Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

Mitochondrial Inherited Disorders and their Correlation with Neurodegenerative Diseases

Author(s): Sofjana Gushi and Vasileios Balis*

Volume 24, Issue 4, 2024

Published on: 01 November, 2023

Page: [381 - 393] Pages: 13

DOI: 10.2174/0118715303250271231018103202

Price: $65

Abstract

Mitochondria are essential organelles for the survival of a cell because they produce energy. The cells that need more mitochondria are neurons because they perform a variety of tasks that are necessary to support brain homeostasis. The build-up of abnormal proteins in neurons, as well as their interactions with mitochondrial proteins, or MAM proteins, cause serious health issues. As a result, mitochondrial functions, such as mitophagy, are impaired, resulting in the disorders described in this review. They are also due to mtDNA mutations, which alter the heritability of diseases. The topic of disease prevention, as well as the diagnosis, requires further explanation and exploration. Finally, there are treatments that are quite promising, but more detailed research is needed.

Next »
Graphical Abstract

[1]
Chen, J.Q.; Yager, J.D.; Russo, J. Regulation of mitochondrial respiratory chain structure and function by estrogens/estrogen receptors and potential physiological/pathophysiological implications. Biochim. Biophys. Acta Mol. Cell Res., 2005, 1746(1), 1-17.
[http://dx.doi.org/10.1016/j.bbamcr.2005.08.001] [PMID: 16169101]
[2]
Science in the news. Mighty mitochondria and neurodegenerative diseases. 2012. Available From: https://sitn.hms.harvard.edu/flash/2012/issue111/
[3]
Allen, A. Who discovered mitochondria - who discovered it? 2021. Available From: https://www.whodiscoveredit.com/who-discovered-mitochondria.html
[4]
MicroscopeMaster. Mitochondria - dfpageinition, discovery, importance and function. 2021. Available From: https://www.microscopemaster.com/mitochondria.html
[5]
NobelPrize. The nobel prize in chemistry 1997 2022. Available From: https://www.nobelprize.org/prizes/chemistry/1997/press-release/
[6]
Yan, C.; Duanmu, X.; Zeng, L.; Liu, B.; Song, Z. Mitochondrial DNA: Distribution, mutations, and elimination. Cells, 2019, 8(4), 379.
[http://dx.doi.org/10.3390/cells8040379] [PMID: 31027297]
[7]
Zsurka, G.; Kunz, W.S. Mitochondrial involvement in neurodegenerative diseases. IUBMB Life, 2013, 65(3), 263-272.
[http://dx.doi.org/10.1002/iub.1126] [PMID: 23341346]
[8]
Schapira, A.H.V. Mitochondrial diseases. Lancet, 2012, 379(9828), 1825-1834.
[http://dx.doi.org/10.1016/S0140-6736(11)61305-6] [PMID: 22482939]
[9]
Martín-Jiménez, R.; Lurette, O.; Hebert-Chatelain, E. Damage in mitochondrial DNA associated with parkinson’s disease. DNA Cell Biol., 2020, 39(8), 1421-1430.
[http://dx.doi.org/10.1089/dna.2020.5398] [PMID: 32397749]
[10]
Lezi, E., Sr; Swerdlow, R.H. Mitochondria in neurodegeneration. Adv. Exp. Med. Biol., 2012, 942, 269-286.
[http://dx.doi.org/10.1007/978-94-007-2869-1_12] [PMID: 22399427]
[11]
Shang, D.; Huang, M.; Wang, B.; Yan, X.; Wu, Z.; Zhang, X. mtDNA maintenance and alterations in the pathogenesis of neurodegenerative diseases. Curr. Neuropharmacol., 2023, 21(3), 578-598.
[http://dx.doi.org/10.2174/1570159X20666220810114644] [PMID: 35950246]
[12]
Lin, F.; Luo, S.Q. Mitochondria in neurodegenerative diseases. CNS Neurosci. Ther., 2019, 25(7), 813-815.
[http://dx.doi.org/10.1111/cns.13183] [PMID: 31197947]
[13]
Granat, L.; Hunt, R.J.; Bateman, J.M. Mitochondrial retrograde signalling in neurological disease. 2020. Available From: https://pubmed.ncbi.nlm.nih.gov/32362256/
[http://dx.doi.org/10.1098/rstb.2019.0415]
[14]
Matilla-Dueñas, A.; Corral-Juan, M.; Rodríguez-Palmero Seuma, A.; Vilas, D.; Ispierto, L.; Morais, S.; Sequeiros, J.; Alonso, I.; Volpini, V.; Serrano-Munuera, C.; Pintos-Morell, G.; Álvarez, R.; Sánchez, I. Rare neurodegenerative diseases: Clinical and genetic update. Adv. Exp. Med. Biol., 2017, 1031, 443-496.
[http://dx.doi.org/10.1007/978-3-319-67144-4_25] [PMID: 29214587]
[15]
Mandal, A. Parkinson’s disease history. 2009. Available From: https://www.news-medical.net/health/Parkinsons-Disease-History.aspx#:~:text=Nomenclature,as
[16]
[17]
ALS TA. Understanding ALS. 2023. Available From: https://www.als.org/understanding-als#:~:text=ALS
[18]
McColgan, P.; Tabrizi, S.J. Huntington’s disease: A clinical review. Eur. J. Neurol., 2018, 25(1), 24-34.
[http://dx.doi.org/10.1111/ene.13413] [PMID: 28817209]
[19]
Winfrey, S.; Berman, E. The history of spinal muscular atrophy. 2021. Available From: https://www.mysmateam.com/resources/the-history-of-spinal-muscular-atrophy#:~:text=Cases
[20]
NIA. Alzheimer’s disease Fact Sheet. 2023. Available From: https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet#:~:text=Alzheimer’s
[21]
Rodrigues e Silva, A.M.; Geldsetzer, F.; Holdorff, B.; Kielhorn, F.W.; Balzer-Geldsetzer, M.; Oertel, W.H.; Hurtig, H.; Dodel, R. Who was the man who discovered the “Lewy bodies”? Mov. Disord., 2010, 25(12), 1765-1773.
[http://dx.doi.org/10.1002/mds.22956] [PMID: 20669275]
[22]
Selim, L.A.; Hassaan, H. Mitochondrial diseases as model of neurodegeneration. Adv. Exp. Med. Biol., 2017, 1007, 129-155.
[http://dx.doi.org/10.1007/978-3-319-60733-7_8] [PMID: 28840556]
[23]
Kirches, E. LHON: Mitochondrial mutations and more. Curr. Genomics, 2011, 12(1), 44-54.
[http://dx.doi.org/10.2174/138920211794520150] [PMID: 21886454]
[24]
Khanh Vu, T.H.; Zhu, R. Optic nerve structure and pathologies. Pathobiology of Human Disease; Elsevier: Amsterdam, 2014, pp. 2115-2125.
[http://dx.doi.org/10.1016/B978-0-12-386456-7.04707-9]
[25]
MDA. Charcot-marie-tooth disease. 2015. Available From: https://www.mda.org/disease/charcot-marie-tooth#:~:text=Charcot-Marie-Tooth
[26]
Mancuso, M.; Gruosso, F. MedLink neurology 2022. Available From: https://www.medlink.com/articles/melas#:~:text=Historical
[27]
NORD. MERRF Syndrome. 2021. Available From: https://rarediseases.org/rare-diseases/merrf-syndrome/
[28]
Tampi, R.R.; Young, J.J.; Tampi, D. Behavioral symptomatology and psychopharmacology of Lewy body dementia. Handb. Clin. Neurol., 2019, 165, 59-70.
[http://dx.doi.org/10.1016/B978-0-444-64012-3.00005-8]
[29]
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet, 2021, 397(10284), 1577-1590.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[30]
Pan, L.; Feigin, A. Huntington’s disease: New frontiers in therapeutics. Curr. Neurol. Neurosci. Rep., 2021, 21(3), 10.
[http://dx.doi.org/10.1007/s11910-021-01093-3] [PMID: 33586075]
[31]
Cerri, S.; Mus, L.; Blandini, F. Parkinson’s disease in women and men: What’s the difference? J. Parkinsons Dis., 2019, 9(3), 501-515.
[http://dx.doi.org/10.3233/JPD-191683] [PMID: 31282427]
[32]
Rojas, P.; de Hoz, R.; Cadena, M.; Salobrar-García, E.; Fernández-Albarral, J.A.; López-Cuenca, I.; Elvira-Hurtado, L.; Urcelay-Segura, J.L.; Salazar, J.J.; Ramírez, J.M.; Ramírez, A.I. Neuro-ophthalmological findings in friedreich’s ataxia. J. Pers. Med., 2021, 11(8), 708.
[http://dx.doi.org/10.3390/jpm11080708] [PMID: 34442352]
[33]
Norris, S.P.; Likanje, M.F.N.; Andrews, J.A. Amyotrophic lateral sclerosis: Update on clinical management. Curr. Opin. Neurol., 2020, 33(5), 641-648.
[http://dx.doi.org/10.1097/WCO.0000000000000864] [PMID: 32868602]
[34]
Malkki, H. Mitochondrial dysfunction could precipitate motor neuron loss in spinal muscular atrophy. Nat. Rev. Neurol., 2016, 12(10), 556-556.
[http://dx.doi.org/10.1038/nrneurol.2016.126] [PMID: 27562548]
[35]
Nicolau, S.; Waldrop, M.A.; Connolly, A.M.; Mendell, J.R. Spinal Muscular Atrophy. Semin. Pediatr. Neurol., 2021, 37, 100878.
[http://dx.doi.org/10.1016/j.spen.2021.100878] [PMID: 33892848]
[36]
Ramasamy, S.; Manickam, A.H.; Michael, M.J. Mitochondrial genetics and therapeutic overview of Leber’s hereditary optic neuropathy. Indian J. Ophthalmol., 2017, 65(11), 1087-1092.
[http://dx.doi.org/10.4103/ijo.IJO_358_17] [PMID: 29133631]
[37]
Landes, T.; Leroy, I.; Bertholet, A.; Diot, A.; Khosrobakhsh, F.; Daloyau, M.; Davezac, N.; Miquel, M.C.; Courilleau, D.; Guillou, E.; Olichon, A.; Lenaers, G.; Arnauné-Pelloquin, L.; Emorine, L.J.; Belenguer, P. OPA1 (dys)functions. Semin. Cell Dev. Biol., 2010, 21(6), 593-598.
[http://dx.doi.org/10.1016/j.semcdb.2009.12.012] [PMID: 20045077]
[38]
Roger, A.J.; Muñoz-Gómez, S.A.; Kamikawa, R. The origin and diversification of mitochondria. 2017. Available From: https://www.cell.com/current-biology/references/S0960-9822%2817%2931179-X#:~:text=Mitochondria
[http://dx.doi.org/10.1016/j.cub.2017.09.015]
[39]
Nunnari, J.; Suomalainen, A. Mitochondria: In sickness and in health. Cell, 2012, 148(6), 1145-1159.
[http://dx.doi.org/10.1016/j.cell.2012.02.035] [PMID: 22424226]
[40]
Scitable by Nature Education. Mitochondria. 2014. Available From: https://www.nature.com/scitable/topicpage/mitochondria-14053590/
[41]
Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1066-1077.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.010] [PMID: 27836629]
[42]
van der Giezen, M.; Tovar, J. Degenerate mitochondria. EMBO Rep., 2005, 6(6), 525-530.
[http://dx.doi.org/10.1038/sj.embor.7400440] [PMID: 15940286]
[43]
Frey, T.G.; Mannella, C.A. The internal structure of mitochondria. Trends Biochem. Sci., 2000, 25(7), 319-324.
[http://dx.doi.org/10.1016/S0968-0004(00)01609-1] [PMID: 10871882]
[44]
Tan, Y.Q.; Zhang, X.; Zhang, S.; Zhu, T.; Garg, M.; Lobie, P.E.; Pandey, V. Mitochondria: The metabolic switch of cellular oncogenic transformation. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188534.
[http://dx.doi.org/10.1016/j.bbcan.2021.188534] [PMID: 33794332]
[45]
van der Bliek, A.M.; Sedensky, M.M.; Morgan, P.G. Cell Biology of the Mitochondrion. Genetics, 2017, 207(3), 843-871.
[http://dx.doi.org/10.1534/genetics.117.300262] [PMID: 29097398]
[46]
Dzbek, J.; Korzeniewski, B. Control over the contribution of the mitochondrial membrane potential (DeltaPsi) and proton gradient (DeltapH) to the protonmotive force (Deltap). in silico studies. J. Biol. Chem., 2008, 283(48), 33232-33239.
[http://dx.doi.org/10.1074/jbc.M802404200] [PMID: 18694940]
[47]
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed; Garland Science: New York, 2002.
[48]
Klopstock, T.; Priglinger, C.; Yilmaz, A.; Kornblum, C.; Distelmaier, F.; Prokisch, H. Mitochondrial disorders. Dtsch. Arztebl. Int., 2021, 118(44), 741-748.
[PMID: 34158150]
[49]
Kramer, P.; Bressan, P. Our (Mother’s) mitochondria and our mind. Perspect. Psychol. Sci., 2018, 13(1), 88-100.
[http://dx.doi.org/10.1177/1745691617718356] [PMID: 28937858]
[50]
Boguszewska, K.; Szewczuk, M. Kaźmierczak-Barańska, J.; Karwowski, B.T. The similarities between human mitochondria and bacteria in the context of structure, genome, and base excision repair system. Molecules, 2020, 25(12), 2857.
[http://dx.doi.org/10.3390/molecules25122857] [PMID: 32575813]
[51]
Ng, Y.S.; Bindoff, L.A.; Gorman, G.S.; Klopstock, T.; Kornblum, C.; Mancuso, M.; McFarland, R.; Sue, C.M.; Suomalainen, A.; Taylor, R.W.; Thorburn, D.R.; Turnbull, D.M. Mitochondrial disease in adults: Recent advances and future promise. Lancet Neurol., 2021, 20(7), 573-584.
[http://dx.doi.org/10.1016/S1474-4422(21)00098-3] [PMID: 34146515]
[52]
McCormick, E.M.; Zolkipli-Cunningham, Z.; Falk, M.J. Mitochondrial disease genetics update: Recent insights into the molecular diagnosis and expanding phenotype of primary mitochondrial disease. Curr. Opin. Pediatr., 2018, 30(6), 714-724.
[http://dx.doi.org/10.1097/MOP.0000000000000686] [PMID: 30199403]
[53]
Andre, J. Mitochondria. Biol. Cell, 1994, 80(2-3), 103-106.
[PMID: 8087057]
[54]
Ankel-Simons, F.; Cummins, J.M. Misconceptions about mitochondria and mammalian fertilization: Implications for theories on human evolution. Proc. Natl. Acad. Sci. USA, 1996, 93(24), 13859-13863.
[http://dx.doi.org/10.1073/pnas.93.24.13859] [PMID: 8943026]
[55]
Mishra, P.; Chan, D.C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol., 2014, 15(10), 634-646.
[http://dx.doi.org/10.1038/nrm3877] [PMID: 25237825]
[56]
Panchal, K.; Tiwari, A.K. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion, 2019, 47, 151-173.
[http://dx.doi.org/10.1016/j.mito.2018.11.002] [PMID: 30408594]
[57]
Newman, N.J. Leber’s hereditary optic neuropathy. New genetic considerations. Arch. Neurol., 1993, 50(5), 540-548.
[http://dx.doi.org/10.1001/archneur.1993.00540050082021] [PMID: 8489411]
[58]
Kim, U.S.; Jurkute, N.; Yu-Wai-Man, P. Leber Hereditary optic neuropathy-light at the end of the tunnel? Asia Pac. J. Ophthalmol. (Phila.), 2019, 7(4), 242-245.
[http://dx.doi.org/10.22608/APO.2018293] [PMID: 30008192]
[59]
Sundaramurthy, S. SelvaKumar, A.; Ching, J.; Dharani, V.; Sarangapani, S.; Yu-Wai-Man, P. Leber hereditary optic neuropathy—new insights and old challenges. Grafpagees Arch. Clin. Exp. Ophthalmol., 2021, 259(9), 2461-2472.
[http://dx.doi.org/10.1007/s00417-020-04993-1] [PMID: 33185731]
[60]
Aijaz, S.; Erskine, L.; Jfpagefery, G.; Bhattacharya, S.S.; Votruba, M. Developmental Expression Profile of the Optic Atrophy Gene Product: OPA1 Is Not Localized Exclusively in the Mammalian Retinal Ganglion Cell Layer. Investig Opthalmology Vis Sci., 2004, 45(6), 1667.
[61]
Ba-Ali, S.; Lund-Andersen, H. Pupillometric evaluation of the melanopsin containing retinal ganglion cells in mitochondrial and non-mitochondrial optic neuropathies. Mitochondrion, 2017, 36, 124-129.
[http://dx.doi.org/10.1016/j.mito.2017.07.003] [PMID: 28716667]
[62]
Amati-Bonneau, P.; Milea, D.; Bonneau, D.; Chevrollier, A.; Ferré, M.; Guillet, V.; Gueguen, N.; Loiseau, D.; Crescenzo, M-A.P.; Verny, C.; Procaccio, V.; Lenaers, G.; Reynier, P. OPA1-associated disorders: Phenotypes and pathophysiology. Int. J. Biochem. Cell Biol., 2009, 41(10), 1855-1865.
[http://dx.doi.org/10.1016/j.biocel.2009.04.012] [PMID: 19389487]
[63]
Zorzano, A.; Claret, M. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Front. Aging Neurosci., 2015, 7, 101.
[http://dx.doi.org/10.3389/fnagi.2015.00101] [PMID: 26113818]
[64]
Finsterer, J.; Mancuso, M.; Pareyson, D.; Burgunder, J.M.; Klopstock, T. Mitochondrial disorders of the retinal ganglion cells and the optic nerve. Mitochondrion, 2018, 42, 1-10.
[http://dx.doi.org/10.1016/j.mito.2017.10.003] [PMID: 29054473]
[65]
Jani-Acsadi, A.; Ounpuu, S.; Pierz, K.; Acsadi, G. Pediatric Charcot-Marie-Tooth disease. Pediatr. Clin. North Am., 2015, 62(3), 767-786.
[http://dx.doi.org/10.1016/j.pcl.2015.03.012] [PMID: 26022174]
[66]
Schiavon, C.R.; Shadel, G.S.; Manor, U. Impaired mitochondrial mobility in charcot-marie-tooth disease. Front. Cell Dev. Biol., 2021, 9, 624823.
[http://dx.doi.org/10.3389/fcell.2021.624823] [PMID: 33598463]
[67]
Zhao, M.M.; Zhang, Y.; Bao, X.H. Myoclonus epilepsy with ragged-red fibers: A case report and literature review. Beijing Da Xue Xue Bao, 2015, 47(6), 1034-1036.
[PMID: 26679672]
[68]
Orsucci, D.; Caldarazzo Ienco, E.; Rossi, A.; Siciliano, G.; Mancuso, M. Mitochondrial syndromes revisited. J. Clin. Med., 2021, 10(6), 1249.
[http://dx.doi.org/10.3390/jcm10061249] [PMID: 33802970]
[69]
Henry, C.; Patel, N.; Shaffer, W.; Murphy, L.; Park, J.; Spieler, B. Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes-MELAS syndrome. Ochsner J., 2017, 17(3), 296-301.
[PMID: 29026367]
[70]
Murakami, H.; Ono, K. MELAS: mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes. Brain Nerve, 2017, 69(2), 111-117.
[PMID: 28202819]
[71]
Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2018, 10(4), a033118.
[http://dx.doi.org/10.1101/cshperspect.a033118] [PMID: 28716886]
[72]
Chi, H.; Chang, H.Y.; Sang, T.K. Neuronal cell death mechanisms in major neurodegenerative diseases. Int. J. Mol. Sci., 2018, 19(10), 3082.
[http://dx.doi.org/10.3390/ijms19103082] [PMID: 30304824]
[73]
Berman, T.; Bayati, A. What are neurodegenerative diseases and how do they affect the brain? 2018. Available From: https://kids.frontiersin.org/articles/10.3389/frym.2018.00070
[74]
Armstrong, R.A.; Lantos, P.L.; Cairns, N.J. Overlap between neurodegenerative disorders. Neuropathology, 2005, 25(2), 111-124.
[http://dx.doi.org/10.1111/j.1440-1789.2005.00605.x] [PMID: 15875904]
[75]
Dugger, B.N.; Dickson, D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[76]
Kovacs, G.G. Concepts and classification of neurodegenerative diseases. Handb. Clin. Neurol., 2018, 145, 301-307.
[http://dx.doi.org/10.1016/B978-0-12-802395-2.00021-3] [PMID: 28987178]
[77]
Golpich, M.; Amini, E.; Mohamed, Z.; Azman Ali, R.; Mohamed Ibrahim, N.; Ahmadiani, A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neurosci. Ther., 2017, 23(1), 5-22.
[http://dx.doi.org/10.1111/cns.12655] [PMID: 27873462]
[78]
Moujalled, D.; Strasser, A.; Liddell, J.R. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ., 2021, 28(7), 2029-2044.
[http://dx.doi.org/10.1038/s41418-021-00814-y] [PMID: 34099897]
[79]
Cha, M.Y.; Kim, D.K.; Mook-Jung, I. The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp. Mol. Med., 2015, 47(3), e150-e150.
[http://dx.doi.org/10.1038/emm.2014.122] [PMID: 25766619]
[80]
Tapia-Rojas, C.; Torres, A.K.; Rivera, B.I.; Polanco, C.M.; Jara, C. Phosphorylated tau as a toxic agent in synaptic mitochondria: Implications in aging and Alzheimer’s disease. Neural Regen. Res., 2022, 17(8), 1645-1651.
[http://dx.doi.org/10.4103/1673-5374.332125] [PMID: 35017410]
[81]
Youle, R.J.; Karbowski, M. Mitochondrial fission in apoptosis. Nat. Rev. Mol. Cell Biol., 2005, 6(8), 657-663.
[http://dx.doi.org/10.1038/nrm1697] [PMID: 16025099]
[82]
Guo, C.; Sun, L.; Chen, X.; Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res., 2013, 8(21), 2003-2014.
[PMID: 25206509]
[83]
Paillusson, S.; Stoica, R.; Gomez-Suaga, P.; Lau, D.H.W.; Mueller, S.; Miller, T.; Miller, C.C.J. There’s something wrong with my MAM; the ER–mitochondria axis and neurodegenerative diseases. Trends Neurosci., 2016, 39(3), 146-157.
[http://dx.doi.org/10.1016/j.tins.2016.01.008] [PMID: 26899735]
[84]
Liu, J.; Yang, J. Mitochondria-associated membranes: A hub for neurodegenerative diseases. Biomed. Pharmacother., 2022, 149, 112890.
[http://dx.doi.org/10.1016/j.biopha.2022.112890] [PMID: 35367757]
[85]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[86]
Pinto, M.; Moraes, C.T. Mitochondrial genome changes and neurodegenerative diseases. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(8), 1198-1207.
[http://dx.doi.org/10.1016/j.bbadis.2013.11.012] [PMID: 24252612]
[87]
Procaccio, V.; Bris, C.; Chao de la Barca, J.M.; Oca, F.; Chevrollier, A.; Amati-Bonneau, P.; Bonneau, D.; Reynier, P. Perspectives of drug-based neuroprotection targeting mitochondria. Rev. Neurol. (Paris), 2014, 170(5), 390-400.
[http://dx.doi.org/10.1016/j.neurol.2014.03.005] [PMID: 24792485]
[88]
Kausar, S.; Wang, F.; Cui, H. The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative Diseases. Cells, 2018, 7(12), 274.
[http://dx.doi.org/10.3390/cells7120274] [PMID: 30563029]
[89]
Bernstein, S. What is lewy body dementia? 2007. Available From: https://www.webmd.com/alzheimers/guide/dementia-lewy-bodies
[90]
Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Transm. (Vienna), 2017, 124(8), 901-905.
[http://dx.doi.org/10.1007/s00702-017-1686-y] [PMID: 28150045]
[91]
Goyal, V.; Radhakrishnan, D. Parkinson’s disease: A review. Neurol. India, 2018, 66(7), 26.
[http://dx.doi.org/10.4103/0028-3886.226451] [PMID: 30470656]
[92]
Mahul-Mellier, A-L.; Burtscher, J.; Maharjan, N.; Weerens, L.; Croisier, M.; Kuttler, F.; Leleu, M.; Knott, G.; Lashuel, H.A. The process of Lewy body formation, rather than simply alpha-synuclein fibrillization, is the major driver of neurodegeneration in synucleinopathies. Proc. Natl. Acad. Sci. USA, 2020, 117(9), 4971-4982.
[http://dx.doi.org/10.1073/pnas.1913904117] [PMID: 32075919]
[93]
Minami, A.; Nakanishi, A.; Matsuda, S.; Kitagishi, Y.; Ogura, Y. Function of α-synuclein and PINK1 in Lewy body dementia (Review). Int. J. Mol. Med., 2015, 35(1), 3-9.
[http://dx.doi.org/10.3892/ijmm.2014.1980] [PMID: 25355138]
[94]
Spano, M.; Signorelli, M.; Vitaliani, R.; Aguglia, E.; Giometto, B. The possible involvement of mitochondrial dysfunctions in Lewy body dementia: A systematic review. Funct. Neurol., 2015, 30(3), 151-158.
[http://dx.doi.org/10.11138/FNeur/2015.30.3.151] [PMID: 26346695]
[95]
Garcia-Esparcia, P.; López-González, I.; Grau-Rivera, O.; García-Garrido, M.F.; Konetti, A.; Llorens, F.; Zafar, S.; Carmona, M.; del Rio, J.A.; Zerr, I.; Gelpi, E.; Ferrer, I. Dementia with lewy bodies: molecular pathology in the frontal cortex in typical and rapidly progressive forms. Front. Neurol., 2017, 8, 89.
[http://dx.doi.org/10.3389/fneur.2017.00089] [PMID: 28348546]
[96]
Sun, N.; Ozgen, S.; Krigman, J.; Zhang, R. Significance of mitochondrial activity in neurogenesis and neurodegenerative diseases. Neural Regen. Res., 2022, 17(4), 741-747.
[http://dx.doi.org/10.4103/1673-5374.322429] [PMID: 34472459]
[97]
Malpartida, A.B.; Williamson, M.; Narendra, D.P.; Wade-Martins, R.; Ryan, B.J. Mitochondrial dysfunction and mitophagy in parkinson’s disease: From mechanism to therapy. Trends Biochem. Sci., 2021, 46(4), 329-343.
[http://dx.doi.org/10.1016/j.tibs.2020.11.007] [PMID: 33323315]
[98]
Lopez Sanchez, M.I.G.; Crowston, J.G.; Mackey, D.A.; Trounce, I.A. Emerging mitochondrial therapeutic targets in optic neuropathies. Pharmacol. Ther., 2016, 165, 132-152.
[http://dx.doi.org/10.1016/j.pharmthera.2016.06.004] [PMID: 27288727]
[99]
Scheltens, P.; Blennow, K.; Breteler, M.M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s disease. Lancet, 2016, 388(10043), 505-517.
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[100]
Agrawal, I.; Jha, S. Mitochondrial dysfunction and alzheimer’s disease: Role of microglia. Front. Aging Neurosci., 2020, 12, 252.
[http://dx.doi.org/10.3389/fnagi.2020.00252] [PMID: 32973488]
[101]
Bell, S.M.; Barnes, K.; De Marco, M.; Shaw, P.J.; Ferraiuolo, L.; Blackburn, D.J.; Venneri, A.; Mortiboys, H. Mitochondrial dysfunction in alzheimer’s disease: A biomarker of the future? Biomedicines, 2021, 9(1), 63.
[http://dx.doi.org/10.3390/biomedicines9010063] [PMID: 33440662]
[102]
Picone, P.; Nuzzo, D.; Caruana, L.; Scafidi, V.; Di Carlo, M. Mitochondrial dysfunction: Different routes to Alzheimer’s disease therapy. Oxid. Med. Cell. Longev., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/780179] [PMID: 25221640]
[103]
Navaratnarajah, T.; Anand, R.; Reichert, A.S.; Distelmaier, F. The relevance of mitochondrial morphology for human disease. Int. J. Biochem. Cell Biol., 2021, 134, 105951.
[http://dx.doi.org/10.1016/j.biocel.2021.105951] [PMID: 33610749]
[104]
Wang, W.; Zhao, F.; Ma, X.; Perry, G.; Zhu, X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Mol. Neurodegener., 2020, 15(1), 30.
[http://dx.doi.org/10.1186/s13024-020-00376-6] [PMID: 32471464]
[105]
Moreira, P.I.; Carvalho, C.; Zhu, X.; Smith, M.A.; Perry, G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta Mol. Basis Dis., 2010, 1802(1), 2-10.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.006] [PMID: 19853658]
[106]
Pandey, M.; Rajamma, U. Huntington’s disease: The coming of age. J. Genet., 2018, 97(3), 649-664.
[http://dx.doi.org/10.1007/s12041-018-0957-1] [PMID: 30027901]
[107]
Oliveira, J.M.A. Nature and cause of mitochondrial dysfunction in Huntington’s disease: Focusing on huntingtin and the striatum. J. Neurochem., 2010, 114(1)
[http://dx.doi.org/10.1111/j.1471-4159.2010.06741.x] [PMID: 20403078]
[108]
Sharma, A.; Behl, T.; Sharma, L.; Aelya, L.; Bungau, S. Mitochondrial dysfunction in huntington’s disease: Pathogenesis and therapeutic opportunities. Curr. Drug Targets, 2021, 22(14), 1637-1667.
[http://dx.doi.org/10.2174/1389450122666210224105945] [PMID: 33655829]
[109]
Guedes-Dias, P.; Pinho, B.R.; Soares, T.R.; de Proença, J.; Duchen, M.R.; Oliveira, J.M.A. Mitochondrial dynamics and quality control in Huntington’s disease. Neurobiol. Dis., 2016, 90, 51-57.
[http://dx.doi.org/10.1016/j.nbd.2015.09.008] [PMID: 26388396]
[110]
Jodeiri Farshbaf, M.; Ghaedi, K. Huntington’s Disease and Mitochondria. Neurotox. Res., 2017, 32(3), 518-529.
[http://dx.doi.org/10.1007/s12640-017-9766-1] [PMID: 28639241]
[111]
Šonský, I. Vodička, P.; Vodičková Kepková, K.; Hansíková, H. Mitophagy in Huntington’s disease. Neurochem. Int., 2021, 149, 105147.
[http://dx.doi.org/10.1016/j.neuint.2021.105147] [PMID: 34329735]
[112]
Zhang, S.; Napierala, M.; Napierala, J.S. Therapeutic prospects for friedreich’s ataxia. Trends Pharmacol. Sci., 2019, 40(4), 229-233.
[http://dx.doi.org/10.1016/j.tips.2019.02.001] [PMID: 30905359]
[113]
Tan, G.; Chen, L-S.; Lonnerdal, B.; Gellera, C.; Taroni, F.A.; Cortopassi, G.A. Frataxin expression rescues mitochondrial dysfunctions in FRDA cells. Hum. Mol. Genet., 2001, 10(19), 2099-2107.
[http://dx.doi.org/10.1093/hmg/10.19.2099] [PMID: 11590127]
[114]
Rodríguez, L.R.; Calap-Quintana, P.; Lapeña-Luzón, T.; Pallardó, F.V.; Schneuwly, S.; Navarro, J.A.; Gonzalez-Cabo, P. Oxidative stress modulates rearrangement of endoplasmic reticulum-mitochondria contacts and calcium dysregulation in a Friedreich’s ataxia model. Redox Biol., 2020, 37, 101762.
[http://dx.doi.org/10.1016/j.redox.2020.101762] [PMID: 33128998]
[115]
Kaplan, J. Friedreich’s ataxia is a mitochondrial disorder. Proc. Natl. Acad. Sci. USA, 1999, 96(20), 10948-10949.
[http://dx.doi.org/10.1073/pnas.96.20.10948] [PMID: 10500103]
[116]
Jasoliya, M.J.; McMackin, M.Z.; Henderson, C.K.; Perlman, S.L.; Cortopassi, G.A. Frataxin dfpageiciency impairs mitochondrial biogenesis in cells, mice and humans. Hum. Mol. Genet., 2017, 26(14), 2627-2633.
[http://dx.doi.org/10.1093/hmg/ddx141] [PMID: 28444186]
[117]
Lodi, R.; Taylor, D.J.; Schapira, A.H.V. Mitochondrial dysfunction in friedreich’s ataxia. Neurosignals, 2001, 10(3-4), 263-270.
[http://dx.doi.org/10.1159/000046891] [PMID: 11351132]
[118]
Abeti, R.; Parkinson, M.H.; Hargreaves, I.P.; Angelova, P.R.; Sandi, C.; Pook, M.A.; Giunti, P.; Abramov, A.Y. ‘Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich’s ataxia’. Cell Death Dis., 2016, 7(5), e2237-e2237.
[http://dx.doi.org/10.1038/cddis.2016.111] [PMID: 27228352]
[119]
Hulisz, D. Amyotrophic lateral sclerosis: Disease state overview. Am. J. Manag. Care, 2018, 24(15)(Suppl.), S320-S326.
[PMID: 30207670]
[120]
Mehta, A.R.; Walters, R.; Waldron, F.M.; Pal, S.; Selvaraj, B.T.; Macleod, M.R.; Hardingham, G.E.; Chandran, S.; Gregory, J.M. Targeting mitochondrial dysfunction in amyotrophic lateral sclerosis: A systematic review and meta-analysis. Brain Commun., 2019, 1(1), fcz009.
[http://dx.doi.org/10.1093/braincomms/fcz009] [PMID: 32133457]
[121]
Dafinca, R.; Barbagallo, P.; Talbot, K. The role of mitochondrial dysfunction and ER stress in TDP-43 and C9ORF72 ALS. Front. Cell. Neurosci., 2021, 15, 653688.
[http://dx.doi.org/10.3389/fncel.2021.653688] [PMID: 33867942]
[122]
Singh, T.; Jiao, Y.; Ferrando, L.M.; Yablonska, S.; Li, F.; Horoszko, E.C.; Lacomis, D.; Friedlander, R.M.; Carlisle, D.L. Neuronal mitochondrial dysfunction in sporadic amyotrophic lateral sclerosis is developmentally regulated. Sci. Rep., 2021, 11(1), 18916.
[http://dx.doi.org/10.1038/s41598-021-97928-7] [PMID: 34556702]
[123]
Dupuis, L.; Gonzalez de Aguilar, J.L.; Oudart, H.; de Tapia, M.; Barbeito, L.; Lofpagefler, J.P. Mitochondria in amyotrophic lateral sclerosis: A trigger and a target. Neurodegener. Dis., 2004, 1(6), 245-254.
[http://dx.doi.org/10.1159/000085063] [PMID: 16908975]
[124]
Calió, M.L.; Henriques, E.; Siena, A.; Bertoncini, C.R.A.; Gil-Mohapel, J.; Rosenstock, T.R. Mitochondrial dysfunction, neurogenesis, and epigenetics: Putative implications for amyotrophic lateral sclerosis neurodegeneration and treatment. Front. Neurosci., 2020, 14, 679.
[http://dx.doi.org/10.3389/fnins.2020.00679] [PMID: 32760239]
[125]
Smith, E.F.; Shaw, P.J.; De Vos, K.J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett., 2019, 710, 132933.
[http://dx.doi.org/10.1016/j.neulet.2017.06.052] [PMID: 28669745]
[126]
Jiang, Z.; Wang, W.; Perry, G.; Zhu, X.; Wang, X. Mitochondrial dynamic abnormalities in amyotrophic lateral sclerosis. Transl. Neurodegener., 2015, 4(1), 14.
[http://dx.doi.org/10.1186/s40035-015-0037-x] [PMID: 26225210]
[127]
Mercuri, E.; Finkel, R.S.; Muntoni, F.; Wirth, B.; Montes, J.; Main, M.; Mazzone, E.S.; Vitale, M.; Snyder, B.; Quijano-Roy, S.; Bertini, E.; Davis, R.H.; Meyer, O.H.; Simonds, A.K.; Schroth, M.K.; Graham, R.J.; Kirschner, J.; Iannaccone, S.T.; Crawford, T.O.; Woods, S.; Qian, Y.; Sejersen, T.; Muntoni, F.; Wirth, B.; Tiziano, F.D.; Kirschner, J.; Tizzano, E.; Topaloglu, H.; Swoboda, K.; Laing, N.; Kayoko, S.; Prior, T.; Chung, W.K.; Wu, S-M.; Montes, J.; Mazzone, E.; Main, M.; Coleman, C.; Gee, R.; Glanzman, A.; Kroksmark, A-K.; Krosschell, K.; Nelson, L.; Rose, K. Stępień A.; Vuillerot, C.; Vitale, M.; Snyder, B.; Quijano-Roy, S.; Dubousset, J.; Farrington, D.; Flynn, J.; Halanski, M.; Hasler, C.; Miladi, L.; Reilly, C.; Roye, B.; Sponseller, P.; Yazici, M.; Hurst, R.; Bertini, E.; Tarrant, S.; Barja, S.; Bertoli, S.; Crawford, T.; Foust, K.; Kyle, B.; Rodan, L.; Roper, H.; Sfpagefrood, E.; Swoboda, K.; Szlagatys-Sidorkiewicz, A. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul. Disord., 2018, 28(2), 103-115.
[http://dx.doi.org/10.1016/j.nmd.2017.11.005] [PMID: 29290580]
[128]
Fauroux, B.; Griffon, L.; Amaddeo, A.; Stremler, N.; Mazenq, J.; Khirani, S.; Baravalle-Einaudi, M. Respiratory management of children with spinal muscular atrophy (SMA). Arch Pediatr., 2020, 27(7S), 7S29-7S34.
[129]
Ripolone, M.; Ronchi, D.; Violano, R.; Vallejo, D.; Fagiolari, G.; Barca, E.; Lucchini, V.; Colombo, I.; Villa, L.; Berardinelli, A.; Balottin, U.; Morandi, L.; Mora, M.; Bordoni, A.; Fortunato, F.; Corti, S.; Parisi, D.; Toscano, A.; Sciacco, M.; DiMauro, S.; Comi, G.P.; Moggio, M. Impaired muscle mitochondrial biogenesis and myogenesis in spinal muscular atrophy. JAMA Neurol., 2015, 72(6), 666-675.
[http://dx.doi.org/10.1001/jamaneurol.2015.0178] [PMID: 25844556]
[130]
Miller, N.; Shi, H.; Zelikovich, A.S.; Ma, Y-C. Motor neuron mitochondrial dysfunction in spinal muscular atrophy. 2016. Available From: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5179954/#:~:text=Using
[131]
James, R.; Chaytow, H.; Ledahawsky, L.M.; Gillingwater, T.H. Revisiting the role of mitochondria in spinal muscular atrophy. Cell. Mol. Life Sci., 2021, 78(10), 4785-4804.
[http://dx.doi.org/10.1007/s00018-021-03819-5] [PMID: 33821292]
[132]
Habets, L.E.; Bartels, B.; Asselman, F-L.; Hooijmans, M.T.; van den Berg, S.; Nederveen, A.J.; van der Pol, W.L.; Jeneson, J.A.L. Magnetic resonance reveals mitochondrial dysfunction and muscle remodelling in spinal muscular atrophy. Brain, 2021, 2021, awab411.
[PMID: 34788410]
[133]
Thelen, M.P.; Wirth, B.; Kye, M.J. Mitochondrial dfpageects in the respiratory complex I contribute to impaired translational initiation via ROS and energy homeostasis in SMA motor neurons. Acta Neuropathol. Commun., 2020, 8(1), 223.
[http://dx.doi.org/10.1186/s40478-020-01101-6] [PMID: 33353564]
[134]
Carelli, S.; Rey, F.; Ottolenghi, S.; Zuccotti, G.V.; Samaja, M. Mitochondrial dysfunctions in neurodegenerative diseases: Role in disease pathogenesis, strategies for analysis and therapeutic prospects. Neural Regen. Res., 2022, 17(4), 754-758.
[http://dx.doi.org/10.4103/1673-5374.322430] [PMID: 34472461]
[135]
Scalco, M.Z.; van Reekum, R. Prevention of Alzheimer disease. 2006. Available From: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1479722/#:~:text=Observational
[136]
Cleveland Clinic. Genetics, Juvenile Cases & Chorea. 2020. Available From: https://my.clevelandclinic.org/health/diseases/14369-huntingtons-disease#:~:text=Can
[137]
Familydoctors.org. Huntington’s Disease - Brain Disorder - Genetic Disorder 2021. Available From: https://familydoctor.org/condition/huntingtons-disease/
[138]
CDC. Amyotrophic Lateral Sclerosis (ALS). 2021. Available From: https://www.cdc.gov/dotw/als/index.html#:~:text=There
[139]
Jackson-Gibson, A. Everything you need to know about lewy body dementia, according to experts. 2021. Available From: https://www.prevention.com/health/health-conditions/a38191477/lewy-body-dementia-symptoms/
[140]
Adashi, E.Y.; Cohen, I.G. Preventing mitochondrial diseases: Embryo-sparing donor-independent options. Trends Mol. Med., 2018, 24(5), 449-457.
[http://dx.doi.org/10.1016/j.molmed.2018.03.002] [PMID: 29605176]
[141]
Fratiglioni, L.; Qiu, C. Prevention of common neurodegenerative disorders in the elderly. Exp. Gerontol., 2009, 44(1-2), 46-50.
[http://dx.doi.org/10.1016/j.exger.2008.06.006]
[143]
de Carvalho, T. Calorie restriction or dietary restriction: How far they can protect the brain against neurodegenerative diseases? Neural Regen. Res., 2022, 17(8), 1640-1644.
[http://dx.doi.org/10.4103/1673-5374.332126] [PMID: 35017409]
[144]
Mascalchi, M. MRI CNS atrophy pattern and the etiologies of progressive ataxias. Tomography, 2022, 8(1), 423-437.
[http://dx.doi.org/10.3390/tomography8010035] [PMID: 35202200]
[145]
Renga, V. Brain Connectivity and Network Analysis in Amyotrophic Lateral Sclerosis. Neurol. Res. Int., 2022, 2022, 1-20.
[http://dx.doi.org/10.1155/2022/1838682] [PMID: 35178253]
[146]
García, J.C.; Bustos, R.H. The genetic diagnosis of neurodegenerative diseases and therapeutic perspectives. Brain Sci., 2018, 8(12), 222.
[http://dx.doi.org/10.3390/brainsci8120222] [PMID: 30551598]
[147]
Hansson, O. Biomarkers for neurodegenerative diseases. Nat. Med., 2021, 27(6), 954-963.
[http://dx.doi.org/10.1038/s41591-021-01382-x] [PMID: 34083813]
[148]
Goldoni, R.; Dolci, C.; Boccalari, E.; Inchingolo, F.; Paghi, A.; Strambini, L.; Galimberti, D.; Tartaglia, G.M. Salivary biomarkers of neurodegenerative and demyelinating diseases and biosensors for their detection. Ageing Res. Rev., 2022, 76, 101587.
[http://dx.doi.org/10.1016/j.arr.2022.101587] [PMID: 35151849]
[149]
Genetic Alliance. Diagnosis of a Genetic Disease. 2010. Available From: https://www.ncbi.nlm.nih.gov/books/NBK132142/
[150]
Rosselli, M.; Uribe, I.V.; Ahne, E.; Shihadeh, L. Culture, ethnicity, and level of education in alzheimer’s disease. Neurotherapeutics, 2022, 19(1), 26-54.
[http://dx.doi.org/10.1007/s13311-022-01193-z] [PMID: 35347644]
[151]
Dharmadasa, T.; Scaber, J.; Edmond, E.; Marsden, R.; Thompson, A.; Talbot, K.; Turner, M.R. Genetic testing in motor neurone disease. Pract. Neurol., 2022, 22(2), 107-116.
[http://dx.doi.org/10.1136/practneurol-2021-002989] [PMID: 35027459]
[152]
Pandolfo, M.; Hausmann, L. Dfpageeriprone for the treatment of Friedreich’s ataxia. J. Neurochem., 2013, 126(s1)(Suppl. 1), 142-146.
[http://dx.doi.org/10.1111/jnc.12300] [PMID: 23859349]
[153]
Lynch, D.R.; Chin, M.P.; Delatycki, M.B.; Subramony, S.H.; Corti, M.; Hoyle, J.C.; Boesch, S.; Nachbauer, W.; Mariotti, C.; Mathews, K.D.; Giunti, P.; Wilmot, G.; Zesiewicz, T.; Perlman, S.; Goldsberry, A.; O’Grady, M.; Meyer, C.J. Safety and fpageficacy of Omaveloxolone in Friedreich Ataxia (MOXIE Study). Ann. Neurol., 2021, 89(2), 212-225.
[http://dx.doi.org/10.1002/ana.25934] [PMID: 33068037]
[154]
Jankovic, J.; Clarence-Smith, K. Tetrabenazine for the treatment of chorea and other hyperkinetic movement disorders. Expert Rev. Neurother., 2011, 11(11), 1509-1513.
[http://dx.doi.org/10.1586/ern.11.149]
[155]
Hoy, S.M. Onasemnogene Abeparvovec: First Global Approval. Drugs, 2019, 79(11), 1255-1262.
[http://dx.doi.org/10.1007/s40265-019-01162-5] [PMID: 31270752]
[156]
Abbas, K.S.; Eltaras, M.M.; El-Shahat, N.A.; Abdelazeem, B.; Shaqfeh, M. Brašić J.R. The safety and fpageficacy of nusinersen in the treatment of spinal muscular atrophy: A systematic review and meta-analysis of randomized controlled trials. Medicina (Kaunas), 2022, 58(2), 213.
[http://dx.doi.org/10.3390/medicina58020213] [PMID: 35208537]
[157]
Nelson, S.L. MELAS syndrome treatment & management. 2020. Available From: https://emedicine.medscape.com/article/946864-treatment#:~:text= Patients
[158]
Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. Br. J. Pharmacol., 2007, 152(1), 9-20.
[http://dx.doi.org/10.1038/sj.bjp.0707305] [PMID: 17549047]
[159]
Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. Editorial: in silico methods for drug design and discovery. Front Chem., 2020, 8, 612.
[http://dx.doi.org/10.3389/fchem.2020.00612] [PMID: 32850641]
[160]
Yang, Z.; Li, Y.; Wang, Z. Recent advances in the application of mesenchymal stem cell-derived exosomes for cardiovascular and neurodegenerative disease therapies. Pharmaceutics, 2022, 14(3), 618.
[http://dx.doi.org/10.3390/pharmaceutics14030618] [PMID: 35335993]
[161]
Shin, B.; Cowan, D.B.; Emani, S.M.; del Nido, P.J.; McCully, J.D. Mitochondrial Transplantation in myocardial ischemia and reperfusion injury. Adv. Exp. Med. Biol., 2017, 982, 595-619.
[http://dx.doi.org/10.1007/978-3-319-55330-6_31] [PMID: 28551809]
[162]
Espino De la Fuente-Muñoz, C.; Arias, C. The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders. Rev. Neurosci., 2021, 32(2), 203-217.
[http://dx.doi.org/10.1515/revneuro-2020-0068] [PMID: 33550783]
[163]
Reddy, P.H. Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med., 2008, 10(4), 291-315.
[http://dx.doi.org/10.1007/s12017-008-8044-z] [PMID: 18566920]
[164]
Prasuhn, J.; Brüggemann, N. Gene therapeutic approaches for the treatment of mitochondrial dysfunction in parkinson’s disease. Genes (Basel), 2021, 12(11), 1840.
[http://dx.doi.org/10.3390/genes12111840] [PMID: 34828446]
[165]
Bathini, M.; Raghushaker, C.R.; Mahato, K.K. The molecular mechanisms of action of photobiomodulation against neurodegenerative diseases: A Systematic Review. Cell. Mol. Neurobiol., 2022, 42(4), 955-971.
[http://dx.doi.org/10.1007/s10571-020-01016-9] [PMID: 33301129]
[166]
Elfawy, H.A.; Das, B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci., 2019, 218, 165-184.
[http://dx.doi.org/10.1016/j.lfs.2018.12.029] [PMID: 30578866]
[167]
Dorn, G.W., II; Dang, X. Predicting mitochondrial dynamic behavior in genetically dfpageined neurodegenerative diseases. Cells, 2022, 11(6), 1049.
[http://dx.doi.org/10.3390/cells11061049] [PMID: 35326500]
[168]
Zhang, S.; Zhao, J.; Quan, Z.; Li, H.; Qing, H. Mitochondria and other organelles in neural development and their potential as therapeutic targets in neurodegenerative diseases. Front. Neurosci., 2022, 16, 853911.
[http://dx.doi.org/10.3389/fnins.2022.853911] [PMID: 35450015]
[169]
Perneczky, R. Dementia prevention and reserve against neurodegenerative disease. Dialogues Clin. Neurosci., 2019, 21(1), 53-60.
[http://dx.doi.org/10.31887/DCNS.2019.21.1/rperneczky2] [PMID: 31607780]
[170]
Pogue, J.M.; Heil, E.L.; Lephart, P.; Johnson, J.K.; Mynatt, R.P.; Salimnia, H.; Claeys, K.C. An antibiotic stewardship program blueprint for optimizing verigene BC-GN within an institution: A tale of two cities. Antimicrob. Agents Chemother., 2018, 62(5), e02538-e17.
[http://dx.doi.org/10.1128/AAC.02538-17] [PMID: 29483115]
[171]
Shah, M.K.; Gandrakota, N.; Cimiotti, J.P.; Ghose, N.; Moore, M.; Ali, M.K. Prevalence of and factors associated with nurse burnout in the US. JAMA Netw. Open, 2021, 4(2), e2036469.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.36469] [PMID: 33538823]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy