Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Anti-inflammatory and Antimicrobial Potential of 1, 3, 4-oxadiazoles and its Derivatives: A Review

Author(s): Tarun Chaudhary*, Prabhat Kumar Upadhyay and Ritu Kataria

Volume 21, Issue 8, 2024

Published on: 02 November, 2023

Page: [1014 - 1020] Pages: 7

DOI: 10.2174/0115701794265887231014061317

Price: $65

Abstract

1, 3, 4-oxadiazole and its derivatives have significant anti-inflammatory and antimicrobial property. Their precise mechanism of action is not known but it is postulated that they act by inhibiting the biosynthesis of certain prostaglandins. 1, 3, 4-oxadiazoles are a class of heterocyclic compounds with wide variety of biological and pharmacological activities. They have been reported to possess analgesic, antimicrobial, antipyretic and anti-inflammatory properties. These compounds are also active against a number of other inflammatory conditions such as arthritis, gout etc. A wide variety of these compounds have been synthesized and some of them are under clinical trials. In this review article, anti-inflammatory and antimicrobial activity of the 1, 3, 4- oxadiazole shall be discussed.

Next »
Graphical Abstract

[1]
Chow, Y.Y.; Chin, K.Y. The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm., 2020, 2020, 1-19.
[http://dx.doi.org/10.1155/2020/8293921] [PMID: 32189997]
[2]
Moo, C.L.; Yang, S.K.; Yusoff, K.; Ajat, M.; Thomas, W.; Abushelaibi, A.; Lim, S.H.E.; Lai, K.S. Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Curr. Drug Discov. Technol., 2020, 17(4), 430-447.
[http://dx.doi.org/10.2174/1570163816666190304122219 ] [PMID: 30836923]
[3]
Marston, H.D.; Dixon, D.M.; Knisely, J.M.; Palmore, T.N.; Fauci, A.S. Antimicrobial resistance. JAMA, 2016, 316(11), 1193-1204.
[http://dx.doi.org/10.1001/jama.2016.11764] [PMID: 27654605]
[4]
Srivastava, J.; Chandra, H.; Nautiyal, A. R.; Kalra, S. J. Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAms) as an alternative drug line to control infections. 3 Biotech, 2014, 4(5), 451-460.
[5]
Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: causes, consequences, and management. Front. Public Health, 2014, 2, 145.
[http://dx.doi.org/10.3389/fpubh.2014.00145] [PMID: 25279369]
[6]
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[7]
Vezzani, A.; Friedman, A.; Dingledine, R.J. The role of inflammation in epileptogenesis. Neuropharmacology, 2013, 69, 16-24.
[http://dx.doi.org/10.1016/j.neuropharm.2012.04.004 ] [PMID: 22521336]
[8]
Ravizza, T.; Balosso, S.; Vezzani, A. Inflammation and prevention of epileptogenesis. Neurosci. Lett., 2011, 497(3), 223-230.
[http://dx.doi.org/10.1016/j.neulet.2011.02.040] [PMID: 21362451]
[9]
Vats, A.; Parul, N. Microbial infection pathogenesis and progression: A critical review. Int. J. Pharma Sci., 2022, 1(1)
[http://dx.doi.org/10.5281/zenodo.7002860]
[10]
Rossi, J.F.; Lu, Z.Y.; Massart, C.; Levon, K. Dynamic immune/inflammation precision medicine: The good and the bad inflammation in infection and cancer. Front. Immunol., 2021, 12, 595722.
[http://dx.doi.org/10.3389/fimmu.2021.595722] [PMID: 33708198]
[11]
Xie, Y.P.; Ansari, M.F.; Zhang, S.L.; Zhou, C.H. Novel carbazole-oxadiazoles as potential Staphylococcus aureus germicides. Pestic. Biochem. Physiol., 2021, 175, 104849.
[http://dx.doi.org/10.1016/j.pestbp.2021.104849 ] [PMID: 33993967]
[12]
Scheide, M.R.; Peterle, M.M.; Saba, S.; Neto, J.S.S.; Lenz, G.F.; Cezar, R.D.; Felix, J.F.; Botteselle, G.V.; Schneider, R.; Rafique, J.; Braga, A.L. Borophosphate glass as an active media for CuO nanoparticle growth: an efficient catalyst for selenylation of oxadiazoles and application in redox reactions. Sci. Rep., 2020, 10(1), 15233.
[http://dx.doi.org/10.1038/s41598-020-72129-w] [PMID: 32943698]
[13]
Marzullo, P.; Vasto, S.; Buscemi, S.; Pace, A.; Nuzzo, D.; Palumbo Piccionello, A. Ammonium formate-Pd/C as a new reducing system for 1,2,4-oxadiazoles. synthesis of guanidine derivatives and reductive rearrangement to quinazolin-4-ones with potential anti-diabetic activity. Int. J. Mol. Sci., 2021, 22(22), 12301.
[http://dx.doi.org/10.3390/ijms222212301] [PMID: 34830187]
[14]
Puzanov, A.I.; Ryabukhin, D.S.; Zalivatskaya, A.S.; Zakusilo, D.N.; Vasilyev, A.V. sinthesis of acetytenic 1, 2, 4-oxadiazoles and their reactions in superacid TfOH (CF3SO3H). 2021.
[15]
Olesiejuk, M.; Kudelko, A. Arylation reactions in the synthesis of biologically important 2,5-diaryl-1,3,4-oxadiazoles. Appl. Sci., 2022, 12(15), 7806.
[http://dx.doi.org/10.3390/app12157806]
[16]
Mohammad, B.D.; Baig, M.S.; Bhandari, N.; Siddiqui, F.A.; Khan, S.L.; Ahmad, Z.; Khan, F.S.; Tagde, P.; Jeandet, P. Heterocyclic compounds as dipeptidyl peptidase-IV inhibitors with special emphasis on oxadiazoles as potent anti-diabetic agents. Molecules, 2022, 27(18), 6001.
[http://dx.doi.org/10.3390/molecules27186001] [PMID: 36144735]
[17]
Nayak, S.G.; Poojary, B. A review on the preparation of 1, 3, 4-oxadiazoles from the dehydration of hydrazines and study of their biological roles. Chemistry Africa, 2019, 2(4), 551-571.
[http://dx.doi.org/10.1007/s42250-019-00084-9]
[18]
Schwärzer, K.; Tüllmann, C.P.; Graßl, S.; Górski, B.; Brocklehurst, C.E.; Knochel, P. Functionalization of 1,3,4-Oxadiazoles and 1,2,4-Triazoles via Selective Zincation or Magnesiation Using 2,2,6,6-Tetramethylpiperidyl Bases. Org. Lett., 2020, 22(5), 1899-1902.
[http://dx.doi.org/10.1021/acs.orglett.0c00238] [PMID: 32048510]
[19]
Ma, S.; Jiang, W.; Li, Q.; Li, T.; Wu, W.; Bai, H.; Shi, B. Design, synthesis, and study of the insecticidal activity of novel steroidal 1, 3, 4-Oxadiazoles. J. Agric. Food Chem., 2021, 69(39), 11572-11581.
[http://dx.doi.org/10.1021/acs.jafc.1c00088] [PMID: 34554742]
[20]
Wang, Q.; Mgimpatsang, K.C.; Konstantinidou, M.; Shishkina, S.V.; Dömling, A. 1,3,4-oxadiazoles by ugi-tetrazole and huisgen reaction. Org. Lett., 2019, 21(18), 7320-7323.
[http://dx.doi.org/10.1021/acs.orglett.9b02614] [PMID: 31478379]
[21]
Metre, T.V.; Joshi, S.D.; Kodasi, B.; Bayannavar, P.K.; Nesaragi, A.R.; Madar, S.F.; Mavazzan, A.R.; Kamble, R.R. L-proline catalyzed ring transformation of 5-substituted tetrazole to 1,3,4-oxadiazoles as anti-tubercular agents. Synth. Commun., 2022, 52(13-14), 1500-1516.
[http://dx.doi.org/10.1080/00397911.2022.2097874]
[22]
Leng, Y.; Wu, Y.; Zhang, S.; Liu, C.; Wu, X.; Li, W.; Li, H.; Wang, S. Synthesis of 1,3,4-oxadiazoles by iodine-mediated oxidative cyclization of methyl ketones with 4-phenylsemicarbazide. Synlett, 2022, 33(3), 269-272.
[http://dx.doi.org/10.1055/a-1707-0965]
[23]
Wang, Y.; Mu, S.; Li, X.; Song, Q. [4 + 1] Cyclization of benzohydrazide and ClCF2COONa towards 1,3,4-oxadiazoles and 1,3,4-oxadiazoles-d5. Chin. Chem. Lett., 2022, 33(3), 1511-1514.
[http://dx.doi.org/10.1016/j.cclet.2021.08.089]
[24]
Lu, F.; Gong, F.; Li, L.; Zhang, K.; Li, Z.; Zhang, X.; Yin, Y.; Wang, Y.; Gao, Z.; Zhang, H.; Lei, A. Electrochemical synthesis of 2,5‐Disubstituted 1,3,4‐oxadiazoles from α‐keto acids and acylhydrazines under mild conditions. Eur. J. Org. Chem., 2020, 2020(22), 3257-3260.
[http://dx.doi.org/10.1002/ejoc.202000311]
[25]
Semenova, M.D.; Popov, S.A.; Golubeva, T.S.; Baev, D.S.; Shults, E.E.; Turks, M. Synthesis and cytotoxicity of sulfanyl, sulfinyl and sulfonyl group containing ursane conjugates with 1,3,4‐Oxadiazoles and 1,2,4‐triazoles. ChemistrySelect, 2021, 6(25), 6472-6477.
[http://dx.doi.org/10.1002/slct.202101594]
[26]
Wang, S.; Qi, L.; Liu, H.; Lei, K.; Wang, X.; Liu, R. Synthesis of 1,3,4-oxadiazoles derivatives with antidepressant activity and their binding to the 5-HT 1A receptor. RSC Adv., 2020, 10(51), 30848-30857.
[http://dx.doi.org/10.1039/D0RA05886F ] [PMID: 35516063]
[27]
Dewangan, D.; Nakhate, K.T.; Verma, V.S.; Nagori, K.; Badwaik, H.; Nair, N.; Tripathi, D.K.; Mishra, A. Synthesis and molecular docking study of novel hybrids of 1, 3, 4‐oxadiazoles and quinoxaline as a potential analgesic and anti‐inflammatory agents. J. Heterocycl. Chem., 2018, 55(12), 2901-2910.
[http://dx.doi.org/10.1002/jhet.3363]
[28]
Popov, S.A.; Semenova, M.D.; Baev, D.S.; Frolova, T.S.; Shults, E.E.; Wang, C.; Turks, M. Synthesis of cytotoxic urs-12-ene- and 28-norurs-12-ene- type conjugates with amino- and mercapto-1,3,4-oxadiazoles and mercapto-1,2,4-triazoles. Steroids, 2020, 153, 108524.
[http://dx.doi.org/10.1016/j.steroids.2019.108524 ] [PMID: 31622615]
[29]
Bitla, S.; Sagurthi, S.R.; Dhanavath, R.; Puchakayala, M.R.; Birudaraju, S.; Gayatri, A.A.; Bhukya, V.K.; Atcha, K.R. Design and synthesis of triazole conjugated novel 2,5-diaryl substituted 1,3,4-oxadiazoles as potential antimicrobial and anti-fungal agents. J. Mol. Struct., 2020, 1220, 128705.
[http://dx.doi.org/10.1016/j.molstruc.2020.128705]
[30]
Prakash, J; Jigar, P.; Jayesh, J.; Bharat, P.; Piyush, V.; Limbachiya, M.C.; Solanki, M.R. Design, synthesis and Anti microbial screening of 1,3,4-oxadizole ring clubbed s-triazine derivatives. IJRMEET, 4(11)
[31]
Tresse, C.; Radigue, R.; Gomes Von Borowski, R.; Thepaut, M.; Hanh Le, H.; Demay, F.; Georgeault, S.; Dhalluin, A.; Trautwetter, A.; Ermel, G.; Blanco, C.; van de Weghe, P.; Jean, M.; Giard, J.C.; Gillet, R. Synthesis and evaluation of 1,3,4-oxadiazole derivatives for development as broad-spectrum antibiotics. Bioorg. Med. Chem., 2019, 27(21), 115097.
[http://dx.doi.org/10.1016/j.bmc.2019.115097] [PMID: 31540826]
[32]
Tiwari, D.; Narang, R.; Sudhakar, K.; Singh, V.; Lal, S. 1,3,4-oxadiazole derivatives as potential antimicrobial agents. Chem. Biol. Drug Des., 2022, 100(6), 1086-1121.
[33]
Kumar Singh, A.; Lohani, M.; Parthsarthy, R. Synthesis, characterization and anti-inflammatory activity of some 1, 3,4 -oxadiazole derivatives. Iran. J. Pharm. Res., 2013, 12(2), 319-323.
[PMID: 24250606]
[34]
Glomb, T.; Wiatrak, B.; Gębczak, K.; Gębarowski, T.; Bodetko, D.; Czyżnikowska, Ż.; Świątek, P. New 1,3,4-oxadiazole derivatives of pyridothiazine-1,1-dioxide with anti-inflammatory activity. Int. J. Mol. Sci., 2020, 21(23), 9122.
[http://dx.doi.org/10.3390/ijms21239122] [PMID: 33266208]
[35]
Singhai, A.; Gupta, M.K. Synthesis and characterization of 1,3,4-oxadiazole derivatives as potential anti-inflammatory and analgesic agents. Res J Pharm Technol., 2020, 13(12), 5898-5902.
[http://dx.doi.org/10.5958/0974-360X.2020.01029.X]
[36]
Bala, S. 1,3,4-oxadiazole derivatives: Synthesis, characterization, antimicrobial potential, and computational studies. Biomed Res Int., 2014, 2014, 172791.
[http://dx.doi.org/10.1155/2014/172791]
[37]
Bhat, K.I.; Sufeera, K.; Chaitanya, S.K.P. Synthesis, characterization and biological activity studies of 1,3,4-oxadiazole analogs. J. Young Pharm., 2011, 3(4), 310-314.
[http://dx.doi.org/10.4103/0975-1483.90243] [PMID: 22224038]
[38]
Zarrabi, A. Synthesis of new three-component derivatives of 1, 3, 4-oxadiazole and evaluation of their in vitro antibacterial and antifungal properties. Med. Lab. J., 2021, 15(5), 13-18.
[39]
Chaudhary, T.; Upadhyay, P.K. A review on novel synthesis approaches and biological activities of 1,2,4- oxadiazole and 1,3,4-oxadiazole tailored compounds. Curr. Org. Synth., 2022, 19(6), 731-747.
[http://dx.doi.org/10.2174/1570179419666220216122238 ] [PMID: 35170412]
[40]
Verma, G.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Akhter, M.; Shaquiquzzaman, M. A review exploring therapeutic worth of 1,3,4-oxadiazole tailored compounds. Mini Rev. Med. Chem., 2019, 19(6), 477-509.
[http://dx.doi.org/10.2174/1389557518666181015152433 ] [PMID: 30324877]
[41]
Verma, S.K.; Verma, R.; Verma, S.; Vaishnav, Y.; Tiwari, S.P.; Rakesh, K.P. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. Eur. J. Med. Chem., 2021, 209, 112886.
[http://dx.doi.org/10.1016/j.ejmech.2020.112886] [PMID: 33032083]
[42]
Glomb, T.; Świątek, P. Antimicrobial activity of 1,3,4-oxadiazole derivatives. Int. J. Mol. Sci., 2021, 22(13), 6979.
[http://dx.doi.org/10.3390/ijms22136979] [PMID: 34209520]
[43]
Arshad, M. 1, 3, 4-oxadiazole nucleus with versatile pharmacological applications: A Review. Int. J. Pharm. Sci. Res., 2014, 5(4), 1124-1137.
[44]
Qurrat-ul-Ain; Abid, A.; Lateef, M.; Rafiq, N.; Eijaz, S.; Tauseef, S. Multi-activity tetracoordinated pallado-oxadiazole thiones as anti-inflammatory, anti-Alzheimer, and anti-microbial agents: Structure, stability and bioactivity comparison with pallado-hydrazides. Biomed. Pharmacother., 2022, 146, 112561.
[http://dx.doi.org/10.1016/j.biopha.2021.112561] [PMID: 34965504]
[45]
Şahin, G.; Palaska, E.; Ekizoğlu, M.; Özalp, M. Synthesis and antimicrobial activity of some 1,3,4-oxadiazole derivatives. Farmaco, 2002, 57(7), 539-542.
[http://dx.doi.org/10.1016/S0014-827X(02)01245-4 ] [PMID: 12164209]
[46]
Chaudhary, M. Synthesis and pharmacological activity of some 1,2,4 oxadiazole I. J. Chem., 2001, 40B, 538-542.
[47]
Hiremath, S.P.; Sonar, V.N.; Sekhar, K.R.; Purohit, M.G. Synthesis and antibacterial activity of 1,3,4, oxadiazole. Indian J. Chem., 1989, 28B, 626.
[48]
Mashooq, A.B.; Khan, S.A.; Siddiqui, N. Synthesis and antibacterial activity of coumarin incorporated 1,3,4, oxadiazole. Indian J. Heterocycl. Chem., 2005, 14, 271.
[49]
Priya, V.; Frank; Balakrishna, K. The chemistry of imidazole derivatives. Indian J. Chem., 2005, 44B, 1456.
[50]
Ram, V.J. Synthesis, spectral, thermal analyses, molecular modeling, and antimicrobial activities of Cu (II)-complexes with 1,3,4-oxadiazole Schiff-base derivatives. Indian J. Chem., 1988, 35B, 980.
[51]
Misra, U.; Hikari, A.; Saxena, A.K.; Gurtu, S.; Shankar, K. Synthesis and biological evaluation of some new azolothieno[2,3-d]pyrimidines. Eur. J. Med. Chem., 1996, 31, 629.
[http://dx.doi.org/10.1016/0223-5234(96)89559-6]
[52]
Omar, F.A.; Mahfouz, N.M.; Rahman, M.A. Design, synthesis and antiinflammatory activity of some 1,3,4-oxadiazole derivatives. Eur. J. Med. Chem., 1996, 31(10), 819-825.
[http://dx.doi.org/10.1016/0223-5234(96)83976-6] [PMID: 22026938]
[53]
Amir, M.; Kumar, S. anti‐inflammatory and gastro sparing activity of some new indomethacin derivatives. Indian J. Heterocycl. Chem., 2003, 14, 51.
[54]
Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444.
[http://dx.doi.org/10.1038/nature07205] [PMID: 18650914]
[55]
Schetter, A.J.; Heegaard, N.H.H.; Harris, C.C. Inflammation and cancer: Interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis, 2010, 31(1), 37-49.
[http://dx.doi.org/10.1093/carcin/bgp272] [PMID: 19955394]
[56]
McGarry, T.; Biniecka, M.; Veale, D.J.; Fearon, U. Hypoxia, oxidative stress and inflammation. Free Radic. Biol. Med., 2018, 125, 15-24.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.042 ] [PMID: 29601945]
[57]
Kirkby, N.S.; Chan, M.V.; Zaiss, A.K.; Garcia-Vaz, E.; Jiao, J.; Berglund, L.M.; Verdu, E.F.; Ahmetaj-Shala, B.; Wallace, J.L.; Herschman, H.R.; Gomez, M.F.; Mitchell, J.A. Systematic study of constitutive cyclooxygenase-2 expression: Role of NF-κB and NFAT transcriptional pathways. Proc. Natl. Acad. Sci., 2016, 113(2), 434-439.
[http://dx.doi.org/10.1073/pnas.1517642113] [PMID: 26712011]
[58]
Patrignani, P.; Tacconelli, S.; Bruno, A.; Sostres, C.; Lanas, A. Managing the adverse effects of nonsteroidal anti-inflammatory drugs. Expert Rev. Clin. Pharmacol., 2011, 4(5), 605-621.
[http://dx.doi.org/10.1586/ecp.11.36] [PMID: 22114888]
[59]
Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441.
[http://dx.doi.org/10.1021/jm0613166] [PMID: 17341061]
[60]
Süleyman, H.; Demircan, B.; Karagöz, Y. Anti-inflammatory and side effects of cyclooxygenase inhibitors. Pharmacol. Rep., 2007, 59(3), 247-258.
[PMID: 17652824]
[61]
Singh, N.; Yeh, P.J. Suppressive drug combinations and their potential to combat antibiotic resistance. J. Antibiot., 2017, 70(11), 1033-1042.
[http://dx.doi.org/10.1038/ja.2017.102] [PMID: 28874848]
[62]
Alshon, A.; Almiahi, Y. Client’s attitude regarding antibiotics misuse in primary health care centers. Indian J. Forensic Med. Toxicol., 2020, 14(2), 1009-1011.
[63]
Jensen, C.S.; Nielsen, S.B.; Fynbo, L. Concluding Remarks on ‘Risking Antimicrobial Resistance’. Risking Antimicrobial Resistance; Springer, 2019, pp. 199-208.
[http://dx.doi.org/10.1007/978-3-319-90656-0_12]
[64]
Hellewell, L.; Bhakta, S. Chalcones, stilbenes and ketones have anti-infective properties via inhibition of bacterial drug-efflux and consequential synergism with antimicrobial agents. Access Microbiol., 2020, 2(4), acmi000105.
[http://dx.doi.org/10.1099/acmi.0.000105] [PMID: 33005869]
[65]
Hover, B.M.; Kim, S.H.; Katz, M.; Charlop-Powers, Z.; Owen, J.G.; Ternei, M.A.; Maniko, J.; Estrela, A.B.; Molina, H.; Park, S.; Perlin, D.S.; Brady, S.F. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat. Microbiol., 2018, 3(4), 415-422.
[http://dx.doi.org/10.1038/s41564-018-0110-1] [PMID: 29434326]
[66]
Sarveahrabi, Y.; Souldozi, A.; Talebi, R. 2-Substituent synthesis of 5-3-Methoxyphenyl and 5-4-methoxyphenyl-1, 3, 4-oxadiazoles, 2-yl-pyridine-2-yl-methanol in positions of 2 and 3 of 1, 3, 4-oxadiazoles containing halogen and the evaluation of their antibacterial properties. Navid No., 2020, 22(72), 1-13.
[67]
Capoci, I.R.G.; Sakita, K.M.; Faria, D.R.; Rodrigues-Vendramini, F.A.V.; Arita, G.S.; de Oliveira, A.G.; Felipe, M.S.; Maigret, B.; Bonfim-Mendonça, P.S.; Kioshima, E.S.; Svidzinski, T.I.E. Two new 1, 3, 4-oxadiazoles with effective antifungal activity against Candida albicans. Front. Microbiol., 2019, 10, 2130.
[http://dx.doi.org/10.3389/fmicb.2019.02130] [PMID: 31572335]
[68]
Patel, R.V.; Kumari, P.; Chikhalia, KH New quinolinyl-1,3,4-oxadiazoles: Synthesis, in vitro antibacterial, antifungal and antituberculosis studies. Med. Chem., 2013, 9(4), 596-607.
[69]
Albratty, M.; El-Sharkawy, K.A.; Alhazmi, H.A. Synthesis and evaluation of some new 1,3,4-oxadiazoles bearing thiophene, thiazole, coumarin, pyridine and pyridazine derivatives as antiviral agents. Acta Pharm., 2019, 69(2), 261-276.
[http://dx.doi.org/10.2478/acph-2019-0015] [PMID: 31259726]
[70]
Caneschi, W.; Enes, K.B.; Carvalho de Mendonça, C.; de Souza Fernandes, F.; Miguel, F.B.; da Silva Martins, J.; Le Hyaric, M.; Pinho, R.R.; Duarte, L.M.; Leal de Oliveira, M.A.; Dos Santos, H.F.; Paz Lopes, M.T.; Dittz, D.; Silva, H.; Costa Couri, M.R. Synthesis and anticancer evaluation of new lipophilic 1,2,4 and 1,3,4-oxadiazoles. Eur. J. Med. Chem., 2019, 165(165), 18-30.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.001 ] [PMID: 30654237]
[71]
Thakkar, S.S.; Thakor, P.; Doshi, H.; Ray, A. 1,2,4-Triazole and 1,3,4-oxadiazole analogues: Synthesis, MO studies, in silico molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities. Bioorg. Med. Chem., 2017, 25(15), 4064-4075.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy