Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Review Article

Comprehensive Study of Low-Power SRAM Design Topologies

In Press, (this is not the final "Version of Record"). Available online 31 October, 2023
Author(s): Anandita Srivastav, Shailendra Kumar Tripathi*, Usha Tiwari and Sushanta Kumar Mandal
Published on: 31 October, 2023

DOI: 10.2174/0123520965275861231027060817

Price: $95

Abstract

The need for low power in portable and smart devices is the demand to be fulfilled for sustaining the semiconductor industry. Static Random Access Memory (SRAM) is the main part of the core design in chips. It is important to reduce the leakage power consumption during the steady mode of the device for the long run of the battery. This article is about the study of different modules using pre-existing low power. Application of different methods other than lowering the supply voltage leads to an increment in the number of transistors in conventional 6T (six transistor) SRAM cells like 7T to 14T. Power gating and the Multi-threshold complementary metal oxide semiconductor (MTCMOS) technique is the most relevant method. Hybrid low power techniques are in high demand because it shows better results than using individual techniques. However, the biggest challenge is to maintain the area and delay as well. FinFET came into the scenario to overcome the leakage power and short channel effect due to scaling in CMOS. Comparative study analysis shows that FinFET decreases the overall power and delay even when the number of transistors increases. A comparison was done between 6T, 8T, and 10T using FinFET and CMOS in a paper, and concluded that FinFET shows 77.792% improved write power.

[1]
C.B. Kushwah, and S.K. Vishvakarma, "A single-ended with dynamic feedback control 8T subthreshold SRAM cell. IEEE Transactions on Very Large Scale Integration (VLSI)", Systems, vol. 24, no. 1, pp. 373-377, 2015.
[2]
T.W. Oh, H. Jeong, J. Park, and S.O. Jung, "Pre-charged local bit-line sharing SRAM architecture for near-threshold operation", IEEE Trans. Circuits Syst. I Regul. Pap., vol. 64, no. 10, pp. 2737-2747, 2017.
[http://dx.doi.org/10.1109/TCSI.2017.2702587]
[3]
S. Pal, and A. Islam, "9-T SRAM cell for reliable ultralow-power applications and solving multibit soft-error issue", IEEE Trans. Device Mater. Reliab., vol. 16, no. 2, pp. 172-182, 2016.
[http://dx.doi.org/10.1109/TDMR.2016.2544780]
[4]
G. Pasandi, and S.M. Fakhraie, "An 8T low-voltage and low-leakage half-selection disturb-free SRAM using bulk-CMOS and FinFETs", IEEE Trans. Electron Dev., vol. 61, no. 7, pp. 2357-2363, 2014.
[http://dx.doi.org/10.1109/TED.2014.2321295]
[5]
J.P. Kulkarni, K. Kim, and K. Roy, "A 160 mV robust Schmitt trigger based subthreshold SRAM", IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2303-2313, 2007.
[http://dx.doi.org/10.1109/JSSC.2007.897148]
[6]
Z. Liu, and V. Kursun, "Characterization of a novel nine-transistor SRAM cell", IEEE Transac. Very Large Scale Integrat. (VLSI) Syst., vol. 16, no. 4, pp. 488-492, 2008.
[7]
S. Saxena, and R. Mehra, "Low‐power and high‐speed 13T SRAM cell using FinFETs", IET Circuits Dev. Syst., vol. 11, no. 3, pp. 250-255, 2017.
[http://dx.doi.org/10.1049/iet-cds.2016.0287]
[8]
M. Moghaddam, S. Timarchi, M.H. Moaiyeri, and M. Eshghi, "An ultra-low-power 9T SRAM cell based on threshold voltage techniques", Circuits Syst. Signal Process., vol. 35, no. 5, pp. 1437-1455, 2016.
[http://dx.doi.org/10.1007/s00034-015-0119-0]
[9]
R. Lorenzo, and S. Chaudhury, "A novel 9T SRAM architecture for low leakage and high performance", Analog Integr. Circuits Signal Proc., vol. 92, no. 2, pp. 315-325, 2017.
[http://dx.doi.org/10.1007/s10470-017-0997-0]
[10]
V. Kumar, and V.K. Tomar, "A Comparative Performance Analysis of 6T, 7T and 8T SRAM Cells in 18nm FinFET Technology", In International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, 28-29 Feb, 2020
[11]
K.V. Sriram, R.R. Naik, P.S.G. Nandan, and K. Swamy, "Design of low power 64-bit SRAM using 13T cell", Int. J. Eng. Res. Technol., vol. 2, no. 5, pp. 1350-1352, 2013. [IJERT].
[12]
A. Yadav, and S. Nakhate, "Low standby leakage 12T SRAM cell characterisation", Int. J. Electron., vol. 103, no. 9, pp. 1-14, 2016.
[http://dx.doi.org/10.1080/00207217.2015.1126859]
[13]
M.M. Khaleeq, K. Penshanwar, S. Ananiah Durai, and V. Ravi, "Design of Low Power 8T SRAM Array With Enhanced RNM", Int. J. Eng. Adv. Technol., pp. 2249-8958, 2019.
[14]
P. Bikki, M. Annapurna, and S. Vujwala, "Analysis of Low Power SRAM Design with Leakage Control Techniques", In 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW), Tiruchirappalli, India, 22-24 May, 2019, pp. 400-404
[http://dx.doi.org/10.1109/IMICPW.2019.8933178]
[15]
J. Verma, A. Passi, S. Sindhu, and S. Gayathiri, "Design 10-Transistor (10t) SRAM using Finfet technology", Int. J. Eng. Adv. Technol., vol. 9, no. 1, pp. 566-572, 2019.
[IJEAT]. [http://dx.doi.org/10.35940/ijeat.A9690.109119]
[16]
H. Jiao, Y. Qiu, and V. Kursun, "Variability-aware 7T SRAM circuit with low leakage high data stability SLEEP mode", Integration, vol. 53, pp. 68-79, 2016.
[http://dx.doi.org/10.1016/j.vlsi.2015.12.003]
[17]
S. Rathore, A. Prof, V. Yadav, and R. Jain, "A Brief Review of SRAM Architecture with Various Low leakage Power Reduction Technique in Recent CMOS Circuit", Int. J. Res. Appl. Sci. Eng. Technol., vol. 3, no. 1, pp. 114-120, 2015.
[18]
F. Assaderaghi, D. Sinitsky, S.A. Parke, J. Bokor, P.K. Ko, and Chenming Hu, "Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI", IEEE Trans. Electron Dev., vol. 44, no. 3, pp. 414-422, 1997.
[http://dx.doi.org/10.1109/16.556151]
[19]
P. Raikwal, V. Neema, and A. Verma, "Low Power High Speed Eight-Transistor (8T) SRAM Cell with Enhanced Data Stability", J. VLSI Design Tools Technol., vol. 7, no. 3, pp. 35-44p, 2017.
[20]
B. Satheesh, and P. Benakop, "A Low Power 6T-Auto Awake Mode-SRAM Design for high speed storage application", Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 9, pp. 204-208, 2019.
[IJITEE]. [http://dx.doi.org/10.35940/ijitee.H6606.078919]
[21]
M.D. Chandni, and V. Ravi, "Built in self-test architecture using concurrent approach", Indian J. Sci. Technol., vol. 9, no. 20, 2016.
[22]
K.W. Mai, T. Mori, B.S. Amrutur, R. Ho, B. Wilburn, M.A. Horowitz, I. Fukushi, T. Izawa, and S. Mitarai, "Low-power SRAM design using half-swing pulse-mode techniques", IEEE J. Solid-State Circuits, vol. 33, no. 11, pp. 1659-1671, 1998.
[http://dx.doi.org/10.1109/4.726555]
[23]
S.H. Kim, and V.J. Mooney, "Sleepy keeper: A new approach to low-leakage power VLSI design", In 2006 IFIP International Conference on Very Large Scale Integration, Nice, France, 16-18 Oct, 2006, pp. 367-372
[http://dx.doi.org/10.1109/VLSISOC.2006.313263]
[24]
S.P. Cheng, and S.Y. Huang, "A low-power SRAM design using quiet-bitline architecture", In 2005 IEEE International Workshop on Memory Technology, Design, and Testing (MTDT’05), Taipei, Taiwan, 03-05 Aug, 2005, pp. 135-139
[http://dx.doi.org/10.1109/MTDT.2005.10]
[25]
R. El Senousy, S. Ibrahim, and W. Anis, "Stability analysis and design methodology of near-threshold 6T SRAM cells", In 28th International Conference on Microelectronics (ICM), Giza, Egypt, 17-20 Dec, 2016.
[26]
T.W. Oh, H. Jeong, K. Kang, J. Park, Y. Yang, and S.O. Jung, "Power-gated 9T SRAM cell for low-energy operation. IEEE Transactions on Very Large Scale Integration (VLSI)", Systems, vol. 25, no. 3, pp. 1183-1187, 2016.
[27]
S. Maabi, E.S. Sayyah, M.H. Moaiyeri, and S. And Hessabi, "A low-power hierarchical finfet-based SRAM The CSI", J. Comput. Sci. Eng., 2016.
[28]
R. Hajare, and C. Lakhminarayana, "Design and Evaluation of FinFET based SRAM Cells at 22nm and 14nm Node Technologies", Int. J. Comput. Appl., vol. 171, no. 6, pp. 26-31, 2017.
[http://dx.doi.org/10.5120/ijca2017915005]
[29]
J.K. Mishra, H. Srivastava, P.K. Misra, and M. Goswami, "A 40nm low power high stable SRAM cell using separate read port and sleep transistor methodology", In IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Hyderabad, India, 17-19 Dec, 2018, pp. 1-5
[30]
K. Gavaskar, G. Ravivarma, M.S. Narayanan, S.S. Nachammal, and K. Vignesh, "Design and Analysis of 8-Bit Stable SRAM for Ultra Low Power Applications", In 5th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 05-06 Mar, 2020.
[31]
E. Grossar, M. Stucchi, K. Maex, and W. Dehaene, "Read stability and write-ability analysis of SRAM cells for nanometer technologies", IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2577-2588, 2006.
[http://dx.doi.org/10.1109/JSSC.2006.883344]
[32]
S.S. Ensan, M.H. Moaiyeri, and S. Hessabi, "A robust and low-power near-threshold SRAM in 10-nm FinFET technology", Analog Integr. Circuits Signal Process., vol. 94, no. 3, pp. 497-506, 2018.
[http://dx.doi.org/10.1007/s10470-018-1107-7]
[33]
R.K. Raushan, M.R. Ansari, U. Chauhan, M. Khalid, and B. Mohapatra, "Implementation of 12T and 14T SRAM Bitcell Using FinFET with Optimized Parameters", Transac. Electric. Elec. Mater., vol. 22, no. 3, pp. 328-334, 2021.
[http://dx.doi.org/10.1007/s42341-020-00243-7]
[34]
C. Peng, J. Huang, C. Liu, Q. Zhao, S. Xiao, X. Wu, Z. Lin, J. Chen, and X. Zeng, "Radiation-hardened 14T SRAM bitcell with speed and power optimized for space application. IEEE Transactions on Very Large Scale Integration (VLSI)", Systems, vol. 27, no. 2, pp. 407-415, 2018.
[35]
S.M. Ansari, "Tripathi, low power design techniques: Classical and beyond CMOS Era", In: Design and Modeling of Low Power VLSI Systems., IGI Global Publishers: USA, 2016.
[36]
S.K. Tripathi, "Carbon nanotubes-based digitally programmable current follower", VLSI Design J., vol. 2018, p. 1080817, 2018.
[37]
P.S. Bellerimath, and R.M. Banakar, "Implementation of 16X16 SRAM memory array using 180nm technologies", Int. J. Curr. Eng. Technol., no. Special Issue, pp. 288-292, 2013.
[38]
K.B. Ray, S.K. Mandal, and S. Patro, "Low power FGSRAM cell using sleepy and LECTOR technique", Indonesian j. Elec. Eng. Comput. Sci., vol. 4, no. 2, pp. 333-340, 2016.
[http://dx.doi.org/10.11591/ijeecs.v4.i2.pp333-340]
[39]
R. Manoj Kumar, and P.V. Sridevi, "Design of a bit-interleaved low power 10T SRAM cell with enhanced stability", J. Circuits Syst. Comput., vol. 30, no. 8, p. 2150142, 2021.
[http://dx.doi.org/10.1142/S0218126621501425]
[40]
P. Jain, and A. Joshi, "Full-wave bridge rectifier with CMOS pass transistors configuration", J. Circuits Syst. Comput., vol. 27, no. 6, p. 1850092, 2018.
[http://dx.doi.org/10.1142/S0218126618500925]
[41]
S. Pal, V. Gupta, and A. Islam, "Design of CNFET based power- and variability-aware nonvolatile RRAM cell", Microelectronics, vol. 86, pp. 7-14, 2019.
[http://dx.doi.org/10.1016/j.mejo.2019.02.009]
[42]
S.K. Tripathi, and A.M. Joshi, "Sub-10 pA/V Transconductance Amplifier Using 0.9 V, 32 nm Carbon Nanotube Field Effect Transistor", J. Circuits Syst. Comput., vol. 31, no. 14, p. 2220002, 2022.
[http://dx.doi.org/10.1142/S021812662220002X]
[43]
P. Praveen, and R.K. Singh, "Design of enhanced reversible 9t sram design for the reduction in sub-threshold leakage current with14nm FinFET technology", ACM Trans. Des. Autom. Electron. Syst., p. 3616538, 2023.
[http://dx.doi.org/10.1145/3616538]
[44]
E. Abbasian, S. Birla, A. Sachdeva, and E. Mani, "A low-power SRAM design with enhanced stability and I ON/I OFF ratio in FinFET technology for wearable device applications", Int. J. Electron., pp. 1-18, 2023.
[http://dx.doi.org/10.1080/00207217.2023.2238326]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy