Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Review Article

Gum-based Nanoparticles Targeting for Colon Rectal Cancer: Latest Research and Patents

Author(s): Shilpi Shakya*, Ritesh Kumar Tiwari and Arti Gupta

Volume 17, Issue 4, 2023

Published on: 02 November, 2023

Page: [255 - 263] Pages: 9

DOI: 10.2174/0126673878242191231017095804

Price: $65

Abstract

Colorectal disease is the third most prevelant cancer in both men and women, with an expected 106,180 new cases of colon cancer and 44,850 new cases of rectal cancer as per American Cancer Society. Targeted medicine delivery is vital in the treatment of colon disorders because it delivers long-term therapeutic results with little side effects. Natural polymer is biocompatible and biodegradable, which enables safety, improves storage, and physiological stability, it is utilized as drug delivery vehicles and has made great strides in recent years. Chitosan, alginate, pectin, guar gum, dextran, hyaluronic acid, and arabinoxylan are examples of natural polysaccharides that are utilized to create nanoparticles. Natural gums serve two purposes: first, they shield the medicine from stomach and intestinal conditions, allowing it to only be released in the colon. In this review, we introduce the different gum particularly used in nanoparticles formulation, and then discuss recent research and the latest patent in the development of gum-based nanoparticles for the treatment of colon rectal cancer.

Next »
Graphical Abstract

[1]
Encyclopedia of controlled drug delivery, John Wiley’s sons, Inc. New York. Polym Int 2002; 51(3): 263-3.
[2]
Gilbert S, Banker Eds. Modern pharmaceutics. 4thedn. New York: Marcel Dekker. 2002.
[3]
Bajpai SK, Bajpai M, Dengre R. Chemically treated hard gelatin capsules for colon-targeted drug delivery: A novel approach. J Appl Polym Sci 2003; 89(8): 2277-82.
[http://dx.doi.org/10.1002/app.12478]
[4]
Watts PJ, Lllum L. Colonic drug delivery. Drug Dev Ind Pharm 1997; 23(9): 893-913.
[http://dx.doi.org/10.3109/03639049709148695]
[5]
Gulbake A, Jain A, Jain A, Jain A, Jain SK. Insight to drug delivery aspects for colorectal cancer. World J Gastroenterol 2016; 22(2): 582-99.
[http://dx.doi.org/10.3748/wjg.v22.i2.582]
[6]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[7]
Minko T. Drug targeting to the colon with lectins and neoglycoconjugates. Adv Drug Deliv Rev 2004; 56(4): 491-509.
[http://dx.doi.org/10.1016/j.addr.2003.10.017] [PMID: 14969755]
[8]
Yao YF, Du CZ, Chen N, Chen P, Gu J. Expression of HER-2 in rectal cancers treated with preoperative radiotherapy: a potential biomarker predictive of metastasis. Dis Colon Rectum 2014; 57(5): 602-7.
[http://dx.doi.org/10.1097/DCR.0000000000000107] [PMID: 24819100]
[9]
Edge S, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, Eds. AJCC Cancer staging manual Annals of surgical oncology. 7th ed. New York, NY: Springer 2010; 17: pp. 1471-4.
[10]
Bokey EL, Moore JWE, Chapuis PH, Newland RC. Morbidity and mortality following laparoscopic-assisted right hemicolectomy for cancer. Dis Colon Rectum 1996; 39(10) (Suppl.): S24-8.
[http://dx.doi.org/10.1007/BF02053802] [PMID: 8831543]
[11]
Zaniboni A, Labianca R. Adjuvant therapy for stage II colon cancer: an elephant in the living room? Ann Oncol 2004; 15(9): 1310-8.
[http://dx.doi.org/10.1093/annonc/mdh342] [PMID: 15319235]
[12]
Schrag D, Rifas-Shiman S, Saltz L, Bach PB, Begg CB. Adjuvant chemotherapy use for medicare beneficiaries with stage II colon cancer. J Clin Oncol 2002; 20(19): 3999-4005.
[http://dx.doi.org/10.1200/JCO.2002.11.084] [PMID: 12351597]
[13]
Noordhuis P, Holwerda U, Van der Wilt CL, et al. 5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers. Ann Oncol 2004; 15(7): 1025-32.
[http://dx.doi.org/10.1093/annonc/mdh264] [PMID: 15205195]
[14]
Patel A, Bhatt N, Patel KR, Patel NM, Patel MR. Colon targeted drug delivery system: a review system. J Pharm Sci Bio-Sci Res 2011; 1(1): 37-49.
[15]
Amidon S, Brown JE, Dave VS. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech 2015; 16(4): 731-41.
[http://dx.doi.org/10.1208/s12249-015-0350-9] [PMID: 26070545]
[16]
Kumar P, Mishra B. Colon targeted drug delivery systems-an overview. Curr Drug Deliv 2008; 5(3): 186-98.
[http://dx.doi.org/10.2174/156720108784911712] [PMID: 18673262]
[17]
De Anda-Flores Y, Carvajal-Millan E, Campa-Mada A, et al. Polysaccharide-based nanoparticles for colon-targeted drug delivery systems. Polysaccharides 2021; 2(3): 626-47.
[http://dx.doi.org/10.3390/polysaccharides2030038]
[18]
Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects 2019; 20: 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[19]
Pereira MA, Rebouças JS, Ferraz-Carvalho RS, et al. Poly (anhydride) nanoparticles containing cashew nut proteins can induce a strong Th1 and Treg immune response after oral administration. Eur J Pharm Biopharm 2018; 127: 51-60.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.011] [PMID: 29428795]
[20]
Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural Polymer Drug Delivery Systems. 2016; pp. 33-93.
[http://dx.doi.org/10.1007/978-3-319-41129-3_2]
[21]
Song HQ, Fan Y, Hu Y, Cheng G, Xu FJ. Polysaccharide–peptide conjugates: A versatile material platform for biomedical applications. Adv Funct Mater 2021; 31(6): 2005978.
[http://dx.doi.org/10.1002/adfm.202005978]
[22]
Kumar K, Dhawan N, Sharma H, Vaidya S, Vaidya B. Bioadhesive polymers: Novel tool for drug delivery. Artif Cells Nanomed Biotechnol 2014; 42(4): 274-83.
[http://dx.doi.org/10.3109/21691401.2013.815194] [PMID: 23859698]
[23]
Seidi F, Jenjob R, Phakkeeree T, Crespy D. Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. J Control Release 2018; 284: 188-212.
[http://dx.doi.org/10.1016/j.jconrel.2018.06.026] [PMID: 29940204]
[24]
Jacob J, Haponiuk JT, Thomas S, Gopi S. Biopolymer based nanomaterials in drug delivery systems: A review. Mater Today Chem 2018; 9: 43-55.
[http://dx.doi.org/10.1016/j.mtchem.2018.05.002]
[25]
Eliyahu S, Aharon A, Bianco-Peled H. Acrylated chitosan nanoparticles with enhanced mucoadhesion. Polymers (Basel) 2018; 10(2): 106.
[26]
Lyons J, Devine D, Kennedy J, Geever L, Osullivan P, Higginbotham C. The use of Agar as a novel filler for monolithic matrices produced using hot melt extrusion. Eur J Pharm Biopharm 2006; 64(1): 75-81.
[http://dx.doi.org/10.1016/j.ejpb.2006.03.008] [PMID: 16697170]
[27]
Tavakoli N, Ghasemi N, Taimouri R, Hamishehkar H. Evaluation of okra gum as a binder in tablet dosage forms. Jundishapur J Nat Pharm Prod 2008; 3(1): 33-8.
[28]
Momoh MA, Akikwu MU, Ogbona JI, Nwachi UE. In vitro study of release of metronidazole tablets prepared from okra gum, gelatin gum and their admixture. Biol Res 2009; 6(1): 339-42.
[29]
Kalu VD, Odeniyi MA, Jaiyeoba KT. Matrix properties of a new plant gum in controlled drug delivery. Arch Pharm Res 2007; 30(7): 884-9.
[http://dx.doi.org/10.1007/BF02978841] [PMID: 17703742]
[30]
Ogaji I, Nnoli O. Film coating potential of okra gum using paracetamol tablets as a model drug. Asian J Pharm 2010; 4(2): 130-4.
[http://dx.doi.org/10.4103/0973-8398.68464]
[31]
Attama AA, Adikwu MU, Amorha CJ. Release of indomethacin from bioadhesive tablets containing carbopol 941 modified with Abelmuschus esculentus (okra) gum. Boll Chim Farm 2003; 142(7): 298-302.
[PMID: 14677275]
[32]
Ikoni O. Some physicochemical properties of acetaminophen pediatric suspensions formulated with okra gums obtained from different extraction processes as suspending agent. Asian J Pharm 2011; 5(1): 15-20.
[http://dx.doi.org/10.4103/0973-8398.80061]
[33]
Nasipuri RN, Igwilo CI, Brown SA, Kunle OO. Mucilage from Abelmuschus esculentus (okra) fruits- a potential pharmaceutical raw material; part1; Physicochemical properties. 1996; 1: 22-8.
[34]
Femi-Oyewo MN, Adedokun MO, Olusoga TO. Evaluation of the suspending properties of albiziazygia gum on sulphadimidine suspension. Trop J Pharm Res 2004; 3(1): 279-84.
[35]
Kulkarni D, Dwivedi AK, Sarin JPS. Tamarind seed polyose: A potential polysaccharides for sustained release of verapamil hydrochloride as a model drug. Indian J Pharm Sci 1997; 59: 1-7.
[36]
Dhopeshwarkar V, Zatz JL. Evaluation of xanthan gum in the preparation of sustained release matrix tablets. Drug Dev Ind Pharm 1993; 19(9): 999-1017.
[http://dx.doi.org/10.3109/03639049309062997]
[37]
Santos H, Veiga F, Pina ME, Sousa JJ. Compaction, compression and drug release properties of diclofenac sodium and ibuprofen pellets comprising xanthan gum as a sustained release agent. Int J Pharm 2005; 295(1-2): 15-27.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.014] [PMID: 15898143]
[38]
Owen SC, Raymond CR, Paul JS, Paul JW, Eds. Handbook of Pharmaceutical Excipients. The Pharmaceutical Press and the America Pharmaceutical Association 2003; pp. 654-6.
[39]
Jezequel V. Curdlan: A new functional betaglucan. Cereal Foods World 1998; 43: 361-4.
[40]
Mukherjee B, Dinda SC, Barik BB. Gum cordia: A novel matrix forming material for enteric resistant and sustained drug delivery--a technical note. AAPS PharmSciTech 2008; 9(1): 330-3.
[http://dx.doi.org/10.1208/s12249-008-9051-y] [PMID: 18446499]
[41]
Hodsdon AC, Mitchell JR, Davies MC, Melia CD. Structure and behaviour in hydrophilic matrix sustained release dosage forms: 3. The influence of pH on the sustained-release performance and internal gel structure of sodium alginate matrices. J Control Release 1995; 33(1): 143-52.
[http://dx.doi.org/10.1016/0168-3659(94)00076-7]
[42]
Howard JR, Timmins P. Controlled release formulation. 1988; US20030175341A1.
[43]
Seiyaku F. Sustained-release dilazep hydrochloride tablets containing sodium alginate 1989.
[44]
Viernstein H. Retarded-release drug tablet with alginic acid sodium alginate matrix 1988.
[45]
Kesavan K, Nath G, Pandit JK. Sodium alginate based mucoadhesive system for gatifloxacin and its in vitro antibacterial activity. Sci Pharm 2010; 78(4): 941-57.
[http://dx.doi.org/10.3797/scipharm.1004-24] [PMID: 21179327]
[46]
Balasubramaniam J, Rao VU, Vasudha M, Babu J, Rajinikanth PS. Sodium alginate microspheres of metformin HCl: formulation and in vitro evaluation. Curr Drug Deliv 2007; 4(3): 249-56.
[http://dx.doi.org/10.2174/156720107781023875] [PMID: 17627499]
[47]
Thierry N, George C, John F. Alginate and gellan gum as tablet coating US6326028B1.
[48]
Kulkarni GT, Gowthamarajan K, Dhobe RR, Yohanan F, Suresh B. Development of controlled release spheroids using natural polysaccharide as release modifier. Drug Deliv 2005; 12(4): 201-6.
[http://dx.doi.org/10.1080/10717540590952537] [PMID: 16036714]
[49]
Kulkarni D, Dwivedi AK, Sarin JPS, Singh S. Tamarind seed polyose: A potential polysaccharide for sustained release of verapamil hydrochloride as a model drug. Indian J Pharm Sci 1997; 59: 1-7.
[50]
Shefter E, Raymond CR, Paul JS, Paul JW, Quinn ME. Handbook of Pharmaceutical Excipients. The Pharmaceutical Press and the American Pharmaceutical Association 2003; pp. 1-2.
[51]
Lu EX, Jiang ZQ, Zhang QZ, Jiang XG. A water-insoluble drug monolithic osmotic tablet system utilizing gum arabic as an osmotic, suspending and expanding agent. J Control Release 2003; 92(3): 375-82.
[http://dx.doi.org/10.1016/S0168-3659(03)00371-7] [PMID: 14568418]
[52]
Beneke C, Viljoen A, Hamman J. Polymeric plant-derived excipients in drug delivery. Molecules 2009; 14(7): 2602-20.
[http://dx.doi.org/10.3390/molecules14072602] [PMID: 19633627]
[53]
Antony PJ, Sanghavi NM. A new disintegrant for pharmaceutical dosage forms. Drug Dev Ind Pharm 1997; 23(4): 413-5.
[http://dx.doi.org/10.3109/03639049709146146]
[54]
Rozier A, Mazuel C, Grove J, Plazonnet B. Functionality testing of gellan gum, a polymeric excipient material for ophthalmic dosage forms. Int J Pharm 1997; 153(2): 191-8.
[http://dx.doi.org/10.1016/S0378-5173(97)00109-9]
[55]
Kedzierewicz F, Lombry C, Rios R, Hoffman M, Maincent P. Effect of the formulation on the in-vitro release of propranolol from gellan beads. Int J Pharm 1999; 178(1): 129-36.
[http://dx.doi.org/10.1016/S0378-5173(98)00351-2] [PMID: 10205633]
[56]
Rajinikanth PS, Balasubramaniam J, Mishra B. Development and evaluation of a novel floating in situ gelling system of amoxicillin for eradication of Helicobacter pylori. Int J Pharm 2007; 335(1-2): 114-22.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.008] [PMID: 17141986]
[57]
Vasir J, Reddy M, Labhasetwar V. Nano systems in drug targeting: Opportunities and challenges. Curr Nanosci 2005; 1(1): 47-64.
[http://dx.doi.org/10.2174/1573413052953110]
[58]
Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F, Nanoencapsulation I. Methods forpreparation of drug-loaded polymeric nanoparticles. Nanomedicine (Lond) 2006; 2(1): 8-21.
[http://dx.doi.org/10.1016/j.nano.2005.12.003] [PMID: 17292111]
[59]
Elsayed Yagoub NA, Mohamed Nur AO, Aleanizy FS, Osman Z. Evaluation of different grades of guar gum, acacia gum, and polyvinyl pyrrolidone as cross-linkers in producing submicron particles. Asian J Pharm Clin Res 2022; 15(6): 136-43.
[http://dx.doi.org/10.22159/ajpcr.2022.v15i6.44923]
[60]
Khaledian S, Kahrizi D, Moradi S, Martinez F. An experimental and computational study to evaluation of chitosan/gum tragacanth coated-natural lipid-based nanocarriers for sunitinib delivery. J Mol Liq 2021; 334: 116075.
[http://dx.doi.org/10.1016/j.molliq.2021.116075]
[61]
Choudhury A, Laskar RE, Deka D, Sonowal K, Saha S, Dey BK. A review on nanoparticle: Types, preparation and its characterization. Res J Pharm Technol 2021; 14(3): 1815-22.
[http://dx.doi.org/10.5958/0974-360X.2021.00322.X]
[62]
Yadav M, Ahuja M. Preparation and evaluation of nanoparticles of gum cordia, an anionic polysaccharide for ophthalmic delivery. Carbohydr Polym 2010; 81(4): 871-7.
[http://dx.doi.org/10.1016/j.carbpol.2010.03.065]
[63]
Malviya R, Raj S, Fuloria S, et al. Evaluation of antitumor efficacy of chitosan-tamarind gum polysaccharide polyelectrolyte complex stabilized nanoparticles of simvastatin. Int J Nanomedicine 2021; 16: 2533-53.
[http://dx.doi.org/10.2147/IJN.S300991] [PMID: 33824590]
[64]
Bianchera A, Bettini R. Polysaccharide nanoparticles for oral controlled drug delivery: the role of drug–polymer and interpolymer interactions. Expert Opin Drug Deliv 2020; 17(10): 1345-59.
[http://dx.doi.org/10.1080/17425247.2020.1789585] [PMID: 32602795]
[65]
Verma D, Sharma SK. Recent advances in guar gum based drug delivery systems and their administrative routes. Int J Biol Macromol 2021; 181(181): 653-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.087] [PMID: 33766594]
[66]
Rao JP, Geckeler KE. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci 2011; 36(7): 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[67]
Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 1989; 55(1): R1-4.
[http://dx.doi.org/10.1016/0378-5173(89)90281-0]
[68]
Tulain UR, Mahmood A, Aslam S, et al. Formulation and Evaluation of Linum usitatissimum mucilage-based nanoparticles for effective delivery of ezetimibe. Int J Nanomedicine 2021; 16: 4579-96.
[http://dx.doi.org/10.2147/IJN.S308790] [PMID: 34267514]
[69]
Sreenivasan RS, Vineetha VP, Reshma PL, Raghu KG. Preparation and characterization of selenium incorporated guar gum nanoparticle and its interaction with H9c2 cells. PLoS One 2013; 8(9): e74411.
[http://dx.doi.org/10.1371/journal.pone.0074411] [PMID: 24098647]
[70]
Battaglia L, Gallarate M, Cavalli R, Trotta M. Solid lipid nanoparticles produced through a coacervation method. J Microencapsul 2010; 27(1): 78-85.
[http://dx.doi.org/10.3109/02652040903031279] [PMID: 19538034]
[71]
Talarico L, Consumi M, Leone G, Tamasi G, Magnani A. Solid lipid nanoparticles produced via a coacervation method as promising carriers for controlled release of quercetin. Molecules 2021; 26(9): 2694.
[http://dx.doi.org/10.3390/molecules26092694]
[72]
Katas H, Mui Wen C. Preparation and characterisation of highly loaded fluorescent chitosan nanoparticles. ISRN Pharm 2011; 2011: 1-5.
[http://dx.doi.org/10.5402/2011/246162] [PMID: 22389847]
[73]
Katti VK, Kannan R, Cutler CS. Gum arabic coated 198gold radioactivenanoparticles for cancertherapy. U.S. Patent 0,134,918, 2012.
[74]
Palaniappan R, Lawrenceville GA. Gellan-gumnanoparticles and methods of making and using the same. U.S. Patent 8,389,012, 2013.
[75]
Desai NP. Nanoparticles of paclitaxel and albumin in combination with bevacizumab against cancer. E. Patent 3, 108, 885, 2016.
[76]
Riyadh MSA, Riyadh DS. Synthesis of silver nanoparticles from Abelmoschus esculentus extract. U.S.Patent 10,059, 601, 2018.
[77]
Patrick B, Mariola F-M. Lipid nanoparticle mrna vaccines. U.S.Patent 2020163878, 2020.
[78]
Chaudhary M. Stealth, target nanoparticles (STN) for oral drug delivery. U.S. patent11, 471,422, 2022.
[79]
Sharma M, Malik R, Verma A, et al. Folic acid conjugated guar gum nanoparticles for targeting methotrexate to colon cancer. J Biomed Nanotechnol 2013; 9(1): 96-106.
[http://dx.doi.org/10.1166/jbn.2013.1474] [PMID: 23627072]
[80]
Udompornmongkol P, Chiang BH. Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. J Biomater Appl 2015; 30(5): 537-46.
[http://dx.doi.org/10.1177/0885328215594479] [PMID: 26170212]
[81]
Kumar B, Kulanthaivel S, Mondal A, et al. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids Surf B Biointerfaces 2017; 150(150): 352-61.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.049] [PMID: 27847225]
[82]
Chandel D, Uppal S, Mehta SK, Shukla G. Preparation and characterization of celecoxib entrapped guar gum nanoparticles targeted for oral drug delivery against colon cancer: An in-vitro study. J Drug Deliv Ther 2020; 10(2-s): 14-21.
[http://dx.doi.org/10.22270/jddt.v10i2-s.3951]
[83]
Singh S, Kotla NG, Tomar S, et al. A nanomedicine-promising approach to provide an appropriate colon-targeted drug delivery system for 5-fluorouracil. Int J Nanomedicine 2015; 10(1): 7175-82.
[PMID: 26648721]
[84]
Pandit A, Zeugolis DI. Twenty-five years of nano-bio-materials: have we revolutionized healthcare? Nanomedicine (Lond) 2016; 11(9): 985-7.
[http://dx.doi.org/10.2217/nnm.16.42] [PMID: 27092982]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy