[1]
Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid nanoparticles—from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano, 2021, 15(11), 16982-17015.
[http://dx.doi.org/10.1021/acsnano.1c04996] [PMID: 34181394]
[http://dx.doi.org/10.1021/acsnano.1c04996] [PMID: 34181394]
[2]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[3]
Mittal, P.; Saharan, A.; Verma, R.; Altalbawy, F.M.A.; Alfaidi, M.A.; Batiha, G.E.S.; Akter, W.; Gautam, R.K.; Uddin, M.S.; Rahman, M.S. Dendrimers: A new race of pharmaceutical nanocarriers. BioMed Res. Int., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/8844030] [PMID: 33644232]
[http://dx.doi.org/10.1155/2021/8844030] [PMID: 33644232]
[4]
Auffan, M.; Rose, J.; Bottero, J.Y.; Lowry, G.V.; Jolivet, J.P.; Wiesner, M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol., 2009, 4(10), 634-641.
[http://dx.doi.org/10.1038/nnano.2009.242] [PMID: 19809453]
[http://dx.doi.org/10.1038/nnano.2009.242] [PMID: 19809453]
[5]
Thi, T.T.H.; Suys, E.J.A.; Lee, J.S.; Nguyen, D.H.; Park, K.D.; Truong, N.P. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines. Vaccines, 2021, 9(4), 359.
[http://dx.doi.org/10.3390/vaccines9040359] [PMID: 33918072]
[http://dx.doi.org/10.3390/vaccines9040359] [PMID: 33918072]
[6]
Fenniri, H.; Mathivanan, P.; Vidale, K.L.; Sherman, D.M.; Hallenga, K.; Wood, K.V.; Stowell, J.G. Helical rosette nanotubes: Design, self-assembly, and characterization. J. Am. Chem. Soc., 2001, 123(16), 3854-3855.
[http://dx.doi.org/10.1021/ja005886l] [PMID: 11457132]
[http://dx.doi.org/10.1021/ja005886l] [PMID: 11457132]
[7]
Sands, I.; Lee, J.; Zhang, W.; Chen, Y. RNA delivery via DNA-inspired janus base nanotubes for extracellular matrix penetration. MRS Adv., 2020, 5(16), 815-823.
[http://dx.doi.org/10.1557/adv.2020.47] [PMID: 32405433]
[http://dx.doi.org/10.1557/adv.2020.47] [PMID: 32405433]
[8]
Moralez, J.G.; Raez, J.; Yamazaki, T.; Motkuri, R.K.; Kovalenko, A.; Fenniri, H. Helical rosette nanotubes with tunable stability and hierarchy. J. Am. Chem. Soc., 2005, 127(23), 8307-8309.
[http://dx.doi.org/10.1021/ja051496t] [PMID: 15941263]
[http://dx.doi.org/10.1021/ja051496t] [PMID: 15941263]
[9]
Lee, J.; Sands, I.; Zhang, W.; Zhou, L.; Chen, Y. DNA-inspired nanomaterials for enhanced endosomal escape. Proc. Natl. Acad. Sci. USA, 2021, 118(19)e2104511118
[http://dx.doi.org/10.1073/pnas.2104511118] [PMID: 33941681]
[http://dx.doi.org/10.1073/pnas.2104511118] [PMID: 33941681]
[10]
Webster, T.J.; Chen, Q.; Chen, Y.; Fenniri, H.; Hemraz, U.D. . Nanotubes as carriers of nucleic acids into cells. US Patent 0171482, 2014.
[11]
Chen, Q.; Yu, H.; Chen, Y. Nanomaterial compositions, synthesis, and assembly US Patent 0362238, 2017.