster A mostly overlaps with the high-risk score group, with a hyperinflammatory phenotype.

Conclusions: This research indicated that five hub genes related to ferroptosis might be potential markers in diagnosing and predicting infliximab sensitivity for UC.

Graphical Abstract

[1]
Krugliak Cleveland, N.; Torres, J.; Rubin, D.T. What does disease progression look like in ulcerative colitis, and how might it be prevented? Gastroenterology, 2022, 162(5), 1396-1408.
[http://dx.doi.org/10.1053/j.gastro.2022.01.023] [PMID: 35101421]
[2]
Segal, J.P.; LeBlanc, J.F.; Hart, A.L. Ulcerative colitis: An update. Clin. Med., 2021, 21(2), 135-139.
[http://dx.doi.org/10.7861/clinmed.2021-0080] [PMID: 33762374]
[3]
Buie, MJ; Quan, J; Windsor, JW Global Hospitalization Trends for Crohn's Disease and ulcerative colitis in the 21st Century: A systematic review with temporal analyses. Clin Gastroenterol Hepatol., 2022, S1542-3565(22), 00670-X.
[http://dx.doi.org/10.1016/j.cgh.2022.06.030]
[4]
Agrawal, M.; Jess, T. Implications of the changing epidemiology of inflammatory bowel disease in a changing world. United European Gastroenterol. J., 2022, 10(10), 1113-1120.
[http://dx.doi.org/10.1002/ueg2.12317] [PMID: 36251359]
[5]
Wei, S.C.; Sollano, J.; Hui, Y.T.; Yu, W.; Santos Estrella, P.V.; Llamado, L.J.Q.; Koram, N. Epidemiology, burden of disease, and unmet needs in the treatment of ulcerative colitis in Asia. Expert Rev. Gastroenterol. Hepatol., 2021, 15(3), 275-289.
[http://dx.doi.org/10.1080/17474124.2021.1840976] [PMID: 33107344]
[6]
Kayal, M.; Shah, S. Ulcerative colitis: Current and emerging treatment strategies. J. Clin. Med., 2019, 9(1), 94.
[http://dx.doi.org/10.3390/jcm9010094] [PMID: 31905945]
[7]
Ferretti, F.; Cannatelli, R.; Monico, M.C. An update on current pharmacotherapeutic options for the treatment of ulcerative colitis. J. Clin. Med., 2022, 11(9), 2302.
[8]
Huang, J.; Zhang, J.; Ma, J.; Ma, J.; Liu, J.; Wang, F.; Tang, X. Inhibiting ferroptosis: A novel approach for ulcerative colitis therapeutics. Oxid. Med. Cell. Longev., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/9678625] [PMID: 35378823]
[9]
Xu, S.; He, Y.; Lin, L.; Chen, P.; Chen, M.; Zhang, S. The emerging role of ferroptosis in intestinal disease. Cell Death Dis., 2021, 12(4), 289.
[http://dx.doi.org/10.1038/s41419-021-03559-1] [PMID: 33731703]
[10]
Carrier, J.C.; Aghdassi, E.; Jeejeebhoy, K.; Allard, J.P. Exacerbation of dextran sulfate sodium-induced colitis by dietary iron supplementation: role of NF-κB. Int. J. Colorectal Dis., 2006, 21(4), 381-387.
[http://dx.doi.org/10.1007/s00384-005-0011-7] [PMID: 16133010]
[11]
Kobayashi, Y.; Ohfuji, S.; Kondo, K.; Fukushima, W.; Sasaki, S.; Kamata, N.; Yamagami, H.; Fujiwara, Y.; Suzuki, Y.; Hirota, Y. Association between dietary iron and zinc intake and development of ulcerative colitis: A case–control study in Japan. J. Gastroenterol. Hepatol., 2019, 34(10), 1703-1710.
[http://dx.doi.org/10.1111/jgh.14642] [PMID: 30821862]
[12]
Wu, Y.; Liu, X.; Li, G. Integrated bioinformatics and network pharmacology to identify the therapeutic target and molecular mechanisms of Huangqin decoction on ulcerative Colitis. Sci. Rep., 2022, 12(1), 159.
[http://dx.doi.org/10.1038/s41598-021-03980-8] [PMID: 34997010]
[13]
Pan, Z.; Lin, H.; Fu, Y.; Zeng, F.; Gu, F.; Niu, G.; Fang, J.; Gu, B. Identification of gene signatures associated with ulcerative colitis and the association with immune infiltrates in colon cancer. Front. Immunol., 2023, 14, 1086898.
[http://dx.doi.org/10.3389/fimmu.2023.1086898] [PMID: 36742294]
[14]
Duan, Z.; Wang, Y.; Lu, Z.; Tian, L.; Xia, Z.Q.; Wang, K.; Chen, T.; Wang, R.; Feng, Z.; Shi, G.; Xu, X.; Bu, F.; Ding, Y.; Jiang, F.; Zhou, J.; Wang, Q.; Chen, Y. Wumei Wan attenuates angiogenesis and inflammation by modulating RAGE signaling pathway in IBD: Network pharmacology analysis and experimental evidence. Phytomedicine, 2023, 111, 154658.
[http://dx.doi.org/10.1016/j.phymed.2023.154658] [PMID: 36706698]
[15]
Zhang, C.; Ma, Z.; Nan, X.; Wang, W.; Zeng, X.; Chen, J.; Cai, Z.; Wang, J. Comprehensive analysis to identify the influences of SARS-CoV-2 infections to inflammatory bowel disease. Front. Immunol., 2023, 14, 1024041.
[http://dx.doi.org/10.3389/fimmu.2023.1024041] [PMID: 36817436]
[16]
Qiu, P.; Liu, L.; Fang, J.; Zhang, M.; Wang, H.; Peng, Y.; Chen, M.; Liu, J.; Wang, F.; Zhao, Q. Identification of pharmacological autophagy regulators of active ulcerative colitis. Front. Pharmacol., 2021, 12, 769718.
[http://dx.doi.org/10.3389/fphar.2021.769718] [PMID: 34925026]
[17]
Chen, Q.; Bei, S.; Zhang, Z.; Wang, X.; Zhu, Y. Identification of diagnostic biomarks and immune cell infiltration in ulcerative colitis. Sci. Rep., 2023, 13(1), 6081.
[http://dx.doi.org/10.1038/s41598-023-33388-5] [PMID: 37055577]
[18]
Chen, Y. Identification and validation of cuproptosis-related prognostic signature and associated regulatory axis in uterine corpus endometrial carcinoma. Front. Genet., 2022, 13, 912037.
[http://dx.doi.org/10.3389/fgene.2022.912037] [PMID: 35937995]
[19]
Zhou, S.Z.; Shen, L.; Fu, Z.B.; Li, H.; Pan, Y.L.; Yu, R.Z. Exploring the common diagnostic gene KCNJ15 and shared pathway of ankylosing spondylitis and ulcerative colitis through integrated bioinformatics. Front. Physiol., 2023, 14, 1146538.
[http://dx.doi.org/10.3389/fphys.2023.1146538] [PMID: 37215183]
[20]
Zhang, D.; Yan, P.; Han, T.; Cheng, X.; Li, J. Identification of key genes and biological processes contributing to colitis associated dysplasia in ulcerative colitis. PeerJ, 2021, 9, e11321.
[http://dx.doi.org/10.7717/peerj.11321] [PMID: 33987007]
[21]
Zhang, J.; Wu, X.; Wei, S.; Liu, C.; Wang, X.; Dong, W. Identified potential biomarkers may predict primary nonresponse to infliximab in patients with ulcerative colitis. Autoimmunity, 2022, 55(8), 538-548.
[http://dx.doi.org/10.1080/08916934.2022.2103803] [PMID: 35876170]
[22]
Giannos, P.; Triantafyllidis, K.K.; Giannos, G.; Kechagias, K.S. SPP1 in infliximab resistant ulcerative colitis and associated colorectal cancer: An analysis of differentially expressed genes. Eur. J. Gastroenterol. Hepatol., 2022, 34(6), 598-606.
[http://dx.doi.org/10.1097/MEG.0000000000002349] [PMID: 35102110]
[23]
Xu, M.; Kong, Y.; Chen, N.; Peng, W.; Zi, R.; Jiang, M.; Zhu, J.; Wang, Y.; Yue, J.; Lv, J.; Zeng, Y.; Chin, Y.E. Identification of immune-related gene signature and prediction of CeRNA network in active ulcerative colitis. Front. Immunol., 2022, 13, 855645.
[http://dx.doi.org/10.3389/fimmu.2022.855645] [PMID: 35392084]
[24]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[25]
Zhou, N.; Yuan, X.; Du, Q.; Zhang, Z.; Shi, X.; Bao, J.; Ning, Y.; Peng, L. FerrDb V2: Update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Res., 2023, 51(D1), D571-D582.
[http://dx.doi.org/10.1093/nar/gkac935] [PMID: 36305834]
[26]
Liu, T.T.; Li, R.; Huo, C.; Li, J.P.; Yao, J.; Ji, X.; Qu, Y.Q. Identification of CDK2-related immune forecast model and ceRNA in lung adenocarcinoma, a pan-cancer analysis. Front. Cell Dev. Biol., 2021, 9, 682002.
[http://dx.doi.org/10.3389/fcell.2021.682002] [PMID: 34409029]
[27]
Lee, C.; Kim, H. Machine learning-based predictive modeling of depression in hypertensive populations. PLoS One, 2022, 17(7), e0272330.
[http://dx.doi.org/10.1371/journal.pone.0272330] [PMID: 35905087]
[28]
Qiu, C.; Shi, W.; Wu, H.; Zou, S.; Li, J.; Wang, D.; Liu, G.; Song, Z.; Xu, X.; Hu, J.; Geng, H. Identification of molecular subtypes and a prognostic signature based on inflammation-related genes in colon adenocarcinoma. Front. Immunol., 2021, 12, 769685.
[http://dx.doi.org/10.3389/fimmu.2021.769685] [PMID: 35003085]
[29]
Mehandru, S.; Colombel, J.F. The intestinal barrier, an arbitrator turned provocateur in IBD. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(2), 83-84.
[http://dx.doi.org/10.1038/s41575-020-00399-w] [PMID: 33318680]
[30]
Goetz, D.H.; Holmes, M.A.; Borregaard, N.; Bluhm, M.E.; Raymond, K.N.; Strong, R.K. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell, 2002, 10(5), 1033-1043.
[http://dx.doi.org/10.1016/S1097-2765(02)00708-6] [PMID: 12453412]
[31]
Kurzrock, R.; Hickish, T.; Wyrwicz, L.; Saunders, M.; Wu, Q.; Stecher, M.; Mohanty, P.; Dinarello, C.A.; Simard, J. Interleukin-1 receptor antagonist levels predict favorable outcome after bermekimab, a first-in-class true human interleukin-1α antibody, in a phase III randomized study of advanced colorectal cancer. OncoImmunology, 2019, 8(3), 1551651.
[http://dx.doi.org/10.1080/2162402X.2018.1551651] [PMID: 30723583]
[32]
Moniruzzaman, M.; Wang, R.; Jeet, V.; McGuckin, M.A.; Hasnain, S.Z. Interleukin (IL)-22 from IL-20 subfamily of cytokines induces colonic epithelial cell proliferation predominantly through ERK1/2 pathway. Int. J. Mol. Sci., 2019, 20(14), 3468.
[http://dx.doi.org/10.3390/ijms20143468] [PMID: 31311100]
[33]
Thorsvik, S.; van Beelen Granlund, A.; Svendsen, T.D.; Bakke, I.; Røyset, E.S.; Flo, T.H.; Damås, J.K.; Østvik, A.E.; Bruland, T.; Sandvik, A.K. Ulcer‐associated cell lineage expresses genes involved in regeneration and is hallmarked by high neutrophil gelatinase‐associated lipocalin (NGAL) levels. J. Pathol., 2019, 248(3), 316-325.
[http://dx.doi.org/10.1002/path.5258] [PMID: 30746716]
[34]
Zollner, A.; Schmiderer, A.; Reider, S.J.; Oberhuber, G.; Pfister, A.; Texler, B.; Watschinger, C.; Koch, R.; Effenberger, M.; Raine, T.; Tilg, H.; Moschen, A.R. Faecal biomarkers in inflammatory bowel diseases: Calprotectin versus lipocalin-2—a comparative study. J. Crohn’s Colitis, 2021, 15(1), 43-54.
[http://dx.doi.org/10.1093/ecco-jcc/jjaa124] [PMID: 32556317]
[35]
Kou, F.; Cheng, Y.; Shi, L.; Liu, J.; Liu, Y.; Shi, R.; Peng, G.; Li, J. LCN2 as a potential diagnostic biomarker for ulcerative colitis associated carcinogenesis related to disease duration. Front. Oncol., 2022, 11, 793760.
[http://dx.doi.org/10.3389/fonc.2021.793760] [PMID: 35111677]
[36]
Chaudhary, N.; Choudhary, B.S.; Shah, S.G.; Khapare, N.; Dwivedi, N.; Gaikwad, A.; Joshi, N.; Raichanna, J.; Basu, S.; Gurjar, M.; P K, S.; Saklani, A.; Gera, P.; Ramadwar, M.; Patil, P.; Thorat, R.; Gota, V.; Dhar, S.K.; Gupta, S.; Das, M.; Dalal, S.N. Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int. J. Cancer, 2021, 149(7), 1495-1511.
[http://dx.doi.org/10.1002/ijc.33711] [PMID: 34146401]
[37]
Lake, D.F.; Faigel, D.O. The emerging role of QSOX1 in cancer. Antioxid. Redox Signal., 2014, 21(3), 485-496.
[http://dx.doi.org/10.1089/ars.2013.5572] [PMID: 24359107]
[38]
Ganig, N.; Baenke, F.; Thepkaysone, M.L.; Lin, K.; Rao, V.S.; Wong, F.C.; Polster, H.; Schneider, M.; Helm, D.; Pecqueux, M.; Seifert, A.M.; Seifert, L.; Weitz, J.; Rahbari, N.N.; Kahlert, C. Proteomic analyses of fibroblast- and serum-derived exosomes identify QSOX1 as a marker for non-invasive detection of colorectal cancer. Cancers, 2021, 13(6), 1351.
[http://dx.doi.org/10.3390/cancers13061351] [PMID: 33802764]
[39]
Vancamelbeke, M.; Vanuytsel, T.; Farré, R.; Verstockt, S.; Ferrante, M.; Van Assche, G.; Rutgeerts, P.; Schuit, F.; Vermeire, S.; Arijs, I.; Cleynen, I. Genetic and transcriptomic bases of intestinal epithelial barrier dysfunction in inflammatory bowel disease. Inflamm. Bowel Dis., 2017, 23(10), 1718-1729.
[http://dx.doi.org/10.1097/MIB.0000000000001246] [PMID: 28885228]
[40]
Hasegawa, M.; Takahashi, H.; Rajabi, H.; Alam, M.; Suzuki, Y.; Yin, L.; Tagde, A.; Maeda, T.; Hiraki, M.; Sukhatme, V.P.; Kufe, D. Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget, 2016, 7(11), 11756-11769.
[http://dx.doi.org/10.18632/oncotarget.7598] [PMID: 26930718]
[41]
Cui, D.; Chen, C.; Yuan, W.; Yang, Y.; Han, L. Integrative analysis of ferroptosis-related genes in ulcerative colitis. J. Int. Med. Res., 2021, 49(9)
[http://dx.doi.org/10.1177/03000605211042975] [PMID: 34510961]
[42]
Qing, L.; Li, Q.; Dong, Z. MUC1: An emerging target in cancer treatment and diagnosis. Bull. Cancer, 2022, 109(11), 1202-1216.
[http://dx.doi.org/10.1016/j.bulcan.2022.08.001] [PMID: 36184332]
[43]
Sofia, M.A.; Ciorba, M.A.; Meckel, K.; Lim, C.K.; Guillemin, G.J.; Weber, C.R.; Bissonnette, M.; Pekow, J.R. Tryptophan metabolism through the kynurenine pathway is associated with endoscopic inflammation in ulcerative colitis. Inflamm. Bowel Dis., 2018, 24(7), 1471-1480.
[http://dx.doi.org/10.1093/ibd/izy103] [PMID: 29796641]
[44]
Ye, Y.; Zhang, X.; Su, D.; Ren, Y.; Cheng, F.; Yao, Y.; Shi, G.; Ji, Y.; Chen, S.; Shi, P.; Dai, L.; Su, X.; Deng, H. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn’s colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2,3-dioxygenase-1 signaling. Stem Cell Res. Ther., 2022, 13(1), 465.
[http://dx.doi.org/10.1186/s13287-022-03157-8] [PMID: 36076306]
[45]
Mayoral-Varo, V.; Jiménez, L.; Link, W. The Critical Role of TRIB2 in cancer and therapy resistance. Cancers, 2021, 13(11), 2701.
[http://dx.doi.org/10.3390/cancers13112701] [PMID: 34070799]
[46]
Hou, Z.; Guo, K.; Sun, X.; Hu, F.; Chen, Q.; Luo, X.; Wang, G.; Hu, J.; Sun, L. TRIB2 functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/p21 signaling. Mol. Cancer, 2018, 17(1), 172.
[http://dx.doi.org/10.1186/s12943-018-0922-x] [PMID: 30541550]
[47]
Wei, S.C.; Rosenberg, I.M.; Cao, Z.; Huett, A.S.; Xavier, R.J.; Podolsky, D.K. Tribbles 2 (Trib2) is a novel regulator of toll-like receptor 5 signaling. Inflamm. Bowel Dis., 2012, 18(5), 877-888.
[http://dx.doi.org/10.1002/ibd.22883] [PMID: 22271508]
[48]
Feagan, B.G.; Rutgeerts, P.; Sands, B.E.; Hanauer, S.; Colombel, J.F.; Sandborn, W.J.; Van Assche, G.; Axler, J.; Kim, H.J.; Danese, S.; Fox, I.; Milch, C.; Sankoh, S.; Wyant, T.; Xu, J.; Parikh, A. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med., 2013, 369(8), 699-710.
[http://dx.doi.org/10.1056/NEJMoa1215734] [PMID: 23964932]
[49]
Sandborn, W.J.; Rutgeerts, P.; Feagan, B.G.; Reinisch, W.; Olson, A.; Johanns, J.; Lu, J.; Horgan, K.; Rachmilewitz, D.; Hanauer, S.B.; Lichtenstein, G.R.; de Villiers, W.J.S.; Present, D.; Sands, B.E.; Colombel, J.F. Colectomy rate comparison after treatment of ulcerative colitis with placebo or infliximab. Gastroenterology, 2009, 137(4), 1250-1260.
[http://dx.doi.org/10.1053/j.gastro.2009.06.061] [PMID: 19596014]
[50]
Favale, A.; Onali, S.; Caprioli, F.; Pugliese, D.; Armuzzi, A.; Macaluso, F.S.; Orlando, A.; Viola, A.; Fries, W.; Rispo, A.; Castiglione, F.; Mocci, G.; Chicco, F.; Usai, P.; Calabrese, E.; Biancone, L.; Monteleone, G.; Fantini, M.C. Comparative efficacy of vedolizumab and adalimumab in ulcerative colitis patients previously treated with infliximab. Inflamm. Bowel Dis., 2019, 25(11), 1805-1812.
[http://dx.doi.org/10.1093/ibd/izz057] [PMID: 30931477]
[51]
Welty, M; Mesana, L; Padhiar, A Efficacy of ustekinumab vs. advanced therapies for the treatment of moderately to severely active ulcerative colitis: A systematic review and network meta-analysis. Curr Med Res Opin., 2020, 36(4), 595-606.
[52]
Mateer, S.W.; Mathe, A.; Bruce, J.; Liu, G.; Maltby, S.; Fricker, M.; Goggins, B.J.; Tay, H.L.; Marks, E.; Burns, G.; Kim, R.Y.; Minahan, K.; Walker, M.M.; Callister, R.C.; Foster, P.S.; Horvat, J.C.; Hansbro, P.M.; Keely, S. IL-6 drives neutrophil-mediated pulmonary inflammation associated with bacteremia in murine models of colitis. Am. J. Pathol., 2018, 188(7), 1625-1639.
[http://dx.doi.org/10.1016/j.ajpath.2018.03.016] [PMID: 29684360]
[53]
Dahlén, R.; Magnusson, M.K.; Bajor, A.; Lasson, A.; Ung, K.A.; Strid, H.; Öhman, L. Global mucosal and serum cytokine profile in patients with ulcerative colitis undergoing anti-TNF therapy. Scand. J. Gastroenterol., 2015, 50(9), 1118-1126.
[http://dx.doi.org/10.3109/00365521.2015.1031167] [PMID: 25877762]
[54]
Lacruz-Guzmán, D.; Torres-Moreno, D.; Pedrero, F.; Romero-Cara, P.; García-Tercero, I.; Trujillo-Santos, J.; Conesa-Zamora, P. Influence of polymorphisms and TNF and IL1β serum concentration on the infliximab response in Crohn’s disease and ulcerative colitis. Eur. J. Clin. Pharmacol., 2013, 69(3), 431-438.
[http://dx.doi.org/10.1007/s00228-012-1389-0] [PMID: 22960943]
[55]
Cheng, C.; Hua, J.; Tan, J.; Qian, W.; Zhang, L.; Hou, X. Identification of differentially expressed genes, associated functional terms pathways, and candidate diagnostic biomarkers in inflammatory bowel diseases by bioinformatics analysis. Exp. Ther. Med., 2019, 18(1), 278-288.
[http://dx.doi.org/10.3892/etm.2019.7541] [PMID: 31258663]
[56]
Cao, F.; Cheng, Y.S.; Yu, L.; Xu, Y.Y.; Wang, Y. Bioinformatics analysis of differentially expressed genes and protein–protein interaction networks associated with functional pathways in ulcerative colitis. Med. Sci. Monit., 2021, 27, e927917.
[http://dx.doi.org/10.12659/MSM.927917] [PMID: 33462173]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy