Generic placeholder image

International Journal of Sensors, Wireless Communications and Control

Editor-in-Chief

ISSN (Print): 2210-3279
ISSN (Online): 2210-3287

Review Article

Future Intelligent Communication with 6G Technology: A Review

Author(s): Sharad Jain, Ashwani Kumar Yadav, Raj Kumar, Vaishali Yadav* and Dilbag Singh

Volume 13, Issue 6, 2023

Published on: 03 November, 2023

Page: [361 - 384] Pages: 24

DOI: 10.2174/0122103279270825231023095946

Price: $65

Abstract

With the exponentially increasing demand for wireless technology in the last few years, fifth-generation (5G) technology is in service at many places and soon will be deployed worldwide. But it might be complicated to address the escalating need for Internet of Things (IoT) connections using the conventional capabilities henceforward, so the proposal of a sixth generation (6G) communication network was introduced to upgrade the ongoing 5G networks and support to develop smart services additionally. The unexpected Internet of Everything applications having incredibly broad and complex needs are projected to be supported by 6G. With this, researchers in academics and industries have started research and development for 6G wireless network. 6G with artificial intelligence support is planned to be introduced, with new dimensions between 2027 and 2030. The future of 6G technology is bright and vibrant; however, there are yet several obstacles in the way of implementing 6G networks like capacity of system, reliability, security, latency, data rate, high energy efficiency, ever-present intelligent connectivity, and recent theories. In this paper, various 6Genabled technologies are discussed like artificial intelligence, terahertz communications, wireless optical, free-space optical, backhaul network, and block chain along with associated challenges. We showcase the foundation of 6G in detail, the performance of the 6G network, and key enabling technologies that can upgrade the future of the smart world. The bibliometric analysis of recent research on 6G networks and related applications is also achieved. Finally, we illustrate key open research challenges and possible future directions toward the realization of 6G-enabled technologies.

Graphical Abstract

[1]
Nawaz SJ, Sharma SK, Wyne S, Patwary MN, Asaduzzaman M. Quantum machine learning for 6G communication networks: Stateof-the-art and vision for the future. IEEE Access 2019; 7: 46317-50.
[http://dx.doi.org/10.1109/ACCESS.2019.2909490]
[2]
Giordani M, Polese M, Mezzavilla M, Rangan S, Zorzi M. Toward 6G networks: Use cases and technologies. IEEE Commun Mag 2020; 58(3): 55-61.
[http://dx.doi.org/10.1109/MCOM.001.1900411]
[3]
Mumtaz S, Jornet JM, Aulin J, Gerstacker WH, Dong X, Ai B. Terahertz communication for vehicular networks. IEEE Transactions on Vehicular Technology 2017; 66(7): 5617-25.
[4]
IMT Traffic estimates for the years 2020 to 2030.
[5]
Tang F, Mao B, Kawamoto Y, Kato N. Survey on machine learning for intelligent end-to-end communication toward 6G: From network access, routing to traffic control and streaming adaption. IEEE Commun Surv Tutor 2021; 23(3): 1578-98.
[http://dx.doi.org/10.1109/COMST.2021.3073009]
[6]
Saad W, Bennis M, Chen M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Netw 2020; 34(3): 134-42.
[http://dx.doi.org/10.1109/MNET.001.1900287]
[7]
Dang S, Amin O, Shihada B, Alouini MS. What should 6G be? Nat Electron 2020; 3(1): 20-9.
[http://dx.doi.org/10.1038/s41928-019-0355-6]
[8]
Chowdhury MZ, Shahjalal M, Ahmed S, Jang YM. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open J Commun Soc 2020; 1: 957-75.
[http://dx.doi.org/10.1109/OJCOMS.2020.3010270]
[9]
Chen S, Liang Y-C, Sun S, Kang S, Cheng W, Peng M. Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wirel Commun 2020; 27(2): 218-28.
[http://dx.doi.org/10.1109/MWC.001.1900333]
[10]
Zhang L, Liang YC, Niyato D. 6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence. China Commun 2019; 16(8): 1-14.
[http://dx.doi.org/10.23919/JCC.2019.08.001]
[11]
Tariq F, Khandaker MRA, Wong K-K, Imran MA, Bennis M, Debbah M. A speculative study on 6G. IEEE Wirel Commun 2020; 27(4): 118-25.
[http://dx.doi.org/10.1109/MWC.001.1900488]
[12]
Lu Y, Zheng X. 6G: A survey on technologies, scenarios, challenges, and the related issues. J Ind Inf Integr 2020; 19: 100158.
[http://dx.doi.org/10.1016/j.jii.2020.100158]
[13]
Khan LU, Yaqoob I, Imran M, Han Z, Hong CS. 6G wireless systems: A vision, architectural elements, and future directions. IEEE Access 2020; 8: 147029-44.
[http://dx.doi.org/10.1109/ACCESS.2020.3015289]
[14]
Huang T, Yang W, Wu J, Ma J, Zhang X, Zhang D. A survey on green 6G network: Architecture and technologies. IEEE Access 2019; 7: 175758-68.
[http://dx.doi.org/10.1109/ACCESS.2019.2957648]
[15]
Dogra A, Jha RK, Jain S. A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies. IEEE Access 2021; 9: 67512-47.
[http://dx.doi.org/10.1109/ACCESS.2020.3031234]
[16]
Calvanese Strinati E, Barbarossa S, Gonzalez-Jimenez JL, et al. 6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication. IEEE Veh Technol Mag 2019; 14(3): 42-50.
[http://dx.doi.org/10.1109/MVT.2019.2921162]
[17]
De Lima C, Belot D, Berkvens R, et al. Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges. IEEE Access 2021; 9: 26902-25.
[http://dx.doi.org/10.1109/ACCESS.2021.3053486]
[18]
Zhou Y, Liu L, Wang L, et al. Service-aware 6G: An intelligent and open network based on the convergence of communication, computing and caching. Digit Commun Netw 2020; 6(3): 253-60.
[http://dx.doi.org/10.1016/j.dcan.2020.05.003]
[19]
Alsharif MH. Sixth generation (6G) wireless networks: Vision, research activities, challenges and potential solutions. Symmetry 2020; 12(4): 676.
[http://dx.doi.org/10.3390/sym12040676]
[20]
Fiati P. The Case of 6G and Beyond. Academia 2021.
[21]
Shafi M, Molisch AF, Smith PJ, et al. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J Sel Areas Comm 2017; 35(6): 1201-21.
[http://dx.doi.org/10.1109/JSAC.2017.2692307]
[22]
Zhang D, Zhou Z, Mumtaz S, Rodriguez J, Sato T. One integrated energy efficiency proposal for 5G IoT communications. IEEE Internet Things J 2016; 3(6): 1346-54.
[http://dx.doi.org/10.1109/JIOT.2016.2599852]
[23]
Jaber M, Imran MA, Tafazolli R, Tukmanov A. 5G backhaul challenges and emerging research directions: A survey. IEEE Access 2016; 4: 1743-66.
[http://dx.doi.org/10.1109/ACCESS.2016.2556011]
[24]
Shafin R, Liu L, Chandrasekhar V, Chen H, Reed J, Zhang JC. Artificial intelligence-enabled cellular networks: A critical path to beyond-5G and 6G. IEEE Wirel Commun 2020; 27(2): 212-7.
[http://dx.doi.org/10.1109/MWC.001.1900323]
[25]
Božanić M, Sinha S. 6G networks: Fusion of communications, sensing, imaging, localization and other verticals. In: Mobile Communication Networks: 5G and a Vision of 6G. Cham: Springer 2021; p. 305-35.
[http://dx.doi.org/10.1007/978-3-030-69273-5_10]
[26]
Zhang Y, Di B, Wang P, Lin J, Song L. HetMEC: Heterogeneous multi-layer mobile edge computing in the 6 G era. IEEE Trans Vehicular Technol 2020; 69(4): 4388-400.
[http://dx.doi.org/10.1109/TVT.2020.2975559]
[27]
Letaief KB, Chen W, Shi Y, Zhang J, Zhang YJA. The roadmap to 6G: AI empowered wireless networks. IEEE Commun Mag 2019; 57(8): 84-90.
[http://dx.doi.org/10.1109/MCOM.2019.1900271]
[28]
Yang P, Xiao Y, Xiao M, Li S. 6G wireless communications: Vision and potential techniques. IEEE Netw 2019; 33(4): 70-5.
[http://dx.doi.org/10.1109/MNET.2019.1800418]
[29]
Stoica RA, de Abreu GTF. 6G: the wireless communications network for collaborative and AI applications. arXiv:190403413 2019.
[30]
Lovén L. EdgeAI: A vision for distributed, edge-native artificial intelligence in future 6G networks. The 1st 6G wireless summit 2019; 1-2.
[31]
Clazzer F. From 5G to 6G: Has the time for modern random access come? arXiv:190303063 2019.
[32]
Mahmood H. Six Key Enablers for Machine Type Communication in 6G. arXiv e-prints : arXiv-1903 2019.
[33]
Zhao J. A survey of intelligent reflecting surfaces (IRSs): Towards 6G wireless communication networks with massive MIMO 2.0. arXiv:190704789 2019.
[34]
Rappaport TS, Xing Y, Kanhere O, et al. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 2019; 7: 78729-57.
[http://dx.doi.org/10.1109/ACCESS.2019.2921522]
[35]
Basar E, Di Renzo M, De Rosny J, Debbah M, Alouini M-S, Zhang R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019; 7: 116753-73.
[http://dx.doi.org/10.1109/ACCESS.2019.2935192]
[36]
Salehi M, Hossain E. On the effect of temporal correlation on joint success probability and distribution of number of interferers in mobile UAV networks. IEEE Wirel Commun Lett 2019; 8(6): 1621-5.
[http://dx.doi.org/10.1109/LWC.2019.2932435]
[37]
Xia Q, Jornet JM. Expedited neighbor discovery in directional terahertz communication networks enhanced by antenna side-lobe information. IEEE Trans Vehicular Technol 2019; 68(8): 7804-14.
[http://dx.doi.org/10.1109/TVT.2019.2924820]
[38]
Al-Eryani Y, Hossain E. The D-OMA method for massive multiple access in 6G: Performance, security, and challenges. IEEE Veh Technol Mag 2019; 14(3): 92-9.
[http://dx.doi.org/10.1109/MVT.2019.2919279]
[39]
Ankarali ZE, Peköz B, Arslan H. Flexible radio access beyond 5G: A future projection on waveform, numerology, and frame design principles. IEEE Access 2017; 5: 18295-309.
[http://dx.doi.org/10.1109/ACCESS.2017.2684783]
[40]
Huang X, Zhang JA, Liu RP, Guo YJ, Hanzo L. Airplane-aided integrated networking for 6G wireless: Will it work? IEEE Veh Technol Mag 2019; 14(3): 84-91.
[http://dx.doi.org/10.1109/MVT.2019.2921244]
[41]
Katz M, Matinmikko-Blue M, Latva-Aho M. 6Genesis flagship program: Building the bridges towards 6G-enabled wireless smart society and ecosystem. In 2018 IEEE 10th Latin-American Conference on Communications (LATINCOM). 1-9.
[42]
Elliott D, Keen W, Miao L. Recent advances in connected and automated vehicles. J Traffic Transp Eng 2019; 6: 109-31.
[43]
Zhang S, Xiang C, Xu S. 6G: Connecting everything by 1000 times price reduction. IEEE Open J Veh Technol 2020; 1: 107-15.
[http://dx.doi.org/10.1109/OJVT.2020.2980003]
[44]
Gui G, Liu M, Tang F, Kato N, Adachi F. 6G: Opening new horizons for integration of comfort, security, and intelligence. IEEE Wirel Commun 2020; 27(5): 126-32.
[http://dx.doi.org/10.1109/MWC.001.1900516]
[45]
Tomkos I, Klonidis D, Pikasis E, Theodoridis S. Toward the 6G network era: Opportunities and challenges. IT Prof 2020; 22(1): 34-8.
[http://dx.doi.org/10.1109/MITP.2019.2963491]
[46]
Yaacoub E, Alouini MS. A key 6G challenge and opportunity—Connecting the base of the pyramid: A survey on rural connectivity. Proc IEEE 2020; 108(4): 533-82.
[http://dx.doi.org/10.1109/JPROC.2020.2976703]
[47]
Mao B, Kawamoto Y, Kato N. AI-based joint optimization of QoS and security for 6G energy harvesting Internet of Things. IEEE Internet Things J 2020; 7(8): 7032-42.
[http://dx.doi.org/10.1109/JIOT.2020.2982417]
[48]
Sim MS, Lim YG, Park SH, Dai L, Chae CB. Deep learning-based mmWave beam selection for 5G NR/6G with sub-6 GHz channel information: Algorithms and prototype validation. IEEE Access 2020; 8: 51634-46.
[http://dx.doi.org/10.1109/ACCESS.2020.2980285]
[49]
Tang F, Kawamoto Y, Kato N, Liu J. Future intelligent and secure vehicular network toward 6G: Machine-learning approaches. Proc IEEE 2020; 108(2): 292-307.
[http://dx.doi.org/10.1109/JPROC.2019.2954595]
[50]
Li B, Fei Z, Zhang Y. UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet Things J 2019; 6(2): 2241-63.
[http://dx.doi.org/10.1109/JIOT.2018.2887086]
[51]
Shen X, Gao J, Wu W, et al. AI-assisted network-slicing based next-generation wireless networks. IEEE Open J Veh Technol 2020; 1: 45-66.
[http://dx.doi.org/10.1109/OJVT.2020.2965100]
[52]
Hong W, Jiang ZH, Yu C, et al. The role of millimeter-wave technologies in 5G/6G wireless communications. Ieee J Microw 2021; 1(1): 101-22.
[http://dx.doi.org/10.1109/JMW.2020.3035541]
[53]
Salleras X, Daza V. Sans: Self-sovereign authentication for network slices. Secur Commun Netw 2020; 2020: 1-8.
[http://dx.doi.org/10.1155/2020/8823573]
[54]
Yavari M, Safkhani M, Kumari S, Kumar S, Chen CM. An improved blockchain-based authentication protocol for iot network management. Secur Commun Netw 2020; 2020: 1-16.
[http://dx.doi.org/10.1155/2020/8836214]
[55]
Porambage P, Gur G, Osorio DPM, Liyanage M, Gurtov A, Ylianttila M. The roadmap to 6G security and privacy. IEEE Open J Commun Soc 2021; 2: 1094-122.
[http://dx.doi.org/10.1109/OJCOMS.2021.3078081]
[56]
Abdel Hakeem SA, Hussein HH, Kim H. Security requirements and challenges of 6G technologies and applications. Sensors (Basel) 2022; 22(5): 1969.
[http://dx.doi.org/10.3390/s22051969] [PMID: 35271113]
[57]
El Mettiti A, Oumsis M. A survey on 6G networks: Vision, requirements, architecture, technologies and challenges. Ing des Syst d’Information 2022; 27(1): 1-10.
[http://dx.doi.org/10.18280/isi.270101]
[58]
Alraih S, Shayea I, Behjati M, et al. Revolution or evolution? Technical requirements and considerations towards 6G mobile communications. Sensors 2022; 22(3): 762.
[http://dx.doi.org/10.3390/s22030762] [PMID: 35161509]
[59]
Banafaa M. 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities. Alex Eng J 2022.
[60]
Tinh BT, Nguyen LD, Kha HH, Duong TQ. Practical optimization and game theory for 6G ultra-dense networks: Overview and research challenges. IEEE Access 2022; 10: 13311-28.
[http://dx.doi.org/10.1109/ACCESS.2022.3146335]
[61]
Tomasz G. UML profile for messaging patterns in service-oriented architecture, microservices, and internet of things. Appl Sci 2022; 12(24): 12790.
[62]
Liao L. Secure and efficient message authentication scheme for 6G-enabled VANETs. Electronics 2022; 11(15): 2385.
[http://dx.doi.org/10.3390/electronics11152385]
[63]
Wild T, Braun V, Viswanathan H. Joint design of communication and sensing for beyond 5G and 6G systems. IEEE Access 2021; 9: 30845-57.
[http://dx.doi.org/10.1109/ACCESS.2021.3059488]
[64]
Jiang W, Han B, Habibi MA, Schotten HD. The road towards 6G: A comprehensive survey. IEEE Open J Commun Soc 2021; 2: 334-66.
[http://dx.doi.org/10.1109/OJCOMS.2021.3057679]
[65]
Gustavsson U, Frenger P, Fager C, et al. Implementation challenges and opportunities in beyond-5G and 6G communication. Ieee J Microw 2021; 1(1): 86-100.
[http://dx.doi.org/10.1109/JMW.2020.3034648]
[66]
Jiang X. Green UAV communications for 6G: A survey. Chin J Aeronauti 2021; 35(9): 19-34.
[67]
Gupta R, Nair A, Tanwar S, Kumar N. Blockchain‐assisted secure UAV communication in 6G environment: Architecture, opportunities, and challenges. IET Commun 2021; 15(10): 1352-67.
[http://dx.doi.org/10.1049/cmu2.12113]
[68]
Lu Y. Artificial intelligence: A survey on evolution, models, applications and future trends. J Manag Anal 2019; 6(1): 1-29.
[http://dx.doi.org/10.1080/23270012.2019.1570365]
[69]
Kaur J, Khan MA, Iftikhar M, Imran M, Emad Ul Haq Q. Machine learning techniques for 5G and beyond. IEEE Access 2021; 9: 23472-88.
[http://dx.doi.org/10.1109/ACCESS.2021.3051557]
[70]
Huang C, Hu S, Alexandropoulos GC, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends. IEEE Wirel Commun 2020; 27(5): 118-25.
[http://dx.doi.org/10.1109/MWC.001.1900534]
[71]
Yan L, Han C, Yuan J. Hybrid precoding for 6G terahertz communications: Performance evaluation and open problems In 2020 2nd 6G wireless summit (6G SUMMIT). IEEE 2020; pp. 1-5.
[72]
Alsharif MH, Albreem MA, Solyman AA, Kim S. Toward 6g communication networks: terahertz frequency challenges and open research issues. Comput Mater Continua 2021; 66: 2831-42.
[http://dx.doi.org/10.32604/cmc.2021.013176]
[73]
Sarieddeen H, Alouini MS, Al-Naffouri TY. Terahertz-band ultra-massive spatial modulation MIMO. IEEE J Sel Areas Comm 2019; 37(9): 2040-52.
[http://dx.doi.org/10.1109/JSAC.2019.2929455]
[74]
Yu M, Tang A, Wang X, Han C. Joint scheduling and power allocation for 6G terahertz mesh networks. 2020 International Conference on Computing, Networking and Communications (ICNC). 17-20 February 2020; Big Island, HI, USA. 2020; pp. 631-5.
[http://dx.doi.org/10.1109/ICNC47757.2020.9049790]
[75]
Zhang S, Liu J, Guo H, Qi M, Kato N. Envisioning device-to-device communications in 6G. IEEE Netw 2020; 34(3): 86-91.
[http://dx.doi.org/10.1109/MNET.001.1900652]
[76]
Han C, Wu Y, Chen Z, Wang X. Terahertz communications (TeraCom): Challenges and impact on 6G wireless systems. arXiv:191206040 2019.
[77]
Kato N, Mao B, Tang F, Kawamoto Y, Liu J. Ten challenges in advancing machine learning technologies toward 6G. IEEE Wirel Commun 2020; 27(3): 96-103.
[http://dx.doi.org/10.1109/MWC.001.1900476]
[78]
Nayak S, Patgiri R. 6g communication: Envisioning the key issues and challenges. arXiv:200404024 2020.
[79]
Gao H, Su Y, Zhang S, Diao M. Antenna selection and power allocation design for 5G massive MIMO uplink networks. China Commun 2019; 16: 1-15.
[80]
Attarifar M, Abbasfar A, Lozano A. 80 Attarifar, M., Abbasfar, A., & Lozano, A. Modified conjugate beamforming for cell-free massive MIMO. IEEE Wirel Commun Lett 2019; 8(2): 616-9.
[http://dx.doi.org/10.1109/LWC.2018.2890470]
[81]
Wang J, Wang CX, Huang J, Wang H, Gao X. A general 3D space-time-frequency non-stationary THz channel model for 6G ultra-massive MIMO wireless communication systems. IEEE J Sel Areas Comm 2021; 39(6): 1576-89.
[http://dx.doi.org/10.1109/JSAC.2021.3071850]
[82]
Henry R, Herzberg A, Kate A. Blockchain access privacy: Challenges and directions. IEEE Secur Priv 2018; 16(4): 38-45.
[http://dx.doi.org/10.1109/MSP.2018.3111245]
[83]
Aste T, Tasca P, Di Matteo T. Blockchain technologies: The foreseeable impact on society and industry. Computer 2017; 50: 18-28.
[84]
Miller D. Blockchain and the internet of things in the industrial sector. IT Prof 2018; 20(3): 15-8.
[http://dx.doi.org/10.1109/MITP.2018.032501742]
[85]
Nguyen DC, Pathirana PN, Ding M, Seneviratne A. Blockchain for 5G and beyond networks: A state of the art survey. J Netw Comput Appl 2020; 166: 102693.
[http://dx.doi.org/10.1016/j.jnca.2020.102693]
[86]
Nguyen T. Privacy-aware blockchain innovation for 6G: Challenges and opportunities. 2020 2nd 6G Wireless Summit (6G SUMMIT). 17-20 March 2020; Levi, Finland. 2020.
[87]
Rahmadika S, Firdaus M, Jang S, Rhee KH. Blockchain-enabled 5g edge networks and beyond: an intelligent cross-silo federated learning approach. Secur Commun Netw 2021; 2021: 1-14.
[http://dx.doi.org/10.1155/2021/5550153]
[88]
Lu Y. Blockchain and the related issues: a review of current research topics. Journal of Management Analytics 2018; 5(4): 231-55.
[http://dx.doi.org/10.1080/23270012.2018.1516523]
[89]
Lu Y. The blockchain: State-of-the-art and research challenges. J Ind Inf Integr 2019; 15: 80-90.
[90]
Viriyasitavat W, Xu LD, Bi Z, Hoonsopon D, Charoenruk N. Managing qos of internet-of-things services using blockchain. IEEE Trans Comput Soc Syst 2019; 6(6): 1357-68.
[http://dx.doi.org/10.1109/TCSS.2019.2919667]
[91]
Ji B, Han Y, Liu S, et al. Several key technologies for 6G: Challenges and opportunities. IEEE Commun 2021; 5(2): 44-51.
[http://dx.doi.org/10.1109/MCOMSTD.001.2000038]
[92]
Qin C, Guo B, Shen Y, Li T, Zhang Y, Zhang Z. A secure and effective construction scheme for blockchain networks. Secur Commun Netw 2020; 2020: 1-20.
[http://dx.doi.org/10.1155/2020/8881881]
[93]
Dai Y, Xu D, Maharjan S, Chen Z, He Q, Zhang Y. Blockchain and deep reinforcement learning empowered intelligent 5G beyond. IEEE Netw 2019; 33(3): 10-7.
[http://dx.doi.org/10.1109/MNET.2019.1800376]
[94]
Khan MA, Jamali MM, Maksymyuk T, Gazda J. A blockchain token-based trading model for secondary spectrum markets in future generation mobile networks. Wirel Commun Mob Comput 2020; 2020: 1-12.
[http://dx.doi.org/10.1155/2020/7975393]
[95]
Xing Y, Rappaport TS. Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz. 2018 IEEE Global Communications Conference (GLOBECOM). 09-13 December 2018; Abu Dhabi, United Arab Emirates. 2018.
[96]
Zhang L, Chen XQ, Liu S, et al. Space-time-coding digital metasurfaces. Nat Commun 2018; 9(1): 4334.
[http://dx.doi.org/10.1038/s41467-018-06802-0] [PMID: 30337522]
[97]
Chowdhury MZ, Shahjalal M, Hasan MK, Jang YM. The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges. Appl Sci 2019; 9(20): 4367.
[http://dx.doi.org/10.3390/app9204367]
[98]
David K, Berndt H. 6G vision and requirements: Is there any need for beyond 5G? IEEE Veh Technol Mag 2018; 13(3): 72-80.
[http://dx.doi.org/10.1109/MVT.2018.2848498]
[99]
Dao NN, Pham Q-V, Tu NH, et al. Survey on aerial radio access networks: Toward a comprehensive 6G access infrastructure. IEEE Commun Surv Tutor 2021; 23(2): 1193-225.
[http://dx.doi.org/10.1109/COMST.2021.3059644]
[100]
Basar E. Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G. IEEE Trans Commun 2020; 68(5): 3187-96.
[http://dx.doi.org/10.1109/TCOMM.2020.2971486]
[101]
You X, Wang C-X, Huang J, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Sci China Inf Sci 2021; 64(1): 110301.
[http://dx.doi.org/10.1007/s11432-020-2955-6]
[102]
Tregancini A, Olivo EEB, Osorio DPM, de Lima CHM, Alves H. Performance analysis of full-duplex relay-aided NOMA systems using partial relay selection. IEEE Trans Vehicular Technol 2020; 69(1): 622-35.
[http://dx.doi.org/10.1109/TVT.2019.2952526]
[103]
Li L. A cloud-based spectrum environment awareness system. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). 08-13 October 2017; Montreal, QC, Canada. 2017.
[http://dx.doi.org/10.1109/PIMRC.2017.8292378]
[104]
Matinmikko-Blue M, Yrjölä S, Ahokangas P. Spectrum management in the 6G era: The role of regulation and spectrum sharing. 2020 2nd 6G Wireless Summit (6G SUMMIT). 17-20 March 2020; Levi, Finland. 2020.
[105]
Shafigh AS, Glisic S, Hossain E, Lorenzo B, DaSilva LA. User-centric distributed spectrum sharing in dynamic network architectures. IEEE/ACM Trans Netw 2019; 27(1): 15-28.
[http://dx.doi.org/10.1109/TNET.2018.2880843]
[106]
Ruan J, Hu X, Huo X, et al. An IoT-based E-business model of intelligent vegetable greenhouses and its key operations management issues. Neural Comput Appl 2020; 32(19): 15341-56.
[http://dx.doi.org/10.1007/s00521-019-04123-x]
[107]
She C, Sun C, Gu Z, et al. A tutorial on ultrareliable and low-latency communications in 6G: Integrating domain knowledge into deep learning. Proc IEEE 2021; 109(3): 204-46.
[http://dx.doi.org/10.1109/JPROC.2021.3053601]
[108]
Alwis CD, Kalla A, Pham Q-V, et al. Survey on 6G frontiers: Trends, applications, requirements, technologies and future research. IEEE Open J Commun Soc 2021; 2: 836-86.
[http://dx.doi.org/10.1109/OJCOMS.2021.3071496]
[109]
Shafique K, Khawaja BA, Sabir F, Qazi S, Mustaqim M. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 2020; 8: 23022-40.
[http://dx.doi.org/10.1109/ACCESS.2020.2970118]
[110]
Wakunami K, Hsieh PY, Oi R, et al. Projection-type see-through holographic three-dimensional display. Nat Commun 2016; 7(1): 12954.
[http://dx.doi.org/10.1038/ncomms12954] [PMID: 27694975]
[111]
Yastrebova A, Kirichek R, Koucheryavy Y, Borodin A, Koucheryavy A. Future networks 2030: Architecture & requirements. 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). 05-09 November 2018; Moscow, Russia. 2018.
[112]
Yang J, Ji X, Huang K, Sun X, Wang Y. Enhanced secure SWIPT in heterogeneous network via intelligent reflecting surface. Secur Commun Netw 2021; 2021: 1-12.
[http://dx.doi.org/10.1155/2021/8836757]
[113]
Tripathy AK, Chinara S, Sarkar M. An application of wireless brain–computer interface for drowsiness detection. Biocybern Biomed Eng 2016; 36(1): 276-84.
[http://dx.doi.org/10.1016/j.bbe.2015.08.001]
[114]
Jafri SRA, Hamid T, Mahmood R, et al. Wireless brain computer interface for smart home and medical system. Wirel Pers Commun 2019; 106(4): 2163-77.
[http://dx.doi.org/10.1007/s11277-018-5932-x]
[115]
Elayan H, Shubair RM, Jornet JM, Johari P. Terahertz channel model and link budget analysis for intrabody nanoscale communication. IEEE Trans Nanobiosci 2017; 16(6): 491-503.
[http://dx.doi.org/10.1109/TNB.2017.2718967] [PMID: 28650820]
[116]
Elayan H, Johari P, Shubair RM, Jornet JM. Photothermal modeling and analysis of intrabody terahertz nanoscale communication. IEEE Trans Nanobiosci 2017; 16(8): 755-63.
[http://dx.doi.org/10.1109/TNB.2017.2757906] [PMID: 28961120]
[117]
Elayan H, Stefanini C, Shubair RM, Jornet JM. End-to-end noise model for intra-body terahertz nanoscale communication. IEEE Trans Nanobiosci 2018; 17(4): 464-73.
[http://dx.doi.org/10.1109/TNB.2018.2869124] [PMID: 30188837]
[118]
Elayan H, Shubair RM, Jornet JM, Mittra R. Multi-layer intrabody terahertz wave propagation model for nanobiosensing applications. Nano Commun Netw 2017; 14: 9-15.
[http://dx.doi.org/10.1016/j.nancom.2017.08.005]
[119]
Braeken A, Liyanage M. Highly efficient key agreement for remote patient monitoring in MEC-enabled 5G networks. J Supercomput 2021; 77(6): 5562-85.
[http://dx.doi.org/10.1007/s11227-020-03472-y]
[120]
Golovachev Y, Etinger A, Pinhasi GA, Pinhasi Y. Propagation properties of sub-millimeter waves in foggy conditions. J Appl Phys 2019; 125(15): 151612.
[http://dx.doi.org/10.1063/1.5083711]
[121]
Chowdhury MZ, Hasan MK, Shahjalal M, Hossan MT, Jang YM. Optical wireless hybrid networks: Trends, opportunities, challenges, and research directions. IEEE Commun Surv Tutor 2020; 22(2): 930-66.
[http://dx.doi.org/10.1109/COMST.2020.2966855]
[122]
Yuan Y, Zhao Y, Zong B, Parolari S. Potential key technologies for 6G mobile communications. Sci China Inf Sci 2020; 63(8): 183301.
[http://dx.doi.org/10.1007/s11432-019-2789-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy