Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Meta-Analysis

Promises and Pitfalls of Calcineurin Inhibitors in COVID-19: A Systematic Review and Meta-analysis of Controlled Trials

Author(s): Behrooz Heydari, Adeleh Sahebnasagh, Mohammad Ali Omrani, Saeed Azimi, Mohammad Hossein Dehghani, Amin Salehi-Abargouei, Farnoosh Farman and Fatemeh Saghafi*

Volume 31, Issue 29, 2024

Published on: 02 November, 2023

Page: [4745 - 4755] Pages: 11

DOI: 10.2174/0109298673264362231022150520

Price: $65

Abstract

Objective: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a violent attack on the body that leads to multi-organ failure and death in COVID-19 patients. The aim of this study was to systematically review the existing literature on the potential benefits of calcineurin inhibitors (CIs) as anti-vascular endothelial growth factor (VEGF) agents in improving the clinical outcomes of COVID-19 patients.

Methods: We searched various databases, including PubMed, Scopus, ISI Web of Science, Google Scholar, Cochrane databases, and ClinicalTrials.gov from 31st December, 2019, to 3rd February, 2023, for relevant controlled trials. The quality of the evidence was assessed using the Cochrane Collaboration tool. Comprehensive Meta-Analysis Software was used for the statistical analyses using a random-effects model.

Results: Three trials enrolling 293 participants were reviewed in the present systematic review and meta-analysis. The results showed CIs to lead to a significant reduction in mortality rate [risk ratio (RR): 0.598, 95% CI: 0.404-0.885, P-value = 0.010] with a low between-study heterogeneity (Cochrane Q test: I2 = 0.000%, P-value = 0.371). Pooled analysis of two studies (84 patients) illustrated that CIs could not significantly increase the rate of hospital discharge (RR: 1.161, 95% CI: 0.764-1.764, P-value = 0.485) and heterogeneity was not significant (Cochrane Q test: I2 = 26.798%, P-value = 0.242).

Conclusion: CIs are able to inhibit the virus nucleocapsid protein so that they can prevent replication and respiratory tract tissue damage caused by SARS-CoV-2. Based on the characteristics mentioned in detail, CIs can play a potential therapeutic role for COVID-19 patients.

« Previous
[1]
Rabi, F.A.; Al Zoubi, M.S.; Kasasbeh, G.A.; Salameh, D.M.; Al-Nasser, A.D. SARS-CoV-2 and coronavirus disease 2019: What we know so far. Pathogens., 2020, 9(3), 231.
[http://dx.doi.org/10.3390/pathogens9030231] [PMID: 32245083]
[2]
Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[3]
Zhou, P.; Fan, H.; Lan, T.; Yang, X.L.; Shi, W.F.; Zhang, W.; Zhu, Y.; Zhang, Y.W.; Xie, Q.M.; Mani, S.; Zheng, X.S.; Li, B.; Li, J.M.; Guo, H.; Pei, G.Q.; An, X.P.; Chen, J.W.; Zhou, L.; Mai, K.J.; Wu, Z.X.; Li, D.; Anderson, D.E.; Zhang, L.B.; Li, S.Y.; Mi, Z.Q.; He, T.T.; Cong, F.; Guo, P.J.; Huang, R.; Luo, Y.; Liu, X.L.; Chen, J.; Huang, Y.; Sun, Q.; Zhang, X.L.L.; Wang, Y.Y.; Xing, S.Z.; Chen, Y.S.; Sun, Y.; Li, J.; Daszak, P.; Wang, L.F.; Shi, Z.L.; Tong, Y.G.; Ma, J.Y. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature., 2018, 556(7700), 255-258.
[http://dx.doi.org/10.1038/s41586-018-0010-9] [PMID: 29618817]
[4]
Zhou, P; Yang, X-L; Wang, X-G; Hu, B; Zhang, L; Zhang, W A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature., 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[5]
Sahebnasagh, A.; Mojtahedzadeh, M.; Najmeddin, F.; Najafi, A.; Safdari, M.; Rezai Ghaleno, H.; Habtemariam, S.; Berindan-Neagoe, I.; Nabavi, S.M. A perspective on erythropoietin as a potential adjuvant therapy for acute lung injury/acute respiratory distress syndrome in patients with COVID-19. Arch. Med. Res., 2020, 51(7), 631-635.
[http://dx.doi.org/10.1016/j.arcmed.2020.08.002] [PMID: 32863034]
[6]
Reiner, Ž.; Hatamipour, M.; Banach, M.; Pirro, M.; Al-Rasadi, K.; Jamialahmadi, T.; Radenkovic, D.; Montecucco, F.; Sahebkar, A. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch. Med. Sci., 2020, 16(3), 490-496.
[http://dx.doi.org/10.5114/aoms.2020.94655] [PMID: 32399094]
[7]
Habtemariam, S.; Nabavi, S.F.; Banach, M.; Berindan-Neagoe, I.; Sarkar, K.; Sil, P.C.; Nabavi, S.M. Should we try SARS-CoV-2 helicase inhibitors for COVID-19 therapy? Arch. Med. Res., 2020, 51(7), 733-735.
[http://dx.doi.org/10.1016/j.arcmed.2020.05.024]
[8]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet., 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[9]
Rodriguez-Cubillo, B.; de la Higuera, M.A.M.; Lucena, R.; Franci, E.V.; Hurtado, M.; Romero, N.C.; Moreno, A.R.; Valencia, D.; Velo, M.; Fornie, I.S.; Sanchez-Fructuoso, A.I. Should cyclosporine be useful in renal transplant recipients affected by SARS-CoV-2?. Am. J. Transplant., 2020, 20(11), 3173-3181.
[http://dx.doi.org/10.1111/ajt.16141] [PMID: 32529737]
[10]
Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; von Bergwelt-Baildon, M.S. Cytokine release syndrome. J. Immunother. Cancer., 2018, 6(1), 56.
[http://dx.doi.org/10.1186/s40425-018-0343-9] [PMID: 29907163]
[11]
Zhou, D.; Dai, S.M.; Tong, Q. COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J. Antimicrob. Chemother., 2020, 75(7), 1667-1670.
[http://dx.doi.org/10.1093/jac/dkaa114] [PMID: 32196083]
[12]
Bhaskar, S.; Sinha, A.; Banach, M.; Mittoo, S.; Weissert, R.; Kass, J.S.; Rajagopal, S.; Pai, A.R.; Kutty, S. Cytokine storm in COVID-19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: The reprogram consortium position paper. Front. Immunol., 2020, 11, 1648.
[http://dx.doi.org/10.3389/fimmu.2020.01648] [PMID: 32754159]
[13]
Cismaru, A.C.; Cismaru, L.G.; Nabavi, S.; Berindan-Neagoe, I.; Clementi, E.; Banach, M. Game of crowning season 8: RAS and reproductive hormones in COVID-19-can we end this viral series?. Arch. Med. Sci., 16(1)
[http://dx.doi.org/10.5114/aoms.2020.96604] [PMID: 33747262]
[14]
Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal., 2020, 10(2), 102-108.
[http://dx.doi.org/10.1016/j.jpha.2020.03.001] [PMID: 32282863]
[15]
Chen, L.; Zhao, J.; Peng, J.; Li, X.; Deng, X.; Geng, Z.; Shen, Z.; Guo, F.; Zhang, Q.; Jin, Y.; Wang, L.; Wang, S. Detection of SARS-CoV-2 in saliva and characterization of oral symptoms in COVID-19 patients. Cell Prolif., 2020, 53(12), e12923.
[http://dx.doi.org/10.1111/cpr.12923] [PMID: 33073910]
[16]
Lai, C.C.; Ko, W.C.; Lee, P.I.; Jean, S.S.; Hsueh, P.R. Extra-respiratory manifestations of COVID-19. Int. J. Antimicrob. Agents., 2020, 56(2), 106024.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106024] [PMID: 32450197]
[17]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet., 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[18]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K-S.; Wang, D-Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 31928528]
[19]
Ribatti, D.; Vacca, A.; Cantatore, F.P.; Ria, R.; Benagiano, V.; Roncali, L.; Dammacco, F. An experimental study in the chick embryo chorioallantoic membrane of the anti-angiogenic activity of cyclosporine in rheumatoid arthritis versus osteoarthritis. Inflamm. Res., 2000, 49(8), 418-423.
[http://dx.doi.org/10.1007/s000110050610] [PMID: 11028759]
[20]
Rafiee, P.; Heidemann, J.; Ogawa, H.; Johnson, N.A.; Fisher, P.J.; Li, M.S.; Otterson, M.F.; Johnson, C.P.; Binion, D.G. Cyclosporin A differentially inhibits multiple steps in VEGF induced angiogenesis in human microvascular endothelial cells through altered intracellular signaling. Cell Commun. Signal., 2004, 2(1), 3.
[http://dx.doi.org/10.1186/1478-811X-2-3] [PMID: 15175101]
[21]
Shinkai, A.; Ito, M.; Anazawa, H.; Yamaguchi, S.; Shitara, K.; Shibuya, M. Mapping of the sites involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor. J. Biol. Chem., 1998, 273(47), 31283-31288.
[http://dx.doi.org/10.1074/jbc.273.47.31283] [PMID: 9813036]
[22]
Sawano, A.; Iwai, S.; Sakurai, Y.; Ito, M.; Shitara, K.; Nakahata, T.; Shibuya, M. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood., 2001, 97(3), 785-791.
[http://dx.doi.org/10.1182/blood.V97.3.785] [PMID: 11157498]
[23]
Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med., 2003, 9(6), 669-676.
[http://dx.doi.org/10.1038/nm0603-669] [PMID: 12778165]
[24]
Gerber, H.P.; Dixit, V.; Ferrara, N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem., 1998, 273(21), 13313-13316.
[http://dx.doi.org/10.1074/jbc.273.21.13313] [PMID: 9582377]
[25]
Mura, M.; Han, B.; Andrade, C.F.; Seth, R.; Hwang, D.; Waddell, T.K.; Keshavjee, S.; Liu, M. The early responses of VEGF and its receptors during acute lung injury: Implication of VEGF in alveolar epithelial cell survival. Crit. Care., 2006, 10(5), R130.
[http://dx.doi.org/10.1186/cc5042] [PMID: 16968555]
[26]
Kaner, R.J.; Crystal, R.G. Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung. Mol. Med., 2001, 7(4), 240-246.
[http://dx.doi.org/10.1007/BF03401843] [PMID: 11471568]
[27]
Medford, A.R.L.; Millar, A.B. Vascular endothelial growth factor (VEGF) in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): Paradox or paradigm?. Thorax., 2006, 61(7), 621-626.
[http://dx.doi.org/10.1136/thx.2005.040204] [PMID: 16807391]
[28]
Bhandari, V.; Choo-Wing, R.; Chapoval, S.P.; Lee, C.G.; Tang, C.; Kim, Y.K.; Ma, B.; Baluk, P.; Lin, M.I.; McDonald, D.M.; Homer, R.J.; Sessa, W.C.; Elias, J.A. Essential role of nitric oxide in VEGF-induced, asthma-like angiogenic, inflammatory, mucus, and physiologic responses in the lung. Proc. Natl. Acad. Sci. USA., 2006, 103(29), 11021-11026.
[http://dx.doi.org/10.1073/pnas.0601057103] [PMID: 16832062]
[29]
Li, J.; Liu, W. Puzzle of highly pathogenic human coronaviruses (2019-nCoV). Protein Cell., 2020, 11(4), 235-238.
[http://dx.doi.org/10.1007/s13238-020-00693-y] [PMID: 32088858]
[30]
Sahebnasagh, A.; Avan, R.; Saghafi, F.; Mojtahedzadeh, M.; Sadremomtaz, A.; Arasteh, O.; Tanzifi, A.; Faramarzi, F.; Negarandeh, R.; Safdari, M.; Khataminia, M.; Rezai Ghaleno, H.; Habtemariam, S.; Khoshi, A. Pharmacological treatments of COVID-19. Pharmacol. Rep., 2020, 72(6), 1446-1478.
[http://dx.doi.org/10.1007/s43440-020-00152-9] [PMID: 32816200]
[31]
Dallocchio, R.N.; Dessì, A.; De Vito, A.; Delogu, G.; Serra, P.A.; Madeddu, G. Early combination treatment with existing HIV antivirals: An effective treatment for COVID-19?. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(5), 2435-2448.
[PMID: 33755983]
[32]
Minozzi, S.; Cinquini, M.; Gianola, S.; Gonzalez-Lorenzo, M.; Banzi, R. The revised Cochrane risk of bias tool for randomized trials (RoB 2) showed low interrater reliability and challenges in its application. J. Clin. Epidemiol., 2020, 126, 37-44.
[http://dx.doi.org/10.1016/j.jclinepi.2020.06.015] [PMID: 32562833]
[33]
Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med., 2002, 21(11), 1539-1558.
[http://dx.doi.org/10.1002/sim.1186] [PMID: 12111919]
[34]
Sterne, JA; Savović, J; Page, MJ; Elbers, RG; Blencowe, NS; Boutron, I RoB 2: A revised tool for assessing risk of bias in randomised trials. bmj., 2019, 366, 4898.
[http://dx.doi.org/10.1136/bmj.l4898] [PMID: 31462531]
[35]
Gálvez-Romero, J.L.; Palmeros-Rojas, O.; Real-Ramírez, F.A.; Sánchez-Romero, S.; Tome-Maxil, R.; Ramírez-Sandoval, M.P.; Olivos-Rodríguez, R.; Flores-Encarnación, S.E.; Cabrera-Estrada, A.A.; Ávila-Morales, J.; Cortés-Sánchez, V.; Sarmiento-Padilla, G.; Tezmol-Ramírez, S.E.; Aparicio-Hernández, D.; Urbina-Sánchez, M.I.; Gómez-Pluma, M.Á.; Cisneros-Méndez, S.; Rodríguez-Rivas, D.I.; Reyes-Inurrigarro, S.; Cortés-Díaz, G.; Cruz-Delgado, C.; Navarro-González, J.; Deveaux-Homs, J.; Pedraza-Sánchez, S. Cyclosporine A plus low-dose steroid treatment in COVID-19 improves clinical outcomes in patients with moderate to severe disease: A pilot study. J. Intern. Med., 2021, 289(6), 906-920.
[http://dx.doi.org/10.1111/joim.13223] [PMID: 33274479]
[36]
Solanich, X.; Antolí, A.; Rocamora-Blanch, G.; Padullés, N.; Fanlo-Maresma, M.; Iriarte, A.; Mitjavila, F.; Capdevila, O.; Riera-Mestre, A.; Bas, J.; Vicens-Zygmunt, V.; Niubó, J.; Calvo, N.; Bolivar, S.; Rigo-Bonnin, R.; Mensa-Vilaró, A.; Arregui, L.; Tebe, C.; Videla, S.; Hereu, P.; Corbella, X. Methylprednisolone pulses plus tacrolimus in addition to standard of care vs. standard of care alone in patients with severe COVID-19. A randomized controlled trial. Front. Med., 2021, 8, 691712.
[http://dx.doi.org/10.3389/fmed.2021.691712] [PMID: 34195214]
[37]
Barratt, S.; Medford, A.R.; Millar, A.B. Vascular endothelial growth factor in acute lung injury and acute respiratory distress syndrome. Respiration., 2014, 87(4), 329-342.
[http://dx.doi.org/10.1159/000356034] [PMID: 24356493]
[38]
Blumberg, E.A.; Noll, J.H.; Tebas, P.; Fraietta, J.A.; Frank, I.; Marshall, A.; Chew, A.; Veloso, E.A.; Carulli, A.; Rogal, W.; Gaymon, A.L.; Schmidt, A.H.; Barnette, T.; Jurek, R.; Martins, R.; Hudson, B.M.; Chavda, K.; Bailey, C.M.; Church, S.E.; Noorchashm, H.; Hwang, W.T.; June, C.H.; Hexner, E.O. A phase I trial of cyclosporine for hospitalized patients with COVID-19. JCI Insight., 2022, 7(11), e155682.
[http://dx.doi.org/10.1172/jci.insight.155682] [PMID: 35536669]
[39]
Barati, S.; MohammadReza Hashemian, S.; Tabarsi, P.; Abedini, A.; Ashrafzadeh, M.; Haseli, S.; Abtahian, Z.; Yousefian, S.; Dastan, A.; Sobhanian, A.; Dastan, F. Combined therapy of ciclosporin plus favipiravir in the management of patients with severe COVID-19, not responding to dexamethasone: A non-controlled prospective trial. Int. Immunopharmacol., 2021, 99, 108043.
[http://dx.doi.org/10.1016/j.intimp.2021.108043] [PMID: 34426105]
[40]
Pang, J.; Xu, F.; Aondio, G.; Li, Y.; Fumagalli, A.; Lu, M.; Valmadre, G.; Wei, J.; Bian, Y.; Canesi, M.; Damiani, G.; Zhang, Y.; Yu, D.; Chen, J.; Ji, X.; Sui, W.; Wang, B.; Wu, S.; Kovacs, A.; Revera, M.; Wang, H.; Jing, X.; Zhang, Y.; Chen, Y.; Cao, Y. Efficacy and tolerability of bevacizumab in patients with severe COVID-19. Nat. Commun., 2021, 12(1), 814.
[http://dx.doi.org/10.1038/s41467-021-21085-8] [PMID: 33547300]
[41]
Gritti, G.; Raimondi, F.; Ripamonti, D.; Riva, I.; Landi, F.; Alborghetti, L. IL-6 signalling pathway inactivation with siltuximab in patients with COVID-19 respiratory failure: An observational cohort study. Medrxiv., 2020.
[http://dx.doi.org/10.1101/2020.04.01.20048561]
[42]
Kahl, A.L.; Kirchhof, J.; Petrakova, L.; Müller, J.; Laubrock, J.; Brinkhoff, A.; Unteroberdörster, M.; Benson, S.; Wilde, B.; Witzke, O.; Schedlowski, M. Are adverse events induced by the acute administration of calcineurin inhibitor cyclosporine a behaviorally conditioned in healthy male volunteers? Clin. Ther., 2018, 40(11), 1868-1877.
[http://dx.doi.org/10.1016/j.clinthera.2018.09.008] [PMID: 30376962]
[43]
Tapia, C.; Nessel, T.A.; Zito, P.M. Cyclosporine; StatPearls Publishing: Treasure Island, FL, 2020.
[44]
Doyon, P.R.; Johansson, O. Electromagnetic fields may act via calcineurin inhibition to suppress immunity, thereby increasing risk for opportunistic infection: Conceivable mechanisms of action. Med. Hypotheses., 2017, 106, 71-87.
[http://dx.doi.org/10.1016/j.mehy.2017.06.028] [PMID: 28818275]
[45]
Ekberg, H.; Bernasconi, C.; Nöldeke, J.; Yussim, A.; Mjörnstedt, L.; Erken, U.; Ketteler, M.; Navrátil, P. Cyclosporine, tacrolimus and sirolimus retain their distinct toxicity profiles despite low doses in the symphony study. Nephrol. Dial. Transplant., 2010, 25(6), 2004-2010.
[http://dx.doi.org/10.1093/ndt/gfp778] [PMID: 20106825]
[46]
Jorgenson, M.R.; Descourouez, J.L.; Cardinale, B.; Lyu, B.; Astor, B.C.; Garg, N.; Saddler, C.M.; Smith, J.A.; Mandelbrot, D.A. Risk of opportunistic infection in kidney transplant recipients with cytomegalovirus infection and associated outcomes. Transpl. Infect. Dis., 2019, 21(3), e13080.
[http://dx.doi.org/10.1111/tid.13080] [PMID: 30891915]
[47]
Immunosuppressive treatment and its effect on the occurrence of pneumocystis jiroveci, mycoplasma pneumoniae, chlamydophila pnemoniae, and legionella pneumophila infections/colonizations among lung transplant recipients. Transplantation proceedings. Transplant Proc., 2018, 50(7), 2053-2058.
[http://dx.doi.org/10.1016/j.transproceed.2017.12.059]
[48]
Ziprin, R.L.; Corrier, D.E.; Elissalde, M.H. Maturation of resistance to salmonellosis in newly hatched chicks: Inhibition by cyclosporine. Poult. Sci., 1989, 68(12), 1637-1642.
[http://dx.doi.org/10.3382/ps.0681637] [PMID: 2622818]
[49]
Gennery, A.R. Hematopoietic stem cell transplantation for primary immune deficiencies. Stiehm's Immune Deficiencies (Second Edition); Academic Press, 2020, pp. 1175-1214.
[http://dx.doi.org/10.1016/B978-0-12-816768-7.00057-0]
[50]
Landesman, S.H. Ethical and legal aspects of tuberculosis control. Tuberculosis; Springer, 2013, p. 238.
[http://dx.doi.org/10.1007/978-1-4899-2869-6_10]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy