Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

HMGB1/RAGE Signaling Regulates Th17/IL-17 and Its Role in Bronchial Epithelial-Mesenchymal Transformation

Author(s): Jingyi Sun, Yan Jiang, Linqiao Li, Rou Li, Feixiang Ling, Xiaojing Du, Qian Han, Shuyuan Chu, Yaxi Liang, Lin Mai and Libing Ma*

Volume 24, Issue 11, 2024

Published on: 27 October, 2023

Page: [1401 - 1412] Pages: 12

DOI: 10.2174/0115665240249953231024060610

Price: $65

Abstract

Background: Airway remodeling is one of the reasons for severe steroidresistant asthma related to HMGB1/RAGE signaling or Th17 immunity.

Objective: Our study aims to investigate the relationship between the HMGB1/RAGE signaling and the Th17/IL-17 signaling in epithelial-mesenchymal transformation (EMT) of airway remodeling.

Methods: CD4+ T lymphocytes were collected from C57 mice. CD4+ T cell and Th17 cell ratio was analyzed by flow cytometry. IL-17 level was detected by ELISA. The Ecadherin and α-SMA were analyzed by RT-qPCR and immunohistochemistry. The Ecadherin, α-SMA, and p-Smad3 expression were analyzed by western blot.

Results: The HMGB1/RAGE signaling promoted the differentiation and maturation of Th17 cells in a dose-dependent manner in vitro. The HMGB1/RAGE signaling also promoted the occurrence of bronchial EMT. The EMT of bronchial epithelial cells was promoted by Th17/IL-17 and the HMGB1 treatment in a synergic manner. Silencing of RAGE reduced the signaling transduction of HMGB1 and progression of bronchial EMT.

Conclusion: HMGB1/RAGE signaling synergistically enhanced TGF-β1-induced bronchial EMT by promoting the differentiation of Th17 cells and the secretion of IL-17.

[1]
Bousquet J, Dahl R, Khaltaev N. Global alliance against chronic respiratory diseases. Pneumonol Alergol Pol 2008; 76(3): 160-9.
[2]
Hackett TL. Epithelial–mesenchymal transition in the pathophysiology of airway remodelling in asthma. Curr Opin Allergy Clin Immunol 2012; 12(1): 53-9.
[http://dx.doi.org/10.1097/ACI.0b013e32834ec6eb] [PMID: 22217512]
[3]
Hackett TL, Warner SM, Stefanowicz D, et al. Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-beta1. Am J Respir Crit Care Med 2009; 180(2): 122-33.
[http://dx.doi.org/10.1164/rccm.200811-1730OC] [PMID: 19406982]
[4]
Kolosova I, Nethery D, Kern JA. Role of Smad2/3 and p38 MAP kinase in TGF-β1-induced epithelial-mesenchymal transition of pulmonary epithelial cells. J Cell Physiol 2011; 226(5): 1248-54.
[http://dx.doi.org/10.1002/jcp.22448] [PMID: 20945383]
[5]
Bergeron C, Tulic MK, Hamid Q. Airway remodelling in asthma: From benchside to clinical practice. Can Respir J 2010; 17(4): e85-93.
[http://dx.doi.org/10.1155/2010/318029] [PMID: 20808979]
[6]
Bai TR. Evidence for airway remodeling in chronic asthma. Curr Opin Allergy Clin Immunol 2010; 10(1): 82-6.
[http://dx.doi.org/10.1097/ACI.0b013e32833363b2] [PMID: 19858714]
[7]
Cavone L, Cuppari C, Manti S, et al. Increase in the level of proinflammatory cytokine hmgb1 in nasal fluids of patients with rhinitis and its sequestration by glycyrrhizin induces eosinophil cell death. Clin Exp Otorhinolaryngol 2015; 8(2): 123-8.
[http://dx.doi.org/10.3342/ceo.2015.8.2.123] [PMID: 26045910]
[8]
Ullah MA, Loh Z, Gan WJ, et al. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation. J Allergy Clin Immunol 2014; 134(2): 440-450.e3.
[http://dx.doi.org/10.1016/j.jaci.2013.12.1035] [PMID: 24506934]
[9]
Hudson BI, Lippman ME. Targeting RAGE signaling in inflammatory disease. Annu Rev Med 2018; 69(1): 349-64.
[http://dx.doi.org/10.1146/annurev-med-041316-085215] [PMID: 29106804]
[10]
Xie J, Méndez JD, Méndez-Valenzuela V, Aguilar-Hernández MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 2013; 25(11): 2185-97.
[http://dx.doi.org/10.1016/j.cellsig.2013.06.013] [PMID: 23838007]
[11]
Zeng S, Feirt N, Goldstein M, et al. Blockade of receptor for advanced glycation end product (RAGE) attenuates ischemia and reperfusion injury to the liver in mice. Hepatology 2004; 39(2): 422-32.
[http://dx.doi.org/10.1002/hep.20045] [PMID: 14767995]
[12]
Repapi E, Sayers I, Wain LV, et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet 2010; 42(1): 36-44.
[http://dx.doi.org/10.1038/ng.501] [PMID: 20010834]
[13]
Ouyang F, Huang H, Zhang M, et al. HMGB1 induces apoptosis and EMT in association with increased autophagy following H/R injury in cardiomyocytes. Int J Mol Med 2016; 37(3): 679-89.
[http://dx.doi.org/10.3892/ijmm.2016.2474] [PMID: 26847839]
[14]
Choy DF, Hart KM, Borthwick LA, et al. T H 2 and T H 17 inflammatory pathways are reciprocally regulated in asthma. Sci Transl Med 2015; 7(301): 301ra129.
[http://dx.doi.org/10.1126/scitranslmed.aab3142] [PMID: 26290411]
[15]
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 cytokines in airway remodeling in asthma and therapy perspectives. Front Allergy 2022; 3: 806391.
[http://dx.doi.org/10.3389/falgy.2022.806391] [PMID: 35386663]
[16]
Silva MJ, de Santana MBR, Tosta BR, et al. Variants in the IL17 pathway genes are associated with atopic asthma and atopy makers in a South American population. Allergy Asthma Clin Immunol 2019; 15(1): 28.
[http://dx.doi.org/10.1186/s13223-019-0340-7] [PMID: 31168303]
[17]
Ji X, Li J, Xu L, et al. IL4 and IL-17A provide a Th2/Th17-polarized inflammatory milieu in favor of TGF-β1 to induce bronchial epithelial-mesenchymal transition (EMT). Int J Clin Exp Pathol 2013; 6(8): 1481-92.
[PMID: 23923066]
[18]
He Z, Shotorbani SS, Jiao Z, et al. HMGB1 promotes the differentiation of Th17 via up-regulating TLR2 and IL-23 of CD14+ monocytes from patients with rheumatoid arthritis. Scand J Immunol 2012; 76(5): 483-90.
[http://dx.doi.org/10.1111/j.1365-3083.2012.02759.x] [PMID: 22809173]
[19]
Li R, Wang J, Zhu F, et al. HMGB1 regulates T helper 2 and T helper17 cell differentiation both directly and indirectly in asthmatic mice. Mol Immunol 2018; 97: 45-55.
[http://dx.doi.org/10.1016/j.molimm.2018.02.014] [PMID: 29567318]
[20]
Ma L, Zeng J, Mo B, et al. High mobility group box 1: A novel mediator of Th2-type response-induced airway inflammation of acute allergic asthma. J Thorac Dis 2015; 7(10): 1732-41.
[PMID: 26623095]
[21]
Jiang Y, Li L, Pan Q, et al. Methyl-cpg-binding domain protein 2 silencing inhibits Th17 differentiation of CD4+T cells induced by ovalbumin. Iran J Immunol 2023; 20(1): 45-56.
[PMID: 36932919]
[22]
Hou C, Kong J, Liang Y, et al. HMGB1 contributes to allergen-induced airway remodeling in a murine model of chronic asthma by modulating airway inflammation and activating lung fibroblasts. Cell Mol Immunol 2015; 12(4): 409-23.
[http://dx.doi.org/10.1038/cmi.2014.60] [PMID: 25152078]
[23]
Kanazawa H, Tochino Y, Asai K, Ichimaru Y, Watanabe T, Hirata K. Validity of HMGB1 measurement in epithelial lining fluid in patients with COPD. Eur J Clin Invest 2012; 42(4): 419-26.
[http://dx.doi.org/10.1111/j.1365-2362.2011.02598.x] [PMID: 21950682]
[24]
Huang L, Yao Y, Sheng Z. Novel insights for high mobility group box 1 protein-mediated cellular immune response in sepsis:A systemic review. World J Emerg Med 2012; 3(3): 165-71.
[http://dx.doi.org/10.5847/wjem.j.issn.1920-8642.2012.03.001] [PMID: 25215057]
[25]
Gong S, Li J, Ma L, et al. Blockade of dopamine D1-like receptor signalling protects mice against OVA-induced acute asthma by inhibiting B-cell activating transcription factor signalling and Th17 function. FEBS J 2013; 280(23): 6262-73.
[http://dx.doi.org/10.1111/febs.12549] [PMID: 24112622]
[26]
Zhang L, Li K, Bing Ma L, et al. Effects and mechanism of arsenic trioxide on reversing the asthma pathologies including Th17-IL-17 axis in a mouse model. Iran J Allergy Asthma Immunol 2012; 11(2): 133-45.
[PMID: 22761187]
[27]
American Thoracic Society. Idiopathic pulmonary fibrosis: Diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med 2000; 161(2 Pt 1): 646-64.
[PMID: 10673212]
[28]
Liang Y, Hou C, Kong J, et al. HMGB1 binding to receptor for advanced glycation end products enhances inflammatory responses of human bronchial epithelial cells by activating p38 MAPK and ERK1/2. Mol Cell Biochem 2015; 405(1-2): 63-71.
[http://dx.doi.org/10.1007/s11010-015-2396-0] [PMID: 25862459]
[29]
Ferhani N, Letuve S, Kozhich A, et al. Expression of high-mobility group box 1 and of receptor for advanced glycation end products in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 181(9): 917-27.
[http://dx.doi.org/10.1164/rccm.200903-0340OC] [PMID: 20133931]
[30]
Moreau JM, Velegraki M, Bolyard C, Rosenblum MD, Li Z. Transforming growth factor–β1 in regulatory T cell biology. Sci Immunol 2022; 7(69): eabi4613.
[http://dx.doi.org/10.1126/sciimmunol.abi4613] [PMID: 35302863]
[31]
Palumbo R, Galvez BG, Pusterla T, et al. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-κB activation. J Cell Biol 2007; 179(1): 33-40.
[http://dx.doi.org/10.1083/jcb.200704015] [PMID: 17923528]
[32]
Wang Q, Li H, Yao Y, Xia D, Zhou J. The overexpression of heparin-binding epidermal growth factor is responsible for Th17-induced airway remodeling in an experimental asthma model. J Immunol 2010; 185(2): 834-41.
[http://dx.doi.org/10.4049/jimmunol.0901490] [PMID: 20530256]
[33]
Li LL, Dai B, Sun YH, Zhang TT. The activation of IL-17 signaling pathway promotes pyroptosis in pneumonia-induced sepsis. Ann Transl Med 2020; 8(11): 674.
[http://dx.doi.org/10.21037/atm-19-1739] [PMID: 32617294]
[34]
Killian KN, Kosanovich JL, Lipp MA, Empey KM, Oury TD, Perkins TN. RAGE contributes to allergen driven severe neutrophilic airway inflammation via NLRP3 inflammasome activation in mice. Front Immunol 2023; 14: 1039997.
[http://dx.doi.org/10.3389/fimmu.2023.1039997] [PMID: 36776857]
[35]
Chen Y, Akirav EM, Chen W, et al. RAGE ligation affects T cell activation and controls T cell differentiation. J Immunol 2008; 181(6): 4272-8.
[http://dx.doi.org/10.4049/jimmunol.181.6.4272] [PMID: 18768885]
[36]
Su CL, Chou HC, Huang LT, Yeh TF, Chen CM. Combined effects of maternal inflammation and neonatal hyperoxia on lung fibrosis and RAGE expression in newborn rats. Pediatr Res 2014; 75(2): 273-80.
[http://dx.doi.org/10.1038/pr.2013.222] [PMID: 24226635]
[37]
Zhang F, Su X, Huang G, et al. sRAGE alleviates neutrophilic asthma by blocking HMGB1/RAGE signalling in airway dendritic cells. Sci Rep 2017; 7(1): 14268.
[http://dx.doi.org/10.1038/s41598-017-14667-4] [PMID: 29079726]
[38]
Zhang F, Huang G, Hu B, et al. Anti-HMGB1 neutralizing antibody ameliorates neutrophilic airway inflammation by suppressing dendritic cell-mediated Th17 polarization. Mediators Inflamm 2014; 2014: 1-11.
[http://dx.doi.org/10.1155/2014/257930] [PMID: 24959003]
[39]
Zhang F, Huang G, Hu B, Qian G, Song Y. Recombinant HMGB1 A box protein inhibits Th17 responses in mice with neutrophilic asthma by suppressing dendritic cell-mediated Th17 polarization. Int Immunopharmacol 2015; 24(1): 110-8.
[http://dx.doi.org/10.1016/j.intimp.2014.11.005] [PMID: 25479722]
[40]
Xing Y, Cheng D, Shi C, Shen Z. The protective role of YTHDF1-knock down macrophages on the immune paralysis of severe sepsis rats with ECMO. Microvasc Res 2021; 137: 104178.
[http://dx.doi.org/10.1016/j.mvr.2021.104178] [PMID: 34015275]
[41]
Arikkatt J, Ullah MA, Short KR, et al. RAGE deficiency predisposes mice to virus-induced paucigranulocytic asthma. eLife 2017; 6: e21199.
[http://dx.doi.org/10.7554/eLife.21199] [PMID: 28099113]
[42]
Nesi RT, Kennedy-Feitosa E, Lanzetti M, et al. Inflammatory and oxidative stress markers in experimental allergic asthma. Inflammation 2017; 40(4): 1166-76.
[http://dx.doi.org/10.1007/s10753-017-0560-2] [PMID: 28391514]
[43]
Strohbuecker L, Koenen H, van Rijssen E, et al. Increased dermal expression of chromatin-associated protein HMGB1 and concomitant T-cell expression of the DNA RAGE in patients with psoriasis vulgaris. Psoriasis 2019; 9: 7-17.
[http://dx.doi.org/10.2147/PTT.S190507] [PMID: 30859087]
[44]
He R, Chen Y, Chen X, Yuan B. Mechanism of miR-181a-5p in regulatory T/T-Helper 17 immune imbalance and asthma development in mice with allergic rhinitis. Int Arch Allergy Immunol 2022; 183(4): 375-88.
[http://dx.doi.org/10.1159/000519703] [PMID: 34942624]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy