Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Psychedelic Future of Post-Traumatic Stress Disorder Treatment

Author(s): Tamar Glatman Zaretsky, Kathleen M. Jagodnik, Robert Barsic, Josimar Hernandez Antonio, Philip A. Bonanno, Carolyn MacLeod, Charlotte Pierce, Hunter Carney, Morgan T. Morrison, Charles Saylor, George Danias, Lauren Lepow and Rachel Yehuda*

Volume 22, Issue 4, 2024

Published on: 06 November, 2023

Page: [636 - 735] Pages: 100

DOI: 10.2174/1570159X22666231027111147

Price: $65

Abstract

Post-traumatic stress disorder (PTSD) is a mental health condition that can occur following exposure to a traumatic experience. An estimated 12 million U.S. adults are presently affected by this disorder. Current treatments include psychological therapies (e.g., exposure-based interventions) and pharmacological treatments (e.g., selective serotonin reuptake inhibitors (SSRIs)). However, a significant proportion of patients receiving standard-of-care therapies for PTSD remain symptomatic, and new approaches for this and other trauma-related mental health conditions are greatly needed. Psychedelic compounds that alter cognition, perception, and mood are currently being examined for their efficacy in treating PTSD despite their current status as Drug Enforcement Administration (DEA)- scheduled substances. Initial clinical trials have demonstrated the potential value of psychedelicassisted therapy to treat PTSD and other psychiatric disorders. In this comprehensive review, we summarize the state of the science of PTSD clinical care, including current treatments and their shortcomings. We review clinical studies of psychedelic interventions to treat PTSD, trauma-related disorders, and common comorbidities. The classic psychedelics psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) and DMT-containing ayahuasca, as well as the entactogen 3,4-methylenedioxymethamphetamine (MDMA) and the dissociative anesthetic ketamine, are reviewed. For each drug, we present the history of use, psychological and somatic effects, pharmacology, and safety profile. The rationale and proposed mechanisms for use in treating PTSD and traumarelated disorders are discussed. This review concludes with an in-depth consideration of future directions for the psychiatric applications of psychedelics to maximize therapeutic benefit and minimize risk in individuals and communities impacted by trauma-related conditions.

Graphical Abstract

[1]
Kilpatrick, D.G.; Resnick, H.S.; Milanak, M.E.; Miller, M.W.; Keyes, K.M.; Friedman, M.J. National estimates of exposure to traumatic events and PTSD prevalence using DSM-IV and DSM-5 Criteria. J. Trauma. Stress, 2013, 26(5), 537-547.
[http://dx.doi.org/10.1002/jts.21848]
[2]
Yehuda, R. Post-traumatic stress disorder. N. Engl. J. Med., 2002, 346(2), 108-114.
[http://dx.doi.org/10.1056/NEJMra012941]
[3]
Kessler, R.C.; Sonnega, A.; Bromet, E.; Hughes, M.; Nelson, C.B. Posttraumatic stress disorder in the national comorbidity survey. Arch. Gen. Psychiatry, 1995, 52(12), 1048-1060.
[http://dx.doi.org/10.1001/archpsyc.1995.03950240066012]
[4]
De Jongh, A.; Resick, P.A.; Zoellner, L.A.; van Minnen, A.; Lee, C.W.; Monson, C.M.; Foa, E.B.; Wheeler, K.; Broeke, E.; Feeny, N.; Rauch, S.A.M.; Chard, K.M.; Mueser, K.T.; Sloan, D.M.; van der Gaag, M.; Rothbaum, B.O.; Neuner, F.; de Roos, C.; Hehenkamp, L.M.J.; Rosner, R.; Bicanic, I.A.E. Critical analysis of the current treatment guidelines for complex PTSD in adults. Depress. Anxiety, 2016, 33(5), 359-369.
[http://dx.doi.org/10.1002/da.22469]
[5]
Affairs DoV. VA/DOD clinical practice guideline for the management of posttraumatic stress disorder and acute stress disorder. 2017. Available at: https://www.healthquality.va.gov/guidelines/MH/ptsd/VADoDPTSDCPGFinal012418.pdf/
[6]
Schnurr, P.P.; Chard, K.M.; Ruzek, J.I.; Chow, B.K.; Resick, P.A.; Foa, E.B.; Marx, B.P.; Friedman, M.J.; Bovin, M.J.; Caudle, K.L.; Castillo, D.; Curry, K.T.; Hollifield, M.; Huang, G.D.; Chee, C.L.; Astin, M.C.; Dickstein, B.; Renner, K.; Clancy, C.P.; Collie, C.; Maieritsch, K.; Bailey, S.; Thompson, K.; Messina, M.; Franklin, L.; Lindley, S.; Kattar, K.; Luedtke, B.; Romesser, J.; McQuaid, J.; Sylvers, P.; Varkovitzky, R.; Davis, L.; MacVicar, D.; Shih, M-C. Comparison of prolonged exposure vs cognitive processing therapy for treatment of posttraumatic stress disorder among us veterans. JAMA Netw. Open, 2022, 5(1), e2136921.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.36921]
[7]
Lewis, C.; Roberts, N.P.; Gibson, S.; Bisson, J.I. Dropout from psychological therapies for posttraumatic stress disorder (PTSD) in adults: Systematic review and metaanalysis. Eur. J. Psychotraumatol., 2020, 11(1), 1709709.
[http://dx.doi.org/10.1080/20008198.2019.1709709]
[8]
Schottenbauer, M.A.; Glass, C.R.; Arnkoff, D.B.; Tendick, V.; Gray, S.H. Nonresponse and dropout rates in outcome studies on PTSD: Review and methodological considerations. Psychiatry, 2008, 71(2), 134-168.
[http://dx.doi.org/10.1521/psyc.2008.71.2.134]
[9]
Ogden, P.; Minton, K.; Pain, C. Trauma and the body: A sensorimotor approach to psychotherapy (norton series on interpersonal neurobiology); WW Norton & Company, 2006.
[10]
Bradley, R.; Greene, J.; Russ, E.; Dutra, L.; Westen, D. A multidimensional metaanalysis of psychotherapy for PTSD. Am. J. Psychiatry, 2005, 162(2), 214-227.
[http://dx.doi.org/10.1176/appi.ajp.162.2.214]
[11]
Bell, V.; Robinson, B.; Katona, C.; Fett, A.K.; Shergill, S. When trust is lost: The impact of interpersonal trauma on social interactions. Psychol. Med., 2019, 49(6), 1041-1046.
[http://dx.doi.org/10.1017/S0033291718001800]
[12]
Zepinic, V. Trauma focused dynamic therapy model in treating complex psychological trauma. Psychology, 2017, 8(13), 2059-2101.
[http://dx.doi.org/10.4236/psych.2017.813132]
[13]
Armour, C.; Elklit, A.; Lauterbach, D.; Elhai, J.D. The DSM-5 dissociative-PTSD subtype: Can levels of depression, anxiety, hostility, and sleeping difficulties differentiate between dissociative-PTSD and PTSD in rape and sexual assault victims? J. Anxiety Disord., 2014, 28(4), 418-426.
[http://dx.doi.org/10.1016/j.janxdis.2013.12.008]
[14]
Williams, W.; Graham, D.P.; McCurry, K.; Sanders, A.; Eiseman, J.; Chiu, P.H.; King-Casas, B. Group psychotherapy’s impact on trust in veterans with PTSD: A pilot study. Bull. Menninger Clin., 2014, 78(4), 335-348.
[http://dx.doi.org/10.1521/bumc.2014.78.4.335]
[15]
Milad, M.R.; Quirk, G.J. Fear extinction as a model for translational neuroscience: Ten years of progress. Annu. Rev. Psychol., 2012, 63(1), 129-151.
[http://dx.doi.org/10.1146/annurev.psych.121208.131631]
[16]
Shin, L.M.; Wright, C.I.; Cannistraro, P.A.; Wedig, M.M.; McMullin, K.; Martis, B.; Macklin, M.L.; Lasko, N.B.; Cavanagh, S.R.; Krangel, T.S.; Orr, S.P.; Pitman, R.K.; Whalen, P.J.; Rauch, S.L. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch. Gen. Psychiatry, 2005, 62(3), 273-281.
[http://dx.doi.org/10.1001/archpsyc.62.3.273]
[17]
Yan, X.; Brown, A.D.; Lazar, M.; Cressman, V.L.; Henn-Haase, C.; Neylan, T.C.; Shalev, A.; Wolkowitz, O.M.; Hamilton, S.P.; Yehuda, R.; Sodickson, D.K.; Weiner, M.W.; Marmar, C.R. Spontaneous brain activity in combat related PTSD. Neurosci. Lett., 2013, 547, 1-5.
[http://dx.doi.org/10.1016/j.neulet.2013.04.032]
[18]
Yehuda, R.; Antelman, S.M. Criteria for rationally evaluating animal models of postraumatic stress disorder. Biol. Psychiatry, 1993, 33(7), 479-486.
[http://dx.doi.org/10.1016/0006-3223(93)90001-T]
[19]
Jamieson, N.; Maple, M.; Ratnarajah, D.; Usher, K. Military moral injury: A concept analysis. Int. J. Ment. Health Nurs., 2020, 29(6), 1049-1066.
[http://dx.doi.org/10.1111/inm.12792]
[20]
Salter, M.; Hall, H. Reducing shame, promoting dignity: A model for the primary prevention of complex post-traumatic stress disorder. Trauma Violence Abuse, 2022, 23(3), 906-919.
[http://dx.doi.org/10.1177/1524838020979667]
[21]
Fine, N.B.; Ben-Zion, Z.; Biran, I.; Hendler, T. Neuroscientific account of guilt and shame driven PTSD phenotypes. Eur. J. Psychotraumatol., 2023, 14(2), 2202060.
[http://dx.doi.org/10.1080/20008066.2023.2202060]
[22]
Fenster, R.J.; Lebois, L.A.M.; Ressler, K.J.; Suh, J. Brain circuit dysfunction in posttraumatic stress disorder: From mouse to man. Nat. Rev. Neurosci., 2018, 19(9), 535-551.
[http://dx.doi.org/10.1038/s41583-018-0039-7]
[23]
DePierro, J.; Lepow, L.; Feder, A.; Yehuda, R. Translating molecular and neuroendocrine findings in posttraumatic stress disorder and resilience to novel therapies. Biol. Psychiatry, 2019, 86(6), 454-463.
[http://dx.doi.org/10.1016/j.biopsych.2019.07.009]
[24]
Yehuda, R.; Teicher, M.H.; Trestman, R.L.; Levengood, R.A.; Siever, L.J. Cortisol regulation in posttraumatic stress disorder and major depression: A chronobiological analysis. Biol. Psychiatry, 1996, 40(2), 79-88.
[http://dx.doi.org/10.1016/0006-3223(95)00451-3]
[25]
Cipriani, A.; Williams, T.; Nikolakopoulou, A.; Salanti, G.; Chaimani, A.; Ipser, J.; Cowen, P.J.; Geddes, J.R.; Stein, D.J. Comparative efficacy and acceptability of pharmacological treatments for posttraumatic stress disorder in adults: A network meta-analysis. Psychol. Med., 2018, 48(12), 1975-1984.
[http://dx.doi.org/10.1017/S003329171700349X]
[26]
Hoskins, M.; Pearce, J.; Bethell, A.; Dankova, L.; Barbui, C.; Tol, W.A.; van Ommeren, M.; de Jong, J.; Seedat, S.; Chen, H.; Bisson, J.I. Pharmacotherapy for post-traumatic stress disorder: Systematic review and meta-analysis. Br. J. Psychiatry, 2015, 206(2), 93-100.
[http://dx.doi.org/10.1192/bjp.bp.114.148551]
[27]
Abdallah, C.G.; Roache, J.D.; Averill, L.A.; Young-McCaughan, S.; Martini, B.; Gueorguieva, R.; Amoroso, T.; Southwick, S.M.; Guthmiller, K.; López-Roca, A.L.; Lautenschlager, K.; Mintz, J.; Litz, B.T.; Williamson, D.E.; Keane, T.M.; Peterson, A.L.; Krystal, J.H. Repeated ketamine infusions for antidepressant-resistant PTSD: Methods of a multicenter, randomized, placebo-controlled clinical trial. Contemp. Clin. Trials, 2019, 81, 11-18.
[http://dx.doi.org/10.1016/j.cct.2019.04.009]
[28]
De Gregorio, D.; Aguilar-Valles, A.; Preller, K.H.; Heifets, B.D.; Hibicke, M.; Mitchell, J.; Gobbi, G. Hallucinogens in mental health: Pre-clinical and clinical studies on LSD, Psilocybin, MDMA, and Ketamine. J. Neurosci., 2021, 41(5), 891-900.
[http://dx.doi.org/10.1523/JNEUROSCI.1659-20.2020]
[29]
Nichols, D.E. Psychedelics. Pharmacol. Rev., 2016, 68(2), 264-355.
[http://dx.doi.org/10.1124/pr.115.011478]
[30]
Preller, K.H.; Pokorny, T.; Hock, A. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proc. Nat. Acad. Sci.: PNAS., 2016, 113(18), 5119-5124.
[31]
Pokorny, T.; Preller, K.H.; Kraehenmann, R.; Vollenweider, F.X. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience. Eur. Neuropsychopharmacol., 2016, 26(4), 756-766.
[http://dx.doi.org/10.1016/j.euroneuro.2016.01.005]
[32]
Holze, F.; Caluori, T.V.; Vizeli, P.; Liechti, M.E. Safety pharmacology of acute LSD administration in healthy subjects. Psychopharmacology, 2022, 239(6), 1893-1905.
[http://dx.doi.org/10.1007/s00213-021-05978-6]
[33]
Holze, F.; Vizeli, P.; Ley, L.; Müller, F.; Dolder, P.; Stocker, M.; Duthaler, U.; Varghese, N.; Eckert, A.; Borgwardt, S.; Liechti, M.E. Acute dose-dependent effects of lysergic acid diethylamide in a doubleblind placebo-controlled study in healthy subjects. Neuropsychopharmacology, 2021, 46(3), 537-544.
[http://dx.doi.org/10.1038/s41386-020-00883-6]
[34]
Majić, T.; Schmidt, T.T.; Gallinat, J. Peak experiences and the afterglow phenomenon: When and how do therapeutic effects of hallucinogens depend on psychedelic experiences? J. Psychopharmacol., 2015, 29(3), 241-253.
[http://dx.doi.org/10.1177/0269881114568040]
[35]
Schmid, Y.; Enzler, F.; Gasser, P.; Grouzmann, E.; Preller, K.H.; Vollenweider, F.X.; Brenneisen, R.; Müller, F.; Borgwardt, S.; Liechti, M.E. Acute effects of lysergic acid diethylamide in healthy subjects. Biol. Psychiatry, 2015, 78(8), 544-553.
[http://dx.doi.org/10.1016/j.biopsych.2014.11.015]
[36]
Griffiths, R.R.; Johnson, M.W.; Richards, W.A.; Richards, B.D.; McCann, U.; Jesse, R. Psilocybin occasioned mystical-type experiences: Immediate and persisting doserelated effects. Psychopharmacology, 2011, 218(4), 649-665.
[http://dx.doi.org/10.1007/s00213-011-2358-5]
[37]
MacLean, K.A.; Johnson, M.W.; Griffiths, R.R. Mystical experiences occasioned by the hallucinogen psilocybin lead to increases in the personality domain of openness. J. Psychopharmacol., 2011, 25(11), 1453-1461.
[http://dx.doi.org/10.1177/0269881111420188]
[38]
Greenway, K.T.; Garel, N.; Jerome, L.; Feduccia, A.A. Integrating psychotherapy and psychopharmacology: Psychedelic-assisted psychotherapy and other combined treatments. Expert Rev. Clin. Pharmacol., 2020, 13(6), 655-670.
[http://dx.doi.org/10.1080/17512433.2020.1772054]
[39]
Jerome, L.; Feduccia, A.A.; Wang, J.B.; Hamilton, S.; Yazar-Klosinski, B.; Emerson, A.; Mithoefer, M.C.; Doblin, R. Long-term follow-up outcomes of MDMA-assisted psychotherapy for treatment of PTSD: A longitudinal pooled analysis of six phase 2 trials. Psychopharmacology, 2020, 237(8), 2485-2497.
[http://dx.doi.org/10.1007/s00213-020-05548-2]
[40]
Mitchell, J.M.; Bogenschutz, M.; Lilienstein, A.; Harrison, C.; Kleiman, S.; Parker-Guilbert, K.; Ot’alora, G, M.; Garas, W.; Paleos, C.; Gorman, I.; Nicholas, C.; Mithoefer, M.; Carlin, S.; Poulter, B.; Mithoefer, A.; Quevedo, S.; Wells, G.; Klaire, S.S.; van der Kolk, B.; Tzarfaty, K.; Amiaz, R.; Worthy, R.; Shannon, S.; Woolley, J.D.; Marta, C.; Gelfand, Y.; Hapke, E.; Amar, S.; Wallach, Y.; Brown, R.; Hamilton, S.; Wang, J.B.; Coker, A.; Matthews, R.; de Boer, A.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R. MDMA-assisted therapy for severe PTSD : A randomized, double-blind, placebo-controlled phase 3 study. Nat. Med., 2021, 27(6), 1025-1033.
[http://dx.doi.org/10.1038/s41591-021-01336-3]
[41]
Barone, W.; Beck, J.; Mitsunaga-Whitten, M.; Perl, P. Perceived benefits of MDMA-assisted psychotherapy beyond symptom reduction: Qualitative Follow-Up study of a clinical trial for individuals with treatmentresistant PTSD. J. Psychoactive Drugs, 2019, 51(2), 199-208.
[http://dx.doi.org/10.1080/02791072.2019.1580805]
[42]
Gorman, I.; Belser, A.B.; Jerome, L.; Hennigan, C.; Shechet, B.; Hamilton, S.; Yazar-Klosinski, B.; Emerson, A.; Feduccia, A.A. Posttraumatic growth after MDMA-Assisted psychotherapy for posttraumatic stress disorder. J. Trauma. Stress, 2020, 33(2), 161-170.
[http://dx.doi.org/10.1002/jts.22479]
[43]
Schlag, A.K.; Aday, J.; Salam, I.; Neill, J.C.; Nutt, D.J. Adverse effects of psychedelics: From anecdotes and misinformation to systematic science. J. Psychopharmacol., 2022, 36(3), 258-272.
[http://dx.doi.org/10.1177/02698811211069100]
[44]
Lepow, L.; Jagodnik, K.M.; Glatman Zaretsky, T.; Hernandez Antonio, J.; Bonanno, P.A.; Yehuda, R. Psychedelic drugs as treatment agents.Charney & Nestler’s Neurobiology of Mental Illness, 6th; Charney, DS NE., Ed.; Oxford University Press, 2023.
[45]
Association, A.P. Posttraumatic Stress Disorder; American Psychiatric Association, 2013.
[46]
Burgess, A.W.; Holmstrom, L.L. Rape trauma syndrome. Am. J. Psychiatry, 1974, 131(9), 981-986.
[http://dx.doi.org/10.1176/ajp.131.9.981]
[47]
Lancaster, C.; Teeters, J.; Gros, D.; Back, S. Posttraumatic stress disorder: Overview of evidence-based assessment and treatment. J. Clin. Med., 2016, 5(11), 105.
[http://dx.doi.org/10.3390/jcm5110105]
[48]
Rothbaum, B.O.; Foa, E.B.; Riggs, D.S.; Murdock, T.; Walsh, W. A prospective examination of post traumatic stress disorder in rape victims. J. Trauma. Stress, 1992, 5(3), 455-475.
[http://dx.doi.org/10.1002/jts.2490050309]
[49]
Santiago, P.N.; Ursano, R.J.; Gray, C.L.; Pynoos, R.S.; Spiegel, D.; Lewis-Fernandez, R.; Friedman, M.J.; Fullerton, C.S. A systematic review of PTSD prevalence and trajectories in DSM-5 defined trauma exposed populations: Intentional and nonintentional traumatic events. PLoS One, 2013, 8(4), e59236.
[http://dx.doi.org/10.1371/journal.pone.0059236]
[50]
Friedman, M.J.; Resick, P.A.; Bryant, R.A.; Brewin, C.R. Considering PTSD for DSM-V. Depression and. Anxiety, 2011, 28(9), 750-769.
[51]
Smid, G.E.; Mooren, T.T.M.; van der Mast, R.C.; Gersons, B.P.R.; Kleber, R.J. Delayed posttraumatic stress disorder: Systematic review, meta-analysis, and metaregression analysis of prospective studies. J. Clin. Psychiatry, 2009, 70(11), 1572-1582.
[http://dx.doi.org/10.4088/JCP.08r04484]
[52]
Utzon-Frank, N.; Breinegaard, N.; Bertelsen, M.; Borritz, M.; Eller, N.H.; Nordentoft, M.; Olesen, K.; Rod, N.H.; Rugulies, R.; Bonde, J.P. Occurrence of delayed-onset posttraumatic stress disorder: A systematic review and meta-analysis of prospective studies. Scand. J. Work Environ. Health, 2014, 40(3), 215-229.
[http://dx.doi.org/10.5271/sjweh.3420]
[53]
Andrews, B.; Brewin, C.R.; Philpott, R.; Stewart, L. Delayed-onset posttraumatic stress disorder: A systematic review of the evidence. Am. J. Psychiatry, 2007, 164(9), 1319-1326.
[http://dx.doi.org/10.1176/appi.ajp.2007.06091491]
[54]
Bonde, J.P.E.; Jensen, J.H.; Smid, G.E.; Flachs, E.M.; Elklit, A.; Mors, O.; Videbech, P. Time course of symptoms in posttraumatic stress disorder with delayed expression: A systematic review. Acta Psychiatr. Scand., 2022, 145(2), 116-131.
[http://dx.doi.org/10.1111/acps.13372]
[55]
American Psychiatric Association D. Association AP. Diagnostic and statistical manual of mental disorders: DSM-5: American psychiatric association Washington, DC, 2013.
[56]
Organization, W.H. International statistical classification of diseases and related health problems, 11th; who; , 2019. Available at: https://icd.who.int/
[57]
Kessler, RC; Aguilar-Gaxiola, S; Alonso, J Trauma and PTSD in the WHO world mental health surveys. Eurp. J. Psychotraumatol., 2017, (sup5), 1353383.
[http://dx.doi.org/10.1080/20008198.2017.1353383]
[58]
Koenen, K.C.; Ratanatharathorn, A.; Ng, L.; McLaughlin, K.A.; Bromet, E.J.; Stein, D.J.; Karam, E.G.; Meron Ruscio, A.; Benjet, C.; Scott, K.; Atwoli, L.; Petukhova, M.; Lim, C.C.W.; Aguilar-Gaxiola, S.; Al-Hamzawi, A.; Alonso, J.; Bunting, B.; Ciutan, M.; de Girolamo, G.; Degenhardt, L.; Gureje, O.; Haro, J.M.; Huang, Y.; Kawakami, N.; Lee, S.; Navarro-Mateu, F.; Pennell, B-E.; Piazza, M.; Sampson, N.; ten Have, M.; Torres, Y.; Viana, M.C.; Williams, D.; Xavier, M.; Kessler, R.C. Posttraumatic stress disorder in the world mental health surveys. Psychol. Med., 2017, 47(13), 2260-2274.
[http://dx.doi.org/10.1017/S0033291717000708]
[59]
Yehuda, R.; Hoge, C.W.; McFarlane, A.C.; Vermetten, E.; Lanius, R.A.; Nievergelt, C.M.; Hobfoll, S.E.; Koenen, K.C.; Neylan, T.C.; Hyman, S.E. Post-traumatic stress disorder. Nat. Rev. Dis. Primers, 2015, 1(1), 15057.
[http://dx.doi.org/10.1038/nrdp.2015.57]
[60]
Ressler, K.J.; Berretta, S.; Bolshakov, V.Y.; Rosso, I.M.; Meloni, E.G.; Rauch, S.L.; Carlezon, W.A., Jr Posttraumatic stress disorder: Clinical and translational neuroscience from cells to circuits. Nat. Rev. Neurol., 2022, 18(5), 273-288.
[http://dx.doi.org/10.1038/s41582-022-00635-8]
[61]
PTSD. National Center for PTSD; , 2023. Available at: https://www.ptsd.va.gov/understand/common/common_adults.asp
[62]
Dekel, S.; Mamon, D.; Solomon, Z.; Lanman, O.; Dishy, G. Can guilt lead to psychological growth following trauma exposure? Psychiatry Res., 2016, 236, 196-198.
[http://dx.doi.org/10.1016/j.psychres.2016.01.011]
[63]
Terhakopian, A.; Sinaii, N.; Engel, C.C.; Schnurr, P.P.; Hoge, C.W. Estimating population prevalence of posttraumatic stress disorder : An example using the PTSD checklist. J. Trauma. Stress, 2008, 21(3), 290-300.
[http://dx.doi.org/10.1002/jts.20341]
[64]
Karam, E.G.; Friedman, M.J.; Hill, E.D.; Kessler, R.C.; McLaughlin, K.A.; Petukhova, M.; Sampson, L.; Shahly, V.; Angermeyer, M.C.; Bromet, E.J.; de Girolamo, G.; de Graaf, R.; Demyttenaere, K.; Ferry, F.; Florescu, S.E.; Haro, J.M.; He, Y.; Karam, A.N.; Kawakami, N.; Kovess-Masfety, V.; Medina-Mora, M.E.; Browne, M.A.O.; Posada-Villa, J.A.; Shalev, A.Y.; Stein, D.J.; Viana, M.C.; Zarkov, Z.; Koenen, K.C. Cumulative traumas and risk thresholds : 12-month PTSD in the world mental health (WMH) surveys. Depress. Anxiety, 2014, 31(2), 130-142.
[http://dx.doi.org/10.1002/da.22169]
[65]
DeRight, J. Posttraumatic stress disorder.Essential Neuropsychology: A Concise Handbook for Adult Practitioners; DeRight, J., Ed.; Springer International Publishing: Cham, 2022, pp. 269-277.
[http://dx.doi.org/10.1007/978-3-030-85372-3_38]
[66]
Marshall, R.D.; Yehuda, R.; Bone, S. Trauma-focused psychodynamic psychotherapy for individuals with posttraumatic stress symptoms. In: Inter. handbook of human response to trauma; , 2000; pp. 347-361.
[http://dx.doi.org/10.1007/978-1-4615-4177-6_25]
[67]
Friedman, M.J.; Schnurr, P.P.; Keane, T.M. Handbook of PTSD : Science and practice; , 2021.
[68]
Atwoli, L.; Stein, D.J.; Koenen, K.C.; McLaughlin, K.A. Epidemiology of posttraumatic stress disorder. Curr. Opin. Psychiatry, 2015, 28(4), 307-311.
[http://dx.doi.org/10.1097/YCO.0000000000000167]
[69]
Galea, S.; Ahern, J.; Tracy, M.; Hubbard, A.; Cerda, M.; Goldmann, E.; Vlahov, D. Longitudinal determinants of posttraumatic stress in a population-based cohort study. Epidemiology, 2008, 19(1), 47-54.
[http://dx.doi.org/10.1097/EDE.0b013e31815c1dbf]
[70]
Kessler, R.C.; Rose, S.; Koenen, K.C.; Karam, E.G.; Stang, P.E.; Stein, D.J.; Heeringa, S.G.; Hill, E.D.; Liberzon, I.; McLaughlin, K.A.; McLean, S.A.; Pennell, B.E.; Petukhova, M.; Rosellini, A.J.; Ruscio, A.M.; Shahly, V.; Shalev, A.Y.; Silove, D.; Zaslavsky, A.M.; Angermeyer, M.C.; Bromet, E.J.; de Almeida, J.M.C.; de Girolamo, G.; de Jonge, P.; Demyttenaere, K.; Florescu, S.E.; Gureje, O.; Haro, J.M.; Hinkov, H.; Kawakami, N.; Kovess-Masfety, V.; Lee, S.; Medina-Mora, M.E.; Murphy, S.D.; Navarro-Mateu, F.; Piazza, M.; Posada-Villa, J.; Scott, K.; Torres, Y.; Carmen Viana, M. How well can post-traumatic stress disorder be predicted from pre-trauma risk factors? An exploratory study in the WHO World Mental Health Surveys. World Psychiatry, 2014, 13(3), 265-274.
[http://dx.doi.org/10.1002/wps.20150]
[71]
Koenen, K.C.; Harley, R.; Lyons, M.J.; Wolfe, J.; Simpson, J.C.; Goldberg, J.; Eisen, S.A.; Tsuang, M. A twin registry study of familial and individual risk factors for trauma exposure and posttraumatic stress disorder. J. Nerv. Ment. Dis., 2002, 190(4), 209-218.
[http://dx.doi.org/10.1097/00005053-200204000-00001]
[72]
True, W.R.; Rice, J.; Eisen, S.A. A twin study of genetic and environmental contributions to liability for posttraumatic stress symptoms. Arch. Gen. Psychiatry, 1993, 50(4), 257-264.
[http://dx.doi.org/10.1001/archpsyc.1993.01820160019002]
[73]
Yehuda, R. Biology of posttraumatic stress disorder. J. Clin. Psychiatry, 2001, 62(17), 41-46.
[74]
Sack, W.H.; Clarke, G.N.; Seeley, J. Posttraumatic stress disorder across two generations of cambodian refugees. J. Am. Acad. Child Adolesc. Psychiatry, 1995, 34(9), 1160-1166.
[http://dx.doi.org/10.1097/00004583-199509000-00013]
[75]
Nievergelt, C.M.; Maihofer, A.X.; Klengel, T.; Atkinson, E.G.; Chen, C-Y.; Choi, K.W.; Coleman, J.R.I.; Dalvie, S.; Duncan, L.E.; Gelernter, J.; Levey, D.F.; Logue, M.W.; Polimanti, R.; Provost, A.C.; Ratanatharathorn, A.; Stein, M.B.; Torres, K.; Aiello, A.E.; Almli, L.M.; Amstadter, A.B.; Andersen, S.B.; Andreassen, O.A.; Arbisi, P.A.; Ashley-Koch, A.E.; Austin, S.B.; Avdibegovic, E.; Babić, D.; Bækvad-Hansen, M.; Baker, D.G.; Beckham, J.C.; Bierut, L.J.; Bisson, J.I.; Boks, M.P.; Bolger, E.A.; Børglum, A.D.; Bradley, B.; Brashear, M.; Breen, G.; Bryant, R.A.; Bustamante, A.C.; Bybjerg-Grauholm, J.; Calabrese, J.R. Caldas- de- Almeida, J.M.; Dale, A.M.; Daly, M.J.; Daskalakis, N.P.; Deckert, J.; Delahanty, D.L.; Dennis, M.F.; Disner, S.G.; Domschke, K.; Dzubur-Kulenovic, A.; Erbes, C.R.; Evans, A.; Farrer, L.A.; Feeny, N.C.; Flory, J.D.; Forbes, D.; Franz, C.E.; Galea, S.; Garrett, M.E.; Gelaye, B.; Geuze, E.; Gillespie, C.; Uka, A.G.; Gordon, S.D.; Guffanti, G.; Hammamieh, R.; Harnal, S.; Hauser, M.A.; Heath, A.C.; Hemmings, S.M.J.; Hougaard, D.M.; Jakovljevic, M.; Jett, M.; Johnson, E.O.; Jones, I.; Jovanovic, T.; Qin, X-J.; Junglen, A.G.; Karstoft, K-I.; Kaufman, M.L.; Kessler, R.C.; Khan, A.; Kimbrel, N.A.; King, A.P.; Koen, N.; Kranzler, H.R.; Kremen, W.S.; Lawford, B.R.; Lebois, L.A.M.; Lewis, C.E.; Linnstaedt, S.D.; Lori, A.; Lugonja, B.; Luykx, J.J.; Lyons, M.J.; Maples-Keller, J.; Marmar, C.; Martin, A.R.; Martin, N.G.; Maurer, D.; Mavissakalian, M.R.; McFarlane, A.; McGlinchey, R.E.; McLaughlin, K.A.; McLean, S.A.; McLeay, S.; Mehta, D.; Milberg, W.P.; Miller, M.W.; Morey, R.A.; Morris, C.P.; Mors, O.; Mortensen, P.B.; Neale, B.M.; Nelson, E.C.; Nordentoft, M.; Norman, S.B.; O’Donnell, M.; Orcutt, H.K.; Panizzon, M.S.; Peters, E.S.; Peterson, A.L.; Peverill, M.; Pietrzak, R.H.; Polusny, M.A.; Rice, J.P.; Ripke, S.; Risbrough, V.B.; Roberts, A.L.; Rothbaum, A.O.; Rothbaum, B.O.; Roy-Byrne, P.; Ruggiero, K.; Rung, A.; Rutten, B.P.F.; Saccone, N.L.; Sanchez, S.E.; Schijven, D.; Seedat, S.; Seligowski, A.V.; Seng, J.S.; Sheerin, C.M.; Silove, D.; Smith, A.K.; Smoller, J.W.; Sponheim, S.R.; Stein, D.J.; Stevens, J.S.; Sumner, J.A.; Teicher, M.H.; Thompson, W.K.; Trapido, E.; Uddin, M.; Ursano, R.J.; van den Heuvel, L.L.; Van Hooff, M.; Vermetten, E.; Vinkers, C.H.; Voisey, J.; Wang, Y.; Wang, Z.; Werge, T.; Williams, M.A.; Williamson, D.E.; Winternitz, S.; Wolf, C.; Wolf, E.J.; Wolff, J.D.; Yehuda, R.; Young, R.M.D.; Young, K.A.; Zhao, H.; Zoellner, L.A.; Liberzon, I.; Ressler, K.J.; Haas, M.; Koenen, K.C. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun., 2019, 10(1), 4558.
[http://dx.doi.org/10.1038/s41467-019-12576-w]
[76]
Stein, M.B.; Jang, K.L.; Taylor, S.; Vernon, P.A.; Livesley, W.J. Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: A twin study. Am. J. Psychiatry, 2002, 159(10), 1675-1681.
[http://dx.doi.org/10.1176/appi.ajp.159.10.1675]
[77]
Lang, U.E.; Hellweg, R.; Kalus, P.; Bajbouj, M.; Lenzen, K.P.; Sander, T.; Kunz, D.; Gallinat, J. Association of a functional BDNF polymorphism and anxiety-related personality traits. Psychopharmacology, 2005, 180(1), 95-99.
[http://dx.doi.org/10.1007/s00213-004-2137-7]
[78]
Renaud, E.F. The attachment characteristics of combat veterans with PTSD. Traumatology, 2008, 14(3), 1-12.
[http://dx.doi.org/10.1177/1534765608319085]
[79]
Koenen, K.C.; Nugent, N.R.; Amstadter, A.B. Gene-environment interaction in posttraumatic stress disorder. Eur. Arch. Psychiatry Clin. Neurosci., 2008, 258(2), 82-96.
[http://dx.doi.org/10.1007/s00406-007-0787-2]
[80]
Asch, R.H.; Esterlis, I.; Wendt, F.R.; Kachadourian, L.; Southwick, S.M.; Gelernter, J.; Polimanti, R.; Pietrzak, R.H. Polygenic risk for traumatic loss-related PTSD in US military veterans: Protective effect of secure attachment style. World J. Biol. Psychiatry, 2021, 22(10), 792-799.
[http://dx.doi.org/10.1080/15622975.2021.1907721]
[81]
Horn, S.R.; Feder, A. Understanding resilience and preventing and treating PTSD. Harv. Rev. Psychiatry, 2018, 26(3), 158-174.
[http://dx.doi.org/10.1097/HRP.0000000000000194]
[82]
Lee, D.J.; Lee, L.O.; Bovin, M.J.; Moshier, S.J.; Dutra, S.J.; Kleiman, S.E.; Rosen, R.C.; Vasterling, J.J.; Keane, T.M.; Marx, B.P. The 20-year course of posttraumatic stress disorder symptoms among veterans. J. Abnorm. Psychol., 2020, 129(6), 658-669.
[http://dx.doi.org/10.1037/abn0000571]
[83]
Able, M.L.; Benedek, D.M. Severity and symptom trajectory in combat-related PTSD: A review of the literature. Curr. Psychiatry Rep., 2019, 21(7), 58.
[http://dx.doi.org/10.1007/s11920-019-1042-z]
[84]
Steinert, C.; Hofmann, M.; Leichsenring, F.; Kruse, J. The course of PTSD in naturalistic long-term studies: High variability of outcomes. A systematic review. Nord. J. Psychiatry, 2015, 69(7), 483-496.
[http://dx.doi.org/10.3109/08039488.2015.1005023]
[85]
Morina, N.; Wicherts, J.M.; Lobbrecht, J.; Priebe, S. Remission from post-traumatic stress disorder in adults: A systematic review and meta-analysis of long term outcome studies. Clin. Psychol. Rev., 2014, 34(3), 249-255.
[http://dx.doi.org/10.1016/j.cpr.2014.03.002]
[86]
Rosellini, A.J.; Liu, H.; Petukhova, M.V.; Sampson, N.A.; Aguilar-Gaxiola, S.; Alonso, J.; Borges, G.; Bruffaerts, R.; Bromet, E.J.; de Girolamo, G.; de Jonge, P.; Fayyad, J.; Florescu, S.; Gureje, O.; Haro, J.M.; Hinkov, H.; Karam, E.G.; Kawakami, N.; Koenen, K.C.; Lee, S.; Lépine, J.P.; Levinson, D.; Navarro-Mateu, F.; Oladeji, B.D.; O’Neill, S.; Pennell, B-E.; Piazza, M.; Posada-Villa, J.; Scott, K.M.; Stein, D.J.; Torres, Y.; Viana, M.C.; Zaslavsky, A.M.; Kessler, R.C. Recovery from DSM-IV post-traumatic stress disorder in the WHO World Mental Health surveys. Psychol. Med., 2018, 48(3), 437-450.
[http://dx.doi.org/10.1017/S0033291717001817]
[87]
Tripp, J.C.; Norman, S.B.; Kim, H.M.; Venners, M.R.; Martis, B.; Simon, N.M.; Stein, M.B.; Allard, C.B.; Rauch, S.A.M. Residual symptoms of PTSD following Sertraline plus enhanced medication management, Sertraline plus PE, and PE plus placebo. Psychiatry Res., 2020, 291, 113279.
[http://dx.doi.org/10.1016/j.psychres.2020.113279]
[88]
Larsen, S.E.; Fleming, C.J.E.; Resick, P.A. Residual symptoms following empirically supported treatment for PTSD. Psychol. Trauma, 2019, 11(2), 207-215.
[http://dx.doi.org/10.1037/tra0000384]
[89]
Schnurr, P.P.; Lunney, C.A. Residual symptoms following prolonged exposure and present-centered therapy for PTSD in female veterans and soldiers. Depress. Anxiety, 2019, 36(2), 162-169.
[http://dx.doi.org/10.1002/da.22871]
[90]
Usman, M.; Rehman, A.; Bakhtawar, N.; Bhatti, A. Prognosis of ptsd in treated vs. non-treated groups. J. Pak. Psychiatr. Soc., 2015, 12(1), 39-42.
[91]
Doctor, J.N.; Zoellner, L.A.; Feeny, N.C. Predictors of health-related quality-of-life utilities among persons with posttraumatic stress disorder. Psychiatr. Serv., 2011, 62(3), 272-277.
[http://dx.doi.org/10.1176/ps.62.3.pss6203_0272]
[92]
Pagotto, L.F.; Mendlowicz, M.V.; Coutinho, E.S.F.; Figueira, I.; Luz, M.P.; Araujo, A.X.; Berger, W. The impact of posttraumatic symptoms and comorbid mental disorders on the health-related quality of life in treatment-seeking PTSD patients. Compr. Psychiatry, 2015, 58, 68-73.
[http://dx.doi.org/10.1016/j.comppsych.2015.01.002]
[93]
Kartha, A.; Brower, V.; Saitz, R.; Samet, J.H.; Keane, T.M.; Liebschutz, J. The impact of trauma exposure and post-traumatic stress disorder on healthcare utilization among primary care patients. Med. Care, 2008, 46(4), 388-393.
[http://dx.doi.org/10.1097/MLR.0b013e31815dc5d2]
[94]
Alonso, J.; Petukhova, M.; Vilagut, G.; Chatterji, S.; Heeringa, S.; Üstün, T.B.; Alhamzawi, A.O.; Viana, M.C.; Angermeyer, M.; Bromet, E.; Bruffaerts, R.; de Girolamo, G.; Florescu, S.; Gureje, O.; Haro, J.M.; Hinkov, H.; Hu, C.; Karam, E.G.; Kovess, V.; Levinson, D. Medina-Mora, M.E.; Nakamura, Y.; Ormel, J.; Posada-Villa, J.; Sagar, R.; Scott, K.M.; Tsang, A.; Williams, D.R.; Kessler, R.C. Days out of role due to common physical and mental conditions: results from the WHO World Mental Health surveys. Mol. Psychiatry, 2011, 16(12), 1234-1246.
[http://dx.doi.org/10.1038/mp.2010.101]
[95]
Campbell, S.B.; Renshaw, K.D. Posttraumatic stress disorder and relationship functioning: A comprehensive review and organizational framework. Clin. Psychol. Rev., 2018, 65, 152-162.
[http://dx.doi.org/10.1016/j.cpr.2018.08.003]
[96]
Bernal, M.; Haro, J.M.; Bernert, S.; Brugha, T.; de Graaf, R.; Bruffaerts, R.; Lépine, J.P.; de Girolamo, G.; Vilagut, G.; Gasquet, I.; Torres, J.V.; Kovess, V.; Heider, D.; Neeleman, J.; Kessler, R.; Alonso, J. Risk factors for suicidality in Europe: Results from the ESEMED study. J. Affect. Disord., 2007, 101(1-3), 27-34.
[http://dx.doi.org/10.1016/j.jad.2006.09.018]
[97]
Pietrzak, R.H.; Goldstein, R.B.; Southwick, S.M.; Grant, B.F. Prevalence and Axis I comorbidity of full and partial posttraumatic stress disorder in the United States: Results from wave 2 of the national epidemiologic survey on alcohol and related conditions. J. Anxiety Disord., 2011, 25(3), 456-465.
[http://dx.doi.org/10.1016/j.janxdis.2010.11.010]
[98]
Wilcox, H.C.; Storr, C.L.; Breslau, N. Posttraumatic stress disorder and suicide attempts in a community sample of urban american young adults. Arch. Gen. Psychiatry, 2009, 66(3), 305-311.
[http://dx.doi.org/10.1001/archgenpsychiatry.2008.557]
[99]
Stevens, D.; Wilcox, H.C.; MacKinnon, DF Posttraumatic stress disorder increases risk for suicide attempt in adults with recurrent major depression. Depress Anxiety, 2013, 30(10), 940-946.
[http://dx.doi.org/10.1002/da.22160] [PMID: 23893768]
[100]
Pausch, M.J.; Matten, S.J. Trauma and Trauma Consequence Disorder: In Media, Management and Public; Springer Nature; , 2022, p. 121.
[101]
Kraepelin, E. Der psychologische Versuch in der Psychiatrie. Psychologische Arbeiten., 1896, 1, 1-91.
[102]
Freud, S.; Breuer, J. Studies in hysteria; Penguin, 2004.
[103]
Gasquoine, P.G. Railway spine: The advent of compensation for concussive symptoms. J. Hist. Neurosci., 2020, 29(2), 234-245.
[http://dx.doi.org/10.1080/0964704X.2019.1711350]
[104]
Dutil, A. Hysteria and associated neurasthenia (railway-spine and traumatic neurosis), by A. Dutil: O. Doin; P; BLAKISTON, SON & CO: Philadelphia, 1889.
[105]
Erichsen, J.E. Clinical Lecture, 1866.
[106]
Steckel, H.A. The traumatic neuroses of war. Am. J. Psychiatry, 1942, 98(4), 624-625.
[http://dx.doi.org/10.1176/ajp.98.4.624]
[107]
GrinkerRRSpiegelJPMen under stress. Blakiston, 1945.
[http://dx.doi.org/10.1037/10784-000]
[108]
Grinker, R.R.; Spiegel, J.P. Reactions to combat, based on previous emotional disorders. In: Men under stress; Blakiston, 1945; pp. 53-81.
[http://dx.doi.org/10.1037/10784-004]
[109]
Vance, M.C.; Howell, J.D. Shell shock and PTSD: A tale of two diagnoses. Mayo Clin. Proc., 2020, 95(9), 1827-1830.
[http://dx.doi.org/10.1016/j.mayocp.2020.06.002]
[110]
Miller, L. History of the PTSD Concept and Its Relation to the Law.PTSD and Forensic Psychology: Applications to Civil and Criminal Law. SpringerBriefs in Psychology; Miller, L., Ed.; Springer International Publishing: Cham, 2015, pp. 1-7.
[http://dx.doi.org/10.1007/978-3-319-09081-8_1]
[111]
Jones, E. Historical approaches to post-combat disorders. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2006, 361(1468), 533-542.
[http://dx.doi.org/10.1098/rstb.2006.1814]
[112]
Jablonski, R.K.; Leszek, J.; Rosińczuk, J.; Uchmanowicz, I.; Panaszek, B. Impact of incarceration in Nazi concentration camps on multi-morbidity of former prisoners. Neuropsychiatr. Dis. Treat., 2015, 11, 669-674.
[113]
Trautman, E.C. Concentration Camp Survivors in Norway and Israel; Am Psychiatric Assoc, 1967.
[114]
American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders, 1952.
[115]
American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental. Disorders; Second Edition; Washington, D. C, 1968.
[116]
American Psychiatric Association (APA). The Diagnostic and Statistical Manual of Mental Disorders, Third Edition (DSM-III); American Psychiatric Association, 1980.
[117]
Bryant, R.A.; Galatzer-Levy, I.; Hadzi-Pavlovic, D. The heterogeneity of posttraumatic stress disorder in DSM-5. JAMA Psychiat., 2023, 80(2), 189-191.
[http://dx.doi.org/10.1001/jamapsychiatry.2022.4092]
[118]
Lehrner, A.; Yehuda, R. Biomarkers of PTSD: Military applications and considerations. Eur. J. Psychotraumatol., 2014, 5, ecollection 2014.
[http://dx.doi.org/10.3402/ejpt.v5.23797]
[119]
Psychobiology of Posttraumatic Stress Disorder.Psychobiology of Posttraumatic Stress Disorder: A Decade of Progress, 1st; Mass: Wiley-Blackwell: Boston, 2006, 1071, p. 352.
[120]
Zoellner, L.A.; Pruitt, L.D.; Farach, F.J.; Jun, J.J. Understanding heterogeneity in PTSD: Fear, dysphoria, and distress. Depress. Anxiety, 2014, 31(2), 97-106.
[http://dx.doi.org/10.1002/da.22133]
[121]
Flory, J.D.; Yehuda, R. Comorbidity between post-traumatic stress disorder and major depressive disorder: Alternative explanations and treatment considerations. Dialogues Clin. Neurosci., 2015, 17(2), 141-150.
[http://dx.doi.org/10.31887/DCNS.2015.17.2/jflory]
[122]
Sareen, J. Posttraumatic stress disorder in adults: Impact, comorbidity, risk factors, and treatment. Can. J. Psychiatry, 2014, 59(9), 460-467.
[http://dx.doi.org/10.1177/070674371405900902]
[123]
Van der Kolk, B.A.; McFarlane, A.C.; Weisaeth, L. Traumatic stress: The effects of overwhelming experience on mind, body, and society; Guilford Press, 2012.
[124]
Bernal, G.; Jiménez-Chafey, M.I.; Domenech, R.M.M. Cultural adaptation of treatments: A resource for considering culture in evidence-based practice. Prof. Psychol. Res. Pr., 2009, 40(4), 361-368.
[http://dx.doi.org/10.1037/a0016401]
[125]
Yehuda, R. Treating trauma survivors with PTSD: American Psychiatric Pub, 2008.
[126]
Monson, E.; Lonergan, M.; Caron, J.; Brunet, A. Assessing trauma and posttraumatic stress disorder: Single, open-ended question versus list-based inventory. Psychol. Assess., 2016, 28(8), 1001-1008.
[http://dx.doi.org/10.1037/pas0000223]
[127]
Livingston, N.A.; Brief, D.; Miller, M.; Keane, T. Assessment of PTSD and its comorbidities in adults; Handbook of PTSD; Science and practice, 2021, p. 283.
[128]
Weathers, F.W.; Blake, D.D.; Schnurr, P.P.; Kaloupek, D.G.; Marx, B.P.; Keane, T.M. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5). [Assessment], 2013. Available from www.ptsd.va.gov
[129]
First, M.B. Structured Clinical Interview for the DSM (SCID). The Encyclopedia of Clinical Psychology; Cautin, R.L.; Lilienfeld, S.O., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015, pp. 1-6.
[http://dx.doi.org/10.1002/9781118625392.wbecp351]
[130]
Shalev, A.Y.; Peri, T.; Orr, S.P.; Bonne, O.; Pitman, R.K. Auditory startle responses in help-seeking trauma survivors. Psychiatry Res., 1997, 69(1), 1-7.
[http://dx.doi.org/10.1016/S0165-1781(96)03001-6]
[131]
Orr, S.P.; Lasko, N.B.; Shalev, A.Y.; Pitman, R.K. Physiologic responses to loud tones in Vietnam veterans with posttraumatic stress disorder. J. Abnorm. Psychol., 1995, 104(1), 75-82.
[http://dx.doi.org/10.1037/0021-843X.104.1.75]
[132]
Yehuda, R.; LeDoux, J. Response variation following trauma: A translational neuroscience approach to understanding PTSD. Neuron, 2007, 56(1), 19-32.
[http://dx.doi.org/10.1016/j.neuron.2007.09.006]
[133]
Bremner, J.D. Does stress damage the brain? Biol. Psychiatry, 1999, 45(7), 797-805.
[http://dx.doi.org/10.1016/S0006-3223(99)00009-8]
[134]
Bremner, J.D.; Randall, P.; Vermetten, E.; Staib, L.; Bronen, R.A.; Mazure, C.; Capelli, S.; McCarthy, G.; Innis, R.B.; Charney, D.S. Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. Biol. Psychiatry, 1997, 41(1), 23-32.
[http://dx.doi.org/10.1016/S0006-3223(96)00162-X]
[135]
Geuze, E.; Vermetten, E.; de Kloet, C.S.; Westenberg, H.G.M. Precuneal activity during encoding in veterans with posttraumatic stress disorder. Prog. Brain Res., 2007, 167, 293-297.
[http://dx.doi.org/10.1016/S0079-6123(07)67026-5]
[136]
Cavanna, A.E.; Trimble, M.R. The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 2006, 129(3), 564-583.
[http://dx.doi.org/10.1093/brain/awl004]
[137]
Bird, C.I.V.; Modlin, N.L.; Rucker, J.J.H. Psilocybin and MDMA for the treatment of trauma-related psychopathology. Int. Rev. Psychiatry, 2021, 33(3), 229-249.
[http://dx.doi.org/10.1080/09540261.2021.1919062]
[138]
Jatzko, A.; Schmitt, A.; Demirakca, T.; Weimer, E.; Braus, D.F. Disturbance in the neural circuitry underlying positive emotional processing in post-traumatic stress disorder (PTSD). Eur. Arch. Psychiatry Clin. Neurosci., 2006, 256(2), 112-114.
[http://dx.doi.org/10.1007/s00406-005-0617-3]
[139]
Sakamoto, H.; Fukuda, R.; Okuaki, T.; Rogers, M.; Kasai, K.; Machida, T.; Shirouzu, I.; Yamasue, H.; Akiyama, T.; Kato, N. Parahippo-campal activation evoked by masked traumatic images in posttraumatic stress disorder: A functional MRI study. Neuroimage, 2005, 26(3), 813-821.
[http://dx.doi.org/10.1016/j.neuroimage.2005.02.032]
[140]
St. Jacques, P.L.; Botzung, A.; Miles, A.; Rubin, D.C. Functional neuroimaging of emotionally intense autobiographical memories in post-traumatic stress disorder. J. Psychiatr. Res., 2011, 45(5), 630-637.
[http://dx.doi.org/10.1016/j.jpsychires.2010.10.011]
[141]
Brohawn, K.H.; Offringa, R.; Pfaff, D.L.; Hughes, K.C.; Shin, L.M. The neural correlates of emotional memory in posttraumatic stress disorder. Biol. Psychiatry, 2010, 68(11), 1023-1030.
[http://dx.doi.org/10.1016/j.biopsych.2010.07.018]
[142]
Sripada, R.K.; King, A.P.; Garfinkel, S.N.; Wang, X.; Sripada, C.S.; Welsh, R.C.; Liberzon, I. Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder. J. Psychiatry Neurosci., 2012, 37(4), 241-249.
[http://dx.doi.org/10.1503/jpn.110069]
[143]
Fitzgerald, J.M.; DiGangi, J.A.; Phan, K.L. Functional neuroanatomy of emotion and its regulation in PTSD. Harv. Rev. Psychiatry, 2018, 26(3), 116-128.
[http://dx.doi.org/10.1097/HRP.0000000000000185]
[144]
Bremner, J.D. Traumatic stress: Effects on the brain. Dialogues Clin. Neurosci., 2006, 8(4), 445-461.
[http://dx.doi.org/10.31887/DCNS.2006.8.4/jbremner]
[145]
Shin, L.M.; Rauch, S.L.; Pitman, R.K. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann. N. Y. Acad. Sci., 2006, 1071(1), 67-79.
[http://dx.doi.org/10.1196/annals.1364.007]
[146]
Kunimatsu, A.; Yasaka, K.; Akai, H.; Kunimatsu, N.; Abe, O. MRI findings in posttraumatic stress disorder. J. Magn. Reson. Imaging, 2020, 52(2), 380-396.
[http://dx.doi.org/10.1002/jmri.26929]
[147]
Lanius, R.A.; Williamson, P.C.; Hopper, J.; Densmore, M.; Boksman, K.; Gupta, M.A.; Neufeld, R.W.J.; Gati, J.S.; Menon, R.S. Recall of emotional states in posttraumatic stress disorder: An fMRI investigation. Biol. Psychiatry, 2003, 53(3), 204-210.
[http://dx.doi.org/10.1016/S0006-3223(02)01466-X]
[148]
Lanius, R.A.; Brand, B.; Vermetten, E.; Frewen, P.A.; Spiegel, D. The dissociative subtype of posttraumatic stress disorder: Rationale, clinical and neurobiological evidence, and implications. Depress. Anxiety, 2012, 29(8), 701-708.
[http://dx.doi.org/10.1002/da.21889]
[149]
Dunlop, B.W.; Wong, A. The hypothalamicpituitaryadrenal axis in PTSD: Pathophysiology and treatment interventions. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 89, 361-379.
[http://dx.doi.org/10.1016/j.pnpbp.2018.10.010]
[150]
Klaassens, E.R.; Giltay, E.J.; Cuijpers, P.; van Veen, T.; Zitman, F.G. Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: A meta-analysis. Psychoneuroendocrinology, 2012, 37(3), 317-331.
[http://dx.doi.org/10.1016/j.psyneuen.2011.07.003]
[151]
Yehuda, R.; Halligan, S.L.; Golier, J.A.; Grossman, R.; Bierer, L.M. Effects of trauma exposure on the cortisol response to dexamethasone administration in PTSD and major depressive disorder. Psychoneuroendocrinology, 2004, 29(3), 389-404.
[http://dx.doi.org/10.1016/S0306-4530(03)00052-0]
[152]
Shi, C.; Ren, Z.; Zhao, C.; Zhang, T.; Chan, S.H. Shame, guilt, and posttraumatic stress symptoms: A three-level meta-analysis. J. Anxiety Disord., 2021, 82, 102443. Epub 2021 Jul 2
[http://dx.doi.org/10.1016/j.janxdis.2021.102443] [PMID: 34265540]
[153]
Bastin, C.; Harrison, B.J.; Davey, C.G.; Moll, J.; Whittle, S. Feelings of shame, embarrassment and guilt and their neural correlates: A systematic review. Neurosci. Biobehav. Rev., 2016, 71, 455-471.
[http://dx.doi.org/10.1016/j.neubiorev.2016.09.019]
[154]
Lloyd, C.S.; Nicholson, A.A.; Densmore, M.; Théberge, J.; Neufeld, R.W.J.; Jetly, R.; McKinnon, M.C.; Lanius, R.A. Shame on the brain: Neural correlates of moral injury event recall in posttraumatic stress disorder. Depress. Anxiety, 2021, 38(6), 596-605.
[http://dx.doi.org/10.1002/da.23128]
[155]
Cohen, H.; Zohar, J.; Matar, M. The relevance of differential response to trauma in an animal model of posttraumatic stress disorder. Biol. Psychiatry, 2003, 53(6), 463-473.
[http://dx.doi.org/10.1016/S0006-3223(02)01909-1]
[156]
Sanacora, G.; Yan, Z.; Popoli, M. The stressed synapse 2.0: Pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat. Rev. Neurosci., 2022, 23(2), 86-103.
[http://dx.doi.org/10.1038/s41583-021-00540-x]
[157]
Duman, R.S.; Aghajanian, G.K.; Sanacora, G.; Krystal, J.H. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat. Med., 2016, 22(3), 238-249.
[http://dx.doi.org/10.1038/nm.4050]
[158]
van Zuiden, M.; Kavelaars, A.; Geuze, E.; Olff, M.; Heijnen, C.J. Predicting PTSD: Pre-existing vulnerabilities in glucocorticoid-signaling and implications for preventive interventions. Brain Behav. Immun., 2013, 30, 12-21.
[http://dx.doi.org/10.1016/j.bbi.2012.08.015]
[159]
Sriram, K.; Rodriguez-Fernandez, M.; Doyle, F.J. Modeling cortisol dynamics in the neuro-endocrine axis distinguishes normal, depression, and post-traumatic stress disorder (PTSD) in humans. PLOS Comput. Biol., 2012, 8(2), e1002379.
[http://dx.doi.org/10.1371/journal.pcbi.1002379]
[160]
Yehuda, R. Clinical relevance of biologic findings in PTSD. Psychiatr. Q., 2002, 73(2), 123-133.
[http://dx.doi.org/10.1023/A:1015055711424]
[161]
Yehuda, R.; Southwick, S.M.; Krystal, J.H. Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. Am. J. Psychiatry, 1993, 150(1), 83-86.
[http://dx.doi.org/10.1176/ajp.150.1.83]
[162]
Jovanovic, T.; Phifer, J.E.; Sicking, K.; Weiss, T.; Norrholm, S.D.; Bradley, B.; Ressler, K.J. Cortisol suppression by dexamethasone reduces exaggerated fear responses in posttraumatic stress disorder. Psychoneuroendocrinology, 2011, 36(10), 1540-1552.
[http://dx.doi.org/10.1016/j.psyneuen.2011.04.008]
[163]
Inslicht, S.S.; Rao, M.N.; Richards, A.; O’Donovan, A.; Gibson, C.J.; Baum, T.; Metzler, T.J.; Neylan, T.C. Sleep and hypothalamic pituitary adrenal axis responses to metyrapone in posttraumatic stress disorder. Psychoneuroendocrinology, 2018, 88, 136-143.
[http://dx.doi.org/10.1016/j.psyneuen.2017.12.002]
[164]
Neylan, T.C.; Lenoci, M.; Maglione, M.L.; Rosenlicht, N.Z.; Metzler, T.J.; Otte, C.; Schoenfeld, F.B.; Yehuda, R.; Marmar, C.R. Delta sleep response to metyrapone in post-traumatic stress disorder. Neuropsychopharmacology, 2003, 28(9), 1666-1676.
[http://dx.doi.org/10.1038/sj.npp.1300215]
[165]
Breen, M.S.; Bierer, L.M.; Daskalakis, N.P.; Bader, H.N.; Makotkine, I.; Chattopadhyay, M.; Xu, C.; Buxbaum Grice, A.; Tocheva, A.S.; Flory, J.D.; Buxbaum, J.D.; Meaney, M.J.; Brennand, K.; Yehuda, R. Differential transcriptional response following glucocorticoid activation in cultured blood immune cells: A novel approach to PTSD biomarker development. Transl. Psychiatry, 2019, 9(1), 201.
[http://dx.doi.org/10.1038/s41398-019-0539-x]
[166]
Seah, C.; Breen, M.S.; Rusielewicz, T.; Bader, H.N.; Xu, C.; Hunter, C.J.; McCarthy, B.; Deans, P.J.M.; Chattopadhyay, M.; Goldberg, J.; Desarnaud, F.; Makotkine, I.; Flory, J.D.; Bierer, L.M.; Staniskyte, M.; Bauer, L.; Brenner, K.; Buckley-Herd, G.; DesMarteau, S.; Fenton, P.; Ferrarotto, P.; Hall, J.; Jacob, S.; Kroeker, T.; Lallos, G.; Martinez, H.; McCoy, P.; Monsma, F.J.; Moroziewicz, D.; Otto, R.; Reggio, K.; Sun, B.; Tibbets, R.; Shin, D.W.; Zhou, H.; Zimmer, M.; Noggle, S.A.; Huckins, L.M.; Paull, D.; Brennand, K.J.; Yehuda, R. Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression. Nat. Neurosci., 2022, 25(11), 1434-1445.
[http://dx.doi.org/10.1038/s41593-022-01161-y]
[167]
Garrett, M.E.; Qin, X.J.; Mehta, D.; Dennis, M.F.; Marx, C.E.; Grant, G.A.; Stein, M.B.; Kimbrel, N.A.; Beckham, J.C.; Hauser, M.A.; Ashley-Koch, A.E. Gene expression analysis in three posttraumatic stress disorder cohorts implicates inflammation and innate immunity pathways and uncovers shared genetic risk with major depressive disorder. Front. Neurosci., 2021, 15, 678548.
[http://dx.doi.org/10.3389/fnins.2021.678548]
[168]
Passos, I.C.; Vasconcelos-Moreno, M.P.; Costa, L.G.; Kunz, M.; Brietzke, E.; Quevedo, J.; Salum, G.; Magalhães, P.V.; Kapczinski, F.; Kauer-Sant’Anna, M. Inflammatory markers in post-traumatic stress disorder: A systematic review, meta-analysis, and meta-regression. Lancet Psychiatry, 2015, 2(11), 1002-1012.
[http://dx.doi.org/10.1016/S2215-0366(15)00309-0]
[169]
O’Donovan, A.; Ahmadian, A.J.; Neylan, T.C.; Pacult, M.A.; Edmondson, D.; Cohen, B.E. Current posttraumatic stress disorder and exaggerated threat sensitivity associated with elevated inflammation in the Mind Your Heart Study. Brain Behav. Immun., 2017, 60, 198-205.
[http://dx.doi.org/10.1016/j.bbi.2016.10.014]
[170]
Kim, T.D.; Lee, S.; Yoon, S. Inflammation in post-traumatic stress disorder (PTSD): A review of potential correlates of PTSD with a neurological perspective. Antioxidants, 2020, 9(2), 107.
[http://dx.doi.org/10.3390/antiox9020107]
[171]
Yehuda, R.; Daskalakis, N.P.; Desarnaud, F.; Makotkine, I.; Lehrner, A.L.; Koch, E.; Flory, J.D.; Buxbaum, J.D.; Meaney, M.J.; Bierer, L.M. Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Front. Psychiatry, 2013, 4, 118.
[http://dx.doi.org/10.3389/fpsyt.2013.00118]
[172]
Yehuda, R.; Flory, J.D.; Bierer, L.M.; Henn-Haase, C.; Lehrner, A.; Desarnaud, F.; Makotkine, I.; Daskalakis, N.P.; Marmar, C.R.; Meaney, M.J. Lower methylation of glucocorticoid receptor gene promoter 1F in peripheral blood of veterans with posttraumatic stress disorder. Biol. Psychiatry, 2015, 77(4), 356-364.
[http://dx.doi.org/10.1016/j.biopsych.2014.02.006]
[173]
Carvalho, V.S.; Gomes, W.R.; Calado, R.T. Recent advances in understanding telomere diseases. Fac. Rev., 2022, 11, 31.
[174]
Kim, T.Y.; Kim, S.J.; Choi, J.R.; Lee, S-T.; Kim, J.; Hwang, I.S.; Chung, H.G.; Choi, J.H.; Kim, H.W.; Kim, S.H.; Kang, J.I. The effect of trauma and PTSD on telomere length: An exploratory study in people exposed to combat trauma. Sci. Rep., 2017, 7(1), 4375.
[http://dx.doi.org/10.1038/s41598-017-04682-w]
[175]
Mellon, S.H.; Gautam, A.; Hammamieh, R.; Jett, M.; Wolkowitz, O.M. Metabolism, metabolomics, and inflammation in posttraumatic stress disorder. Biol. Psychiatry, 2018, 83(10), 866-875.
[http://dx.doi.org/10.1016/j.biopsych.2018.02.007]
[176]
Dean, K.R.; Hammamieh, R.; Mellon, S.H.; Abu-Amara, D.; Flory, J.D.; Guffanti, G.; Wang, K.; Daigle, B.J., Jr; Gautam, A.; Lee, I.; Yang, R.; Almli, L.M.; Bersani, F.S.; Chakraborty, N.; Donohue, D.; Kerley, K.; Kim, T-K.; Laska, E.; Young Lee, M.; Lindqvist, D.; Lori, A.; Lu, L.; Misganaw, B.; Muhie, S.; Newman, J.; Price, N.D.; Qin, S.; Reus, V.I.; Siegel, C.; Somvanshi, P.R.; Thakur, G.S.; Zhou, Y.; Hood, L.; Ressler, K.J.; Wolkowitz, O.M.; Yehuda, R.; Jett, M.; Doyle, F.J., III; Marmar, C. Multi-omic biomarker identification and validation for diagnosing warzone-related post-traumatic stress disorder. Mol. Psychiatry, 2020, 25(12), 3337-3349.
[http://dx.doi.org/10.1038/s41380-019-0496-z]
[177]
Malan-Muller, S.; Valles-Colomer, M.; Foxx, C.L.; Vieira-Silva, S.; van den Heuvel, L.L.; Raes, J.; Seedat, S.; Lowry, C.A.; Hemmings, S.M.J. Exploring the relationship between the gut microbiome and mental health outcomes in a posttraumatic stress disorder cohort relative to trauma-exposed controls. Eur. Neuropsychopharmacol., 2022, 56, 24-38.
[http://dx.doi.org/10.1016/j.euroneuro.2021.11.009]
[178]
Yang, R.; Gautam, A.; Getnet, D.; Daigle, B.J.; Miller, S.; Misganaw, B.; Dean, K.R.; Kumar, R.; Muhie, S.; Wang, K.; Lee, I.; Abu-Amara, D.; Flory, J.D.; Hoke, A.; Chakraborty, N.; Petzold, L.; Wu, G.; Guffanti, G.; Kim, T-K.; Lee, M.Y.; Bierer, L.; Hood, L.; Wolkowitz, O.M.; Mellon, S.H.; Doyle, F.J., III; Yehuda, R.; Marmar, C.R.; Ressler, K.J.; Hammamieh, R.; Jett, M. Epigenetic biotypes of post-traumatic stress disorder in war-zone exposed veteran and active duty males. Mol. Psychiatry, 2021, 26(8), 4300-4314.
[http://dx.doi.org/10.1038/s41380-020-00966-2]
[179]
Friedman, M.J.; Yehuda, R. Post-traumatic stress disorder and comorbidity: Psychobiological approaches to differential diagnosis. Neurobiological and clinical consequences of stress: From normal adaptation to post-traumatic stress disorder; Lippincott Williams & Wilkins Publishers: Philadelphia, PA, US, 1995, pp. 429-445.
[180]
Lewis, C.; Roberts, N.P.; Andrew, M.; Starling, E.; Bisson, J.I. Psychological therapies for post-traumatic stress disorder in adults: Systematic review and meta-analysis. Eur. J. Psychotraumatol., 2020, 11(1), 1729633.
[http://dx.doi.org/10.1080/20008198.2020.1729633]
[181]
Bryant, R.A.; O’Donnell, M.L.; Creamer, M.; McFarlane, A.C.; Clark, C.R.; Silove, D. The psychiatric sequelae of traumatic injury. Am. J. Psychiatry, 2010, 167(3), 312-320.
[http://dx.doi.org/10.1176/appi.ajp.2009.09050617]
[182]
Nijdam, M.J.; Gersons, B.P.R.; Olff, M. The role of major depression in neurocognitive functioning in patients with posttraumatic stress disorder. Eur. J. Psychotraumatol., 2013, 4(1), 19979.
[http://dx.doi.org/10.3402/ejpt.v4i0.19979]
[183]
Green, B.L.; Krupnick, J.L.; Chung, J.; Siddique, J.; Krause, E.D.; Revicki, D.; Frank, L.; Miranda, J. Impact of PTSD comorbidity on one-year outcomes in a depression trial. J. Clin. Psychol., 2006, 62(7), 815-835.
[http://dx.doi.org/10.1002/jclp.20279]
[184]
Ramsawh, H.J.; Fullerton, C.S.; Mash, H.B.H.; Ng, T.H.H.; Kessler, R.C.; Stein, M.B.; Ursano, R.J. Risk for suicidal behaviors associated with PTSD, depression, and their comorbidity in the U.S. Army. J. Affect. Disord., 2014, 161, 116-122.
[http://dx.doi.org/10.1016/j.jad.2014.03.016]
[185]
Roberts, N.P.; Roberts, P.A.; Jones, N.; Bisson, J.I. Psychological interventions for post-traumatic stress disorder and comorbid substance use disorder: A systematic review and meta-analysis. Clin. Psychol. Rev., 2015, 38, 25-38.
[http://dx.doi.org/10.1016/j.cpr.2015.02.007]
[186]
Goldberg, S.B.; Livingston, W.S.; Blais, R.K.; Brignone, E.; Suo, Y.; Lehavot, K.; Simpson, T.L.; Fargo, J.; Gundlapalli, A.V. A positive screen for military sexual trauma is associated with greater risk for substance use disorders in women veterans. Psychol. Addict. Behav., 2019, 33(5), 477-483.
[http://dx.doi.org/10.1037/adb0000486]
[187]
Simpson, T.L.; Rise, P.; Browne, K.C.; Lehavot, K.; Kaysen, D. Clinical presentations, social functioning, and treatment receipt among individuals with comorbid life-time PTSD and alcohol use disorders versus drug use disorders: Findings from NESARC-III. Addiction, 2019, 114(6), 983-993.
[http://dx.doi.org/10.1111/add.14565]
[188]
McDevitt-Murphy, M.E.; Williams, J.L.; Bracken, K.L. PTSD symptoms, hazardous drinking, and health functioning among U.S. OEF and OIF veterans presenting to primary care. J. Traumat. Stress, 2010, 23(1), 108-111.
[189]
Ginzburg, K.; Ein-Dor, T.; Solomon, Z. Comorbidity of posttraumatic stress disorder, anxiety and depression: A 20-year longitudinal study of war veterans. J. Affect. Disord., 2010, 123(1-3), 249-257.
[http://dx.doi.org/10.1016/j.jad.2009.08.006]
[190]
Wolfson, P.E.; Andries, J.; Feduccia, A.A.; Jerome, L.; Wang, J.B.; Williams, E.; Carlin, S.C.; Sola, E.; Hamilton, S.; Yazar-Klosinski, B.; Emerson, A.; Mithoefer, M.C.; Doblin, R. MDMA-assisted psychotherapy for treatment of anxiety and other psychological distress related to life-threatening illnesses: A randomized pilot study. Sci. Rep., 2020, 10(1), 20442.
[http://dx.doi.org/10.1038/s41598-020-75706-1]
[191]
Asmundson, G.J.G.; Coons, M.J.; Taylor, S.; Katz, J. PTSD and the experience of pain: Research and clinical implications of shared vulnerability and mutual maintenance models. Can. J. Psychiatry, 2002, 47(10), 930-937.
[http://dx.doi.org/10.1177/070674370204701004]
[192]
Fishbain, D.A.; Pulikal, A.; Lewis, J.E.; Gao, J. Chronic pain types differ in their reported prevalence of post -traumatic stress disorder (PTSD) and there is consistent evidence that chronic pain is associated with PTSD: An evidence-based structured systematic review. Pain Med., 2017, 18(4), 711-735.
[193]
Kind, S.; Otis, J.D. The interaction between chronic pain and PTSD. Curr. Pain Headache Rep., 2019, 23(12), 91.
[http://dx.doi.org/10.1007/s11916-019-0828-3]
[194]
El-Solh, A.A.; Riaz, U.; Roberts, J. Sleep disorders in patients with posttraumatic stress disorder. Chest, 2018, 154(2), 427-439.
[http://dx.doi.org/10.1016/j.chest.2018.04.007]
[195]
Ohayon, M.M.; Shapiro, C.M. Sleep disturbances and psychiatric disorders associated with posttraumatic stress disorder in the general population. Compr. Psychiatry, 2000, 41(6), 469-478.
[http://dx.doi.org/10.1053/comp.2000.16568]
[196]
Britvić, D.; Antičević, V.; Kaliterna, M.; Lušić, L.; Beg, A.; Brajević-Gizdić, I.; Kudrić, M.; Stupalo, Ž.; Krolo, V.; Pivac, N. Comorbidities with posttraumatic stress disorder (PTSD) among combat veterans: 15 years postwar analysis. Int. J. Clin. Health Psychol., 2015, 15(2), 81-92.
[http://dx.doi.org/10.1016/j.ijchp.2014.11.002]
[197]
Pacella, M.L.; Hruska, B.; Delahanty, D.L. The physical health consequences of PTSD and PTSD symptoms: A meta-analytic review. J. Anxiety Disord., 2013, 27(1), 33-46.
[http://dx.doi.org/10.1016/j.janxdis.2012.08.004]
[198]
Ryder, A.L.; Azcarate, P.M.; Cohen, B.E. PTSD and physical health. Curr. Psychiatry Rep., 2018, 20(12), 116.
[http://dx.doi.org/10.1007/s11920-018-0977-9]
[199]
Foa, E.B.; Keane, T.M.; Friedman, M.J.; Cohen, J.A. Effective treatments for PTSD: practice guidelines from the International Society for Traumatic Stress Studies; Guilford Press, 2010.
[200]
Krause-Utz, A.; Frost, R.; Winter, D.; Elzinga, B.M. Dissociation and alterations in brain function and structure: implications for borderline personality disorder. Curr. Psychiatry Rep., 2017, 19(1), 6.
[http://dx.doi.org/10.1007/s11920-017-0757-y]
[201]
Choi, K.R.; Seng, J.S.; Briggs, E.C.; Munro-Kramer, M.L.; Graham-Bermann, S.A.; Lee, R.C.; Ford, J.D. The dissociative subtype of post-traumatic stress disorder (PTSD) among adolescents: Co-occurring PTSD, depersonalization/derealization, and other dissociation symptoms. J. Am. Acad. Child Adolesc. Psychiatry, 2017, 56(12), 1062-1072.
[http://dx.doi.org/10.1016/j.jaac.2017.09.425]
[202]
Cloitre, M.; Petkova, E.; Wang, J.; Lu, L.F. An examination of the influence of a sequential treatment on the course and impact of dissociation among women with PTSD related to childhood abuse. Depress. Anxiety, 2012, 29(8), 709-717.
[http://dx.doi.org/10.1002/da.21920]
[203]
Lanius, R.A.; Vermetten, E.; Loewenstein, R.J.; Brand, B.; Schmahl, C.; Bremner, J.D.; Spiegel, D. Emotion modulation in PTSD: Clinical and neurobiological evidence for a dissociative subtype. Am. J. Psychiatry, 2010, 167(6), 640-647.
[http://dx.doi.org/10.1176/appi.ajp.2009.09081168]
[204]
Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry, 2000, 47(4), 351-354.
[http://dx.doi.org/10.1016/S0006-3223(99)00230-9]
[205]
Niciu, M.J.; Shovestul, B.J.; Jaso, B.A.; Farmer, C.; Luckenbaugh, D.A.; Brutsche, N.E.; Park, L.T.; Ballard, E.D.; Zarate, C.A., Jr Features of dissociation differentially predict antidepressant response to ketamine in treatment-resistant depression. J. Affect. Disord., 2018, 232, 310-315.
[http://dx.doi.org/10.1016/j.jad.2018.02.049]
[206]
Burback, L.; Brémault-Phillips, S.; Nijdam, M.J.; McFarlane, A.; Vermetten, E. Treatment of posttraumatic stress disorder: A state-of-the-art review. Curr. Neuropharmacol., 2023, 22, 627-705.
[http://dx.doi.org/10.2174/1570159X21666230428091433]
[207]
Kearns, M.C.; Ressler, K.J.; Zatzick, D.; Rothbaum, B.O. Early interventions for PTSD: A review. Depress. Anxiety, 2012, 29(10), 833-842.
[http://dx.doi.org/10.1002/da.21997]
[208]
Grinage, B.D. Diagnosis and management of post-traumatic stress disorder. Am. Fam. Physician, 2003, 68(12), 2401-2408.
[209]
Aliev, G.; Beeraka, N.M.; Nikolenko, V.N.; Svistunov, A.A.; Rozhnova, T.; Kostyuk, S.; Cherkesov, I.; Gavryushova, L.V.; Chekhonatsky, A.A.; Mikhaleva, L.M.; Somasundaram, S.G.; Avila-Rodriguez, M.F.; Kirkland, C.E. Neurophysiology and psychopathology underlying PTSD and recent insights into the PTSD therapies: A comprehensive review. J. Clin. Med., 2020, 9(9), 2951.
[http://dx.doi.org/10.3390/jcm9092951]
[210]
Le, Q.A.; Doctor, J.N.; Zoellner, L.A.; Feeny, N.C. Effects of treatment, choice, and preference on health-related quality-of-life outcomes in patients with posttraumatic stress disorder (PTSD). Qual. Life Res., 2018, 27(6), 1555-1562.
[http://dx.doi.org/10.1007/s11136-018-1833-4]
[211]
Bryant, R.A. Post-traumatic stress disorder: A state-of-the-art review of evidence and challenges. World Psychiatry, 2019, 18(3), 259-269.
[http://dx.doi.org/10.1002/wps.20656]
[212]
Raabe, S.; Ehring, T.; Marquenie, L.; Arntz, A.; Kindt, M. Imagery rescripting as a stand-alone treatment for posttraumatic stress disorder related to childhood abuse: A randomized controlled trial. J. Behav. Ther. Exp. Psychiatry, 2022, 77, 101769.
[http://dx.doi.org/10.1016/j.jbtep.2022.101769]
[213]
Najavits, L.M.; Anderson, M.L. Psychosocial treatments for posttraumatic stress disorder; Oxford University Press, 2015.
[http://dx.doi.org/10.1093/med:psych/9780199342211.003.0018]
[214]
Galovski, T.E.; Blain, L.M.; Mott, J.M.; Elwood, L.; Houle, T. Manualized therapy for PTSD: Flexing the structure of cognitive processing therapy. J. Consult. Clin. Psychol., 2012, 80(6), 968-981.
[http://dx.doi.org/10.1037/a0030600]
[215]
Powers, M.B.; Halpern, J.M.; Ferenschak, M.P.; Gillihan, S.J.; Foa, E.B. A meta-analytic review of prolonged exposure for posttraumatic stress disorder. Clin. Psychol. Rev., 2010, 30(6), 635-641.
[http://dx.doi.org/10.1016/j.cpr.2010.04.007]
[216]
Jeffries, F.W.; Davis, P. What is the role of eye movements in eye movement desensitization and reprocessing (EMDR) for post-traumatic stress disorder (PTSD)? A review. Behav. Cogn. Psychother., 2013, 41(3), 290-300.
[http://dx.doi.org/10.1017/S1352465812000793]
[217]
Siehl, S.; Robjant, K.; Crombach, A. Systematic review and meta-analyses of the long-term efficacy of narrative exposure therapy for adults, children and perpetrators. Psychother. Res., 2021, 31(6), 695-710.
[http://dx.doi.org/10.1080/10503307.2020.1847345]
[218]
Lely, J.C.; Smid, G.E.; Jongedijk, R.A.W.; Knipscheer, J.; Kleber, R.J. The effectiveness of narrative exposure therapy: A review, meta-analysis and meta-regression analysis. Eur. J. Psychotraumatol., 2019, 10(1), 1550344.
[http://dx.doi.org/10.1080/20008198.2018.1550344]
[219]
Nijdam, M.J.; Meewisse, M-L.; Smid, G.E.; Gersons, B.P. Brief Eclectic Psychotherapy for PTSD. Evidence based treatments for trauma-related psychological disorders: A practical guide for clinicians; Springer, 2022, pp. 281-306.
[220]
Bufka, L.F.; Wright, C.V.E.; Halfond, R.W. Casebook to the APA Clinical Practice Guideline for the treatment of PTSD; American Psychological Association, 2020.
[http://dx.doi.org/10.1037/0000196-000]
[221]
de la Rie, S.M.; van Sint Fiet, A.; Bos, J.B.A.; Mooren, N.; Smid, G.; Gersons, B.P.R. Brief Eclectic Psychotherapy for Moral Trauma (BEP-MT): treatment protocol description and a case study. Eur. J. Psychotraumatol., 2021, 12(1), 1929026.
[http://dx.doi.org/10.1080/20008198.2021.1929026]
[222]
Jericho, B.; Luo, A.; Berle, D. Trauma-focused psychotherapies for post-traumatic stress disorder: A systematic review and network meta-analysis. Acta Psychiatr. Scand., 2022, 145(2), 132-155.
[http://dx.doi.org/10.1111/acps.13366]
[223]
Weber, M.; Schumacher, S.; Hannig, W. Long-term outcomes of psychological treatment for posttraumatic stress disorder: A systematic review and meta-analysis; Corrigendum, 2021.
[224]
Navarro, P.N.; Landin-Romero, R.; Guardiola-Wanden-Berghe, R. 25 years of Eye Movement Desensitization and Reprocessing (EMDR): The EMDR therapy protocol, hypotheses of its mechanism of action and a systematic review of its efficacy in the treatment of post-traumatic stress disorder. Rev. Psiquiatr. Salud Ment., 2018, 11(2), 101-114.
[225]
Pary, R.; Micchelli, A.N.; Lippmann, S. How we treat posttraumatic stress disorder. Prim. Care Companion CNS Disord., 2021, 23(1), 25982.
[http://dx.doi.org/10.4088/PCC.19nr02572]
[226]
Belsher, B.E.; Beech, E.; Evatt, D. Present-centered therapy (PCT) for post-traumatic stress disorder (PTSD) in adults. Cochrane Database Syst. Rev., 2019, 11.
[227]
Althobaiti, S.; Kazantzis, N.; Ofori-Asenso, R.; Romero, L.; Fisher, J.; Mills, K.E.; Liew, D. Efficacy of interpersonal psychotherapy for post-traumatic stress disorder: A systematic review and meta-analysis. J. Affect. Disord., 2020, 264, 286-294.
[http://dx.doi.org/10.1016/j.jad.2019.12.021]
[228]
Bleiberg, K.L.; Markowitz, J.C. Interpersonal psychotherapy for PTSD: Treating trauma without exposure. J. Psychother. Integration, 2019, 29(1), 15-22.
[http://dx.doi.org/10.1037/int0000113]
[229]
Jackson, S.; Baity, M.R.; Bobb, K.; Swick, D.; Giorgio, J. Stress inoculation training outcomes among veterans with PTSD and TBI. Psychol. Trauma, 2019, 11(8), 842-850.
[http://dx.doi.org/10.1037/tra0000432]
[230]
Steenkamp, M.M.; Litz, B.T.; Hoge, C.W.; Marmar, C.R. Psychotherapy for Military-Related PTSD. JAMA, 2015, 314(5), 489-500.
[http://dx.doi.org/10.1001/jama.2015.8370]
[231]
Kelmendi, B.; Adams, T.G.; Yarnell, S.; Southwick, S.; Abdallah, C.G.; Krystal, J.H. PTSD: from neurobiology to pharmacological treatments. Eur. J. Psychotraumatol., 2016, 7(1), 31858.
[http://dx.doi.org/10.3402/ejpt.v7.31858]
[232]
Berger, W.; Mendlowicz, M.V.; Marques-Portella, C.; Kinrys, G.; Fontenelle, L.F.; Marmar, C.R.; Figueira, I. Pharmacologic alternatives to antidepressants in posttraumatic stress disorder: A systematic review. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(2), 169-180.
[http://dx.doi.org/10.1016/j.pnpbp.2008.12.004]
[233]
Lee, D.J.; Schnitzlein, C.W.; Wolf, J.P.; Vythilingam, M.; Rasmusson, A.M.; Hoge, C.W. Psychotherapy versus pharmacotherapy for post-traumatic stress disorder: Systemic review and meta-analyses to determine first-line treatments. Depress. Anxiety, 2016, 33(9), 792-806.
[http://dx.doi.org/10.1002/da.22511]
[234]
Williams, T.; Phillips, N.J.; Stein, D.J.; Ipser, J.C. Pharmacotherapy for post traumatic stress disorder (PTSD). Cochrane Database Syst. Rev., 2022, 3, CD002795.
[235]
Friedman, M.J.; Keane, T.M.; Resick, P.A. Handbook of PTSD, 1st; Science and Practice: Guilford Press, 2007, p. 609.
[236]
Davidson, J.R.T.; Tharwani, H.M.; Connor, K.M. Davidson Trauma Scale (DTS): Normative scores in the general population and effect sizes in placebo-controlled SSRI trials. Depress. Anxiety, 2002, 15(2), 75-78.
[http://dx.doi.org/10.1002/da.10021]
[237]
Marshall, R.D.; Beebe, K.L.; Oldham, M.; Zaninelli, R. Efficacy and safety of paroxetine treatment for chronic PTSD: A fixed-dose, placebo-controlled study. Am. J. Psychiatry, 2001, 158(12), 1982-1988.
[http://dx.doi.org/10.1176/appi.ajp.158.12.1982]
[238]
Tucker, P.; Zaninelli, R.; Yehuda, R.; Ruggiero, L.; Dillingham, K.; Pitts, C.D. Paroxetine in the treatment of chronic posttraumatic stress disorder: results of a placebo-controlled, flexible-dosage trial. J. Clin. Psychiatry, 2001, 62(11), 860-868.
[http://dx.doi.org/10.4088/JCP.v62n1105]
[239]
McRae, A.L.; Brady, K.T. Review of sertraline and its clinical applications in psychiatric disorders. Expert Opin. Pharmacother., 2001, 2(5), 883-892.
[http://dx.doi.org/10.1517/14656566.2.5.883]
[240]
Duek, O.; Li, Y.; Kelmendi, B. Modulating amygdala activation to traumatic memories with a single ketamine infusion. Medrxiv, 2021.
[http://dx.doi.org/10.1101/2021.07.07.21260166]
[241]
Warner, M.D.; Dorn, M.R.; Peabody, C.A. Survey on the usefulness of trazodone in patients with PTSD with insomnia or nightmares. Pharmacopsychiatry, 2001, 34(4), 128-131.
[http://dx.doi.org/10.1055/s-2001-15871]
[242]
Akiki, T.J.; Abdallah, C.G. Are there effective psychopharmacologic treatments for PTSD? J. Clin. Psychiatry, 2019, 80(3), 1309.
[243]
Hamblen, J.L.; Norman, S.B.; Sonis, J.H.; Phelps, A.J.; Bisson, J.I.; Nunes, V.D.; Megnin-Viggars, O.; Forbes, D.; Riggs, D.S.; Schnurr, P.P. A guide to guidelines for the treatment of posttraumatic stress disorder in adults: An update. Psychotherapy, 2019, 56(3), 359-373.
[http://dx.doi.org/10.1037/pst0000231]
[244]
Bajor, L.A.; Balsara, C.; Osser, D.N. An evidence-based approach to psychopharmacology for posttraumatic stress disorder (PTSD): 2022 update. Psychiatry Res., 2022, 317, 114840.
[http://dx.doi.org/10.1016/j.psychres.2022.114840]
[245]
Singh, B.; Hughes, A.J.; Mehta, G.; Erwin, P.J.; Parsaik, A.K. Efficacy of prazosin in posttraumatic stress disorder: A systematic review and meta-analysis. Prim. Care Companion CNS Disord., 2016, 18(4), 26306.
[http://dx.doi.org/10.4088/PCC.16r01943]
[246]
Raskind, M.A.; Peterson, K.; Williams, T.; Hoff, D.J.; Hart, K.; Holmes, H.; Homas, D.; Hill, J.; Daniels, C.; Calohan, J.; Millard, S.P.; Rohde, K.; O’Connell, J.; Pritzl, D.; Feiszli, K.; Petrie, E.C.; Gross, C.; Mayer, C.L.; Freed, M.C.; Engel, C.; Peskind, E.R. A trial of prazosin for combat trauma PTSD with nightmares in active-duty soldiers returned from Iraq and Afghanistan. Am. J. Psychiatry, 2013, 170(9), 1003-1010.
[http://dx.doi.org/10.1176/appi.ajp.2013.12081133]
[247]
Zhang, Y.; Ren, R.; Sanford, L.D.; Tang, X. Commentary on Yücel DE et al. Downgrading recommendation level of prazosin for treating trauma-related nightmares: Should decision be based on a single study? Sleep Med. Rev., 2020, 51, 101285.
[http://dx.doi.org/10.1016/j.smrv.2020.101285]
[248]
Hoskins, M.D.; Sinnerton, R.; Nakamura, A.; Underwood, J.F.G.; Slater, A.; Lewis, C.; Roberts, N.P.; Bisson, J.I.; Lee, M.; Clarke, L. Pharmacological-assisted psychotherapy for post traumatic stress disorder: A systematic review and meta-analysis. Eur. J. Psychotraumatol., 2021, 12(1), 1853379.
[http://dx.doi.org/10.1080/20008198.2020.1853379]
[249]
Hetrick, S.E.; Purcell, R.; Garner, B.; Parslow, R. Combined pharmacotherapy and psychological therapies for post traumatic stress disorder (PTSD). Cochrane Database Syst. Rev., 2010, 7, CD007316.
[250]
Rauch, S.A.M.; Kim, H.M.; Powell, C.; Tuerk, P.W.; Simon, N.M.; Acierno, R.; Allard, C.B.; Norman, S.B.; Venners, M.R.; Rothbaum, B.O.; Stein, M.B.; Porter, K.; Martis, B.; King, A.P.; Liberzon, I.; Phan, K.L.; Hoge, C.W. Efficacy of prolonged exposure therapy, sertraline hydrochloride, and their combination among combat veterans with posttraumatic stress disorder: A randomized clinical trial. JAMA Psychiatry, 2019, 76(2), 117-126.
[http://dx.doi.org/10.1001/jamapsychiatry.2018.3412]
[251]
Averill, L.A.; Abdallah, C.G. Investigational drugs for assisting psychotherapy for posttraumatic stress disorder (PTSD): Emerging approaches and shifting paradigms in the era of psychedelic medicine. Expert Opin. Investig. Drugs, 2022, 31(2), 133-137.
[http://dx.doi.org/10.1080/13543784.2022.2035358]
[252]
Niles, B.L.; Mori, D.L.; Polizzi, C.; Pless Kaiser, A.; Weinstein, E.S.; Gershkovich, M.; Wang, C. A systematic review of randomized trials of mind-body interventions for PTSD. J. Clin. Psychol., 2018, 74(9), 1485-1508.
[http://dx.doi.org/10.1002/jclp.22634]
[253]
Bisson, J.I.; van Gelderen, M.; Roberts, N.P.; Lewis, C. Non-pharmacological and non-psychological approaches to the treatment of PTSD: Results of a systematic review and meta-analyses. Eur. J. Psychotraumatol., 2020, 11(1), 1795361.
[http://dx.doi.org/10.1080/20008198.2020.1795361]
[254]
Sripada, R.K.; Blow, F.C.; Rauch, S.A.M.; Ganoczy, D.; Hoff, R.; Harpaz-Rotem, I.; Bohnert, K.M. Examining the nonresponse phenomenon: Factors associated with treatment response in a national sample of veterans undergoing residential PTSD treatment. J. Anxiety Disord., 2019, 63, 18-25.
[http://dx.doi.org/10.1016/j.janxdis.2019.02.001]
[255]
Edwards-Stewart, A.; Smolenski, D.J.; Bush, N.E.; Cyr, B-A.; Beech, E.H.; Skopp, N.A.; Belsher, B.E. Posttraumatic stress disorder treatment dropout among military and veteran populations: A systematic review and meta-analysis. J. Trauma. Stress, 2021, 34(4), 808-818.
[http://dx.doi.org/10.1002/jts.22653]
[256]
Varker, T.; Jones, K.A.; Arjmand, H.A.; Hinton, M.; Hiles, S.A.; Freijah, I.; Forbes, D.; Kartal, D.; Phelps, A.; Bryant, R.A.; McFarlane, A.; Hopwood, M.; O’Donnell, M. Dropout from guideline-recommended psychological treatments for posttraumatic stress disorder: A systematic review and meta-analysis. J. Affect. Disord. Rep., 2021, 4, 100093.
[http://dx.doi.org/10.1016/j.jadr.2021.100093]
[257]
Barawi, K.S.; Lewis, C.; Simon, N.; Bisson, J.I. A systematic review of factors associated with outcome of psychological treatments for post-traumatic stress disorder. Eur. J. Psychotraumatol., 2020, 11(1), 1774240.
[http://dx.doi.org/10.1080/20008198.2020.1774240]
[258]
Fleming, C.J.E.; Kholodkov, T.; Dillon, K.H.; Belvet, B.; Crawford, E.F. Actuarial prediction of psychotherapy retention among Iraq-Afghanistan veterans with posttraumatic stress disorder. Psychol. Serv., 2018, 15(2), 172-180.
[http://dx.doi.org/10.1037/ser0000139]
[259]
Jakupcak, M.; Hoerster, K.D.; Blais, R.K.; Malte, C.A.; Hunt, S.; Seal, K. Readiness for change predicts VA mental healthcare utilization among Iraq and Afghanistan war veterans. J. Trauma. Stress, 2013, 26(1), 165-168.
[http://dx.doi.org/10.1002/jts.21768]
[260]
Lepow, L.; Morishita, H.; Yehuda, R. Critical period plasticity as a framework for psychedelic-assisted psychotherapy. Front. Neurosci., 2021, 15, 710004.
[http://dx.doi.org/10.3389/fnins.2021.710004]
[261]
Schenberg, E.E. Psychedelic-assisted psychotherapy: A paradigm shift in psychiatric research and development. Front. Pharmacol., 2018, 9, 733.
[http://dx.doi.org/10.3389/fphar.2018.00733]
[262]
Chi, T.; Gold, J.A. A review of emerging therapeutic potential of psychedelic drugs in the treatment of psychiatric illnesses. J. Neurol. Sci., 2020, 411, 116715.
[http://dx.doi.org/10.1016/j.jns.2020.116715]
[263]
Krediet, E.; Bostoen, T.; Breeksema, J.; van Schagen, A.; Passie, T.; Vermetten, E. Reviewing the potential of psychedelics for the treatment of PTSD. Int. J. Neuropsychopharmacol., 2020, 23(6), 385-400.
[http://dx.doi.org/10.1093/ijnp/pyaa018]
[264]
Bourguignon, E. Religion, altered states of consciousness, and social change; The Ohio State University Press, 1973.
[265]
Hofmann, A. LSD, my problem child; McGraw-Hill: New York, 1980.
[266]
Swanson, L.R. Unifying theories of psychedelic drug effects. Front. Pharmacol., 2018, 9, 172.
[http://dx.doi.org/10.3389/fphar.2018.00172]
[267]
Passie, T. Psycholytic and psychedelic therapy research 1931- 1995: A complete international bibliography; Laurentius Publishers: Hannover, 1997.
[268]
Hofmann, A.; Heim, R.; Brack, A.; Kobel, H. Psilocybin, ein psychotroper Wirkstoff aus dem mexikanischen RauschpilzPsilocybe mexicana Heim. Experientia, 1958, 14(3), 107-109.
[http://dx.doi.org/10.1007/BF02159243]
[269]
Nichols, D.E.; Walter, H. The history of psychedelics in psychiatry. Pharmacopsychiatry, 2021, 54(4), 151-166.
[http://dx.doi.org/10.1055/a-1310-3990]
[270]
Moreno, F. Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J. Clin. Psychiatry, 2006, 67(11), 1735-1740.
[http://dx.doi.org/10.4088/JCP.v67n1110]
[271]
Siegel, J.S.; Daily, J.E.; Perry, D.A.; Nicol, G.E. Psychedelic drug legislative reform and legalization in the US. JAMA Psychiatry, 2023, 80(1), 77-83.
[http://dx.doi.org/10.1001/jamapsychiatry.2022.4101]
[272]
Nutt, D.; Carhart-Harris, R. The current status of psychedelics in psychiatry. JAMA Psychiatry, 2021, 78(2), 121-122.
[http://dx.doi.org/10.1001/jamapsychiatry.2020.2171]
[273]
Kočárová, R.; Horáček, J.; Carhart-Harris, R. Does psychedelic therapy have a transdiagnostic action and prophylactic potential? Front. Psychiatry, 2021, 12, 661233.
[274]
MAPS Psychotherapy Manual; Santa Cruz, CA: U.S, , 2017.
[275]
Mithoefer, M.C.; Wagner, M.T.; Mithoefer, A.T.; Jerome, L.; Martin, S.F.; Yazar-Klosinski, B.; Michel, Y.; Brewerton, T.D.; Doblin, R. Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: A prospective long-term follow-up study. J. Psychopharmacol., 2013, 27(1), 28-39.
[http://dx.doi.org/10.1177/0269881112456611]
[276]
Grinspoon, L.; Doblin, R. Psychedelics as catalysts of insight-oriented psychotherapy. Soc. Res., 2001, 677-695.
[277]
Richards, W.A. Psychedelic psychotherapy: Insights from 25 years of research. J. Humanist. Psychol., 2017, 57(4), 323-337.
[http://dx.doi.org/10.1177/0022167816670996]
[278]
Horton, D.M.; Morrison, B.; Schmidt, J. Systematized review of psychotherapeutic components of psilocybin-assisted psychotherapy. Am. J. Psychother., 2021, 74(4), 140-149.
[http://dx.doi.org/10.1176/appi.psychotherapy.20200055]
[279]
Thal, S.B.; Lommen, M.J.J. Current perspective on MDMA-assisted psychotherapy for posttraumatic stress disorder. J. Contemp. Psychother., 2018, 48(2), 99-108.
[http://dx.doi.org/10.1007/s10879-017-9379-2]
[280]
Vollenweider, F.X.; Smallridge, J.W. Classic psychedelic drugs: Update on biological mechanisms. Pharmacopsychiatry, 2022, 55(3), 121-138.
[http://dx.doi.org/10.1055/a-1721-2914]
[281]
de Wit, H.; Bershad, A.K.; Grob, C. Challenges in translational research: MDMA in the laboratory versus therapeutic settings. J. Psychopharmacol., 2022, 36(3), 252-257.
[http://dx.doi.org/10.1177/02698811211015221]
[282]
Mithoefer, M.C.; Feduccia, A.A.; Jerome, L.; Mithoefer, A.; Wagner, M.; Walsh, Z.; Hamilton, S.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R. MDMA-assisted psychotherapy for treatment of PTSD: study design and rationale for phase 3 trials based on pooled analysis of six phase 2 randomized controlled trials. Psychopharmacology, 2019, 236(9), 2735-2745.
[http://dx.doi.org/10.1007/s00213-019-05249-5]
[283]
Freudenmann, R.W.; Öxler, F.; Bernschneider-Reif, S. The origin of MDMA (ecstasy) revisited: The true story reconstructed from the original documents. Addiction, 2006, 101(9), 1241-1245.
[http://dx.doi.org/10.1111/j.1360-0443.2006.01511.x]
[284]
Shulgin, A.T.; Shulgin, A. PIHKAL: A chemical love story; Transform Press: Berkeley, CA, 1991.
[285]
Holland, J. Ecstasy: The complete guide: A comprehensive look at the risks and benefits of MDMA; Inner Traditions/Bear & Co, 2001.
[286]
Adamson, S.; Metzner, R. The nature of the MDMA experience and its role in healing, psychotherapy and spiritual practice. ReVision., 1988, 10(4), 59-72.
[287]
Nichols, D.E. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. identification of a new therapeutic class. Entactogens. J. Psychoactive Drugs, 1986, 18(4), 305-313.
[http://dx.doi.org/10.1080/02791072.1986.10472362]
[288]
Nichols, D.E. Entactogens: How the name for a novel class of psychoactive agents originated. Front. Psychiatry, 2022, 13, 863088.
[http://dx.doi.org/10.3389/fpsyt.2022.863088]
[289]
Climko, R.P.; Roehrich, H.; Sweeney, D.R.; Al-Razi, J. ECSTACY: A review of MDMA and MDA. Int. J. Psychiatry Med., 1987, 16(4), 359-372.
[http://dx.doi.org/10.2190/DCRP-U22M-AUMD-D84H]
[290]
Liamis, G.; Milionis, H.; Elisaf, M. A review of drug-induced hyponatremia. Am. J. Kidney Dis., 2008, 52(1), 144-153.
[http://dx.doi.org/10.1053/j.ajkd.2008.03.004]
[291]
Parrott, A.C. Recreational Ecstasy/MDMA, the serotonin syndrome, and serotonergic neurotoxicity. Pharmacol. Biochem. Behav., 2002, 71(4), 837-844.
[http://dx.doi.org/10.1016/S0091-3057(01)00711-0]
[292]
Vollenweider, F.X.; Gamma, A.; Liechti, M.; Huber, T. Psychological and cardiovascular effects and short-term sequelae of MDMA (“Ecstasy”) in MDMA-naïve healthy volunteers. Neuropsychopharmacology, 1998, 19(4), 241-251.
[http://dx.doi.org/10.1038/sj.npp.1395197]
[293]
Gowing, L.R.; Henry-Edwards, S.M.; Irvine, R.J.; Ali, R.L. The health effects of ecstasy: A literature review. Drug Alcohol Rev., 2002, 21(1), 53-63.
[http://dx.doi.org/10.1080/09595230220119363]
[294]
Bonny, H.L.; Pahnke, W.N. The use of music in psychedelic (LSD) psychotherapy. J. Music Ther., 1972, 9(2), 64-87.
[http://dx.doi.org/10.1093/jmt/9.2.64]
[295]
Kaelen, M.; Giribaldi, B.; Raine, J.; Evans, L.; Timmerman, C.; Rodriguez, N.; Roseman, L.; Feilding, A.; Nutt, D.; Carhart-Harris, R. The hidden therapist: Evidence for a central role of music in psychedelic therapy. Psychopharmacology, 2018, 235(2), 505-519.
[http://dx.doi.org/10.1007/s00213-017-4820-5]
[296]
Feduccia, A.A.; Holland, J.; Mithoefer, M.C. Progress and promise for the MDMA drug development program. Psychopharmacology, 2018, 235(2), 561-571.
[http://dx.doi.org/10.1007/s00213-017-4779-2]
[297]
Carhart-Harris, R.; Leech, R.; Tagliazucchi, E. How do hallucinogens work on the brain. J. Psychophysiol., 2014, 71(1), 2-8.
[298]
Wardle, M.C.; de Wit, H. MDMA alters emotional processing and facilitates positive social interaction. Psychopharmacology, 2014, 231(21), 4219-4229.
[http://dx.doi.org/10.1007/s00213-014-3570-x]
[299]
Wardle, M.C.; Kirkpatrick, M.G.; de Wit, H. ‘Ecstasy’ as a social drug: MDMA preferentially affects responses to emotional stimuli with social content. Soc. Cogn. Affect. Neurosci., 2014, 9(8), 1076-1081.
[http://dx.doi.org/10.1093/scan/nsu035]
[300]
Bershad, A.K.; Miller, M.A.; Baggott, M.J.; de Wit, H. The effects of MDMA on socio-emotional processing: Does MDMA differ from other stimulants? J. Psychopharmacol., 2016, 30(12), 1248-1258.
[http://dx.doi.org/10.1177/0269881116663120]
[301]
Kamilar-Britt, P.; Bedi, G. The prosocial effects of 3,4-methylenedioxymethamphetamine (MDMA): Controlled studies in humans and laboratory animals. Neurosci. Biobehav. Rev., 2015, 57, 433-446.
[http://dx.doi.org/10.1016/j.neubiorev.2015.08.016]
[302]
Baylen, C.A.; Rosenberg, H. A review of the acute subjective effects of MDMA/ecstasy. Addiction, 2006, 101(7), 933-947.
[http://dx.doi.org/10.1111/j.1360-0443.2006.01423.x]
[303]
Camí, J.; Farré, M.; Mas, M.; Roset, P.N.; Poudevida, S.; Mas, A.; San, L.; de la Torre, R. Human pharmacology of 3,4-methylenedioxymeth-amphetamine (“Ecstasy”): Psychomotor performance and subjective effects. J. Clin. Psychopharmacol., 2000, 20(4), 455-466.
[http://dx.doi.org/10.1097/00004714-200008000-00010]
[304]
Studerus, E.; Vizeli, P.; Harder, S.; Ley, L.; Liechti, M.E. Prediction of MDMA response in healthy humans: A pooled analysis of placebo-controlled studies. J. Psychopharmacol., 2021, 35(5), 556-565.
[http://dx.doi.org/10.1177/0269881121998322]
[305]
Verheyden, S.L.; Henry, J.A.; Curran, H.V. Acute, sub-acute and long-term subjective consequences of ecstasy? (MDMA) consumption in 430 regular users. Hum. Psychopharmacol., 2003, 18(7), 507-517.
[http://dx.doi.org/10.1002/hup.529]
[306]
Montoya, A.G.; Sorrentino, R.; Lukas, S.E.; Price, B.H. Long-term neuropsychiatric consequences of “Ecstasy” (MDMA): A review. Harv. Rev. Psychiatry, 2002, 10(4), 212-220.
[http://dx.doi.org/10.1080/10673220216223]
[307]
Amoroso, T. The spurious relationship between ecstasy use and neurocognitive deficits: A bradford hill review. Int. J. Drug Policy, 2019, 64, 47-53.
[http://dx.doi.org/10.1016/j.drugpo.2018.11.002]
[308]
Rogers, G; Elston, J; Garside, R The harmful health effects of recreational ecstasy: A systematic review of observational evidence. Heal.Technol.Assess., 2009, 136, iii-iv-ix-xii, 1-315.
[http://dx.doi.org/10.3310/hta13060]
[309]
Zakzanis, K.K.; Campbell, Z.; Jovanovski, D. The neuropsychology of ecstasy (MDMA) use: A quantitative review. Hum. Psychopharmacol., 2007, 22(7), 427-435.
[http://dx.doi.org/10.1002/hup.873]
[310]
Morgan, M.J. Ecstasy (MDMA): A review of its possible persistent psychological effects. Psychopharmacology, 2000, 152(3), 230-248.
[http://dx.doi.org/10.1007/s002130000545]
[311]
Morgan, M.J. Memory deficits associated with recreational use of “ecstasy” (MDMA). Psychopharmacology, 1999, 141(1), 30-36.
[http://dx.doi.org/10.1007/s002130050803]
[312]
Saleemi, S.; Pennybaker, S.J.; Wooldridge, M.; Johnson, M.W. Who is ‘Molly’? MDMA adulterants by product name and the impact of harm-reduction services at raves. J. Psychopharmacol., 2017, 31(8), 1056-1060.
[http://dx.doi.org/10.1177/0269881117715596]
[313]
Morefield, K.M.; Keane, M.; Felgate, P.; White, J.M.; Irvine, R.J. Pill content, dose and resulting plasma concentrations of 3,4-methylendioxymethamphetamine (MDMA) in recreational ‘ecstasy’ users. Addiction, 2011, 106(7), 1293-1300.
[http://dx.doi.org/10.1111/j.1360-0443.2011.03399.x]
[314]
Gouzoulis-Mayfrank, E.; Daumann, J. The confounding problem of polydrug use in recreational ecstasy/MDMA users: A brief overview. J. Psychopharmacol., 2006, 20(2), 188-193.
[http://dx.doi.org/10.1177/0269881106059939]
[315]
Randolph, C.; Tierney, M.C.; Mohr, E.; Chase, T.N. The repeatable battery for the assessment of neuropsychological status (RBANS): Preliminary clinical validity. J. Clin. Exp. Neuropsychol., 1998, 20(3), 310-319.
[http://dx.doi.org/10.1076/jcen.20.3.310.823]
[316]
Gronwall, D.M.A. Paced auditory serial-addition task: A measure of recovery from concussion. Percept. Mot. Skills, 1977, 44(2), 367-373.
[http://dx.doi.org/10.2466/pms.1977.44.2.367]
[317]
Roman, D.D.; Edwall, G.E.; Buchanan, R.J.; Patton, J.H. Extended norms for the paced auditory serial addition task. Clin. Neuropsychol., 1991, 5(1), 33-40.
[http://dx.doi.org/10.1080/13854049108401840]
[318]
Kirkpatrick, M.G.; Gunderson, E.W.; Perez, A.Y.; Haney, M.; Foltin, R.W.; Hart, C.L. A direct comparison of the behavioral and physiological effects of methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology, 2012, 219(1), 109-122.
[http://dx.doi.org/10.1007/s00213-011-2383-4]
[319]
Kolbrich, E.A.; Goodwin, R.S.; Gorelick, D.A.; Hayes, R.J.; Stein, E.A.; Huestis, M.A. Physiological and subjective responses to controlled oral 3,4-methylenedioxymethamphetamine administration. J. Clin. Psychopharmacol., 2008, 28(4), 432-440.
[http://dx.doi.org/10.1097/JCP.0b013e31817ef470]
[320]
Lester, S.J.; Baggott, M.; Welm, S. Cardiovascular effects of 3, 4-methylenedioxymethamphetamine: A double-blind, placebo-controlled trial. Ann. Intern. Med., 2000, 133(12), 969-973.
[http://dx.doi.org/10.7326/0003-4819-133-12-200012190-00012]
[321]
Mas, M.; Farré, M.; de la Torre, R. Cardiovascular and neuroendocrine effects and pharmacokinetics of 3, 4-methylenedioxy-methamphetamine in humans. J. Pharmacol. Exp. Ther., 1999, 290(1), 136-145.
[322]
Vizeli, P.; Liechti, M.E. Safety pharmacology of acute MDMA administration in healthy subjects. J. Psychopharmacol., 2017, 31(5), 576-588.
[http://dx.doi.org/10.1177/0269881117691569]
[323]
Mithoefer, M.C.; Mithoefer, A.T.; Feduccia, A.A.; Jerome, L.; Wagner, M.; Wymer, J.; Holland, J.; Hamilton, S.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R. 3,4-methylenedioxy-methamphetamine (MDMA)-assisted psychotherapy for post-traumatic stress disorder in military veterans, firefighters, and police officers: A randomised, double-blind, dose-response, phase 2 clinical trial. Lancet Psychiatry, 2018, 5(6), 486-497.
[http://dx.doi.org/10.1016/S2215-0366(18)30135-4]
[324]
De La Torre, R.; Farré, M.; Roset, P.N.; López, C.H.; Mas, M.; Ortuño, J.; Menoyo, E.; Pizarro, N.; Segura, J.; Camí, J. Pharmacology of MDMA in Humans. Ann. N. Y. Acad. Sci., 2000, 914(1), 225-237.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb05199.x]
[325]
Feduccia, A.A.; Jerome, L.; Mithoefer, M.C.; Holland, J. Discontinuation of medications classified as reuptake inhibitors affects treatment response of MDMA-assisted psychotherapy. Psychopharmacology, 2021, 238(2), 581-588.
[http://dx.doi.org/10.1007/s00213-020-05710-w]
[326]
Oeri, H.E. Beyond ecstasy: Alternative entactogens to 3,4-methylenedioxymethamphetamine with potential applications in psychotherapy. J. Psychopharmacol., 2021, 35(5), 512-536.
[http://dx.doi.org/10.1177/0269881120920420]
[327]
Papaseit, E.; Pérez-Mañá, C.; Torrens, M.; Farré, A.; Poyatos, L.; Hladun, O.; Sanvisens, A.; Muga, R.; Farré, M. MDMA interactions with pharmaceuticals and drugs of abuse. Expert Opin. Drug Metab. Toxicol., 2020, 16(5), 357-369.
[http://dx.doi.org/10.1080/17425255.2020.1749262]
[328]
Simmler, L.D.; Buser, T.A.; Donzelli, M.; Schramm, Y.; Dieu, L-H.; Huwyler, J.; Chaboz, S.; Hoener, M.C.; Liechti, M.E. Pharmacological characterization of designer cathinones in vitro. Br. J. Pharmacol., 2013, 168(2), 458-470.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02145.x]
[329]
Nardou, R.; Lewis, E.M.; Rothhaas, R.; Xu, R.; Yang, A.; Boyden, E.; Dölen, G. Oxytocin-dependent reopening of a social reward learning critical period with MDMA. Nature, 2019, 569(7754), 116-120.
[http://dx.doi.org/10.1038/s41586-019-1075-9]
[330]
Dölen, G. Oxytocin: Parallel processing in the social brain? J. Neuroendocrinol., 2015, 27(6), 516-535.
[http://dx.doi.org/10.1111/jne.12284]
[331]
Thompson, M.R.; Callaghan, P.D.; Hunt, G.E.; Cornish, J.L.; McGregor, I.S. A role for oxytocin and 5-HT1A receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine (“ecstasy”). Neuroscience, 2007, 146(2), 509-514.
[http://dx.doi.org/10.1016/j.neuroscience.2007.02.032]
[332]
Florea, T.; Palimariciuc, M.; Cristofor, A.C.; Dobrin, I.; Chiriță, R.; Bîrsan, M.; Dobrin, R.P.; Pădurariu, M. Oxytocin: Narrative expert review of current perspectives on the relationship with other neurotransmitters and the impact on the main psychiatric disorders. Medicina, 2022, 58(7), 923.
[http://dx.doi.org/10.3390/medicina58070923]
[333]
MAPS Investigators Brochure, 14th; U.S., 2022, pp. 13-253.
[334]
Dumont, G.J.H.; Sweep, F.C.G.J.; van der Steen, R.; Hermsen, R.; Donders, A.R.T.; Touw, D.J.; van Gerven, J.M.A.; Buitelaar, J.K.; Verkes, R.J. Increased oxytocin concentrations and prosocial feelings in humans after ecstasy (3,4-methylenedioxymethamphetamine) administration. Soc. Neurosci., 2009, 4(4), 359-366.
[http://dx.doi.org/10.1080/17470910802649470]
[335]
Tancer, M.; Johanson, C.E. The effects of fluoxetine on the subjective and physiological effects of 3,4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology, 2006, 189(4), 565-573.
[http://dx.doi.org/10.1007/s00213-006-0576-z]
[336]
Farré, M.; Abanades, S.; Roset, P.N.; Peiró, A.M.; Torrens, M.; O’Mathúna, B.; Segura, M.; de la Torre, R. Pharmacological interaction between 3,4-methylenedioxymethamphetamine (Ecstasy) and paroxetine: Pharmacological effects and pharmacokinetics. J. Pharmacol. Exp. Ther., 2007, 323(3), 954-962.
[http://dx.doi.org/10.1124/jpet.107.129056]
[337]
Liechti, M.E.; Gamma, A.; Vollenweider, F.X. Gender differences in the subjective effects of MDMA. Psychopharmacology, 2001, 154(2), 161-168.
[http://dx.doi.org/10.1007/s002130000648]
[338]
Kuypers, K.P.C.; de la Torre, R.; Farre, M.; Pizarro, N.; Xicota, L.; Ramaekers, J.G. MDMA-induced indifference to negative sounds is mediated by the 5-HT2A receptor. Psychopharmacology, 2018, 235(2), 481-490.
[http://dx.doi.org/10.1007/s00213-017-4699-1]
[339]
Kuypers, K.P.C.; de la Torre, R.; Farre, M.; Yubero-Lahoz, S.; Dziobek, I.; Van den Bos, W.; Ramaekers, J.G. No Evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation. PLoS One, 2014, 9(6), e100719.
[http://dx.doi.org/10.1371/journal.pone.0100719]
[340]
Liechti, M.E.; Vollenweider, F.X. Which neuroreceptors mediate the subjective effects of MDMA in humans? A summary of mechanistic studies. Hum. Psychopharmacol., 2001, 16(8), 589-598.
[http://dx.doi.org/10.1002/hup.348]
[341]
Casey, A.B.; Cui, M.; Booth, R.G.; Canal, C.E. “Selective” serotonin 5-HT2A receptor antagonists. Biochem. Pharmacol., 2022, 200, 115028.
[http://dx.doi.org/10.1016/j.bcp.2022.115028]
[342]
Price, C.M.; Feduccia, A.F.; DeBonis, K. Effects of selective serotonin reuptake inhibitor use on 3,4-methylenedioxy-methamphetamine-assisted therapy for posttraumatic stress disorder a review of the evidence, neurobiological plausibility, and clinical significance. J. Clin. Psychopharmacol., 2022, 42(5), 464-469.
[343]
Hysek, C.M.; Domes, G.; Liechti, M.E. MDMA enhances “mind reading” of positive emotions and impairs “mind reading” of negative emotions. Psychopharmacology, 2012, 222(2), 293-302.
[http://dx.doi.org/10.1007/s00213-012-2645-9]
[344]
Hysek, C.M.; Simmler, L.D.; Ineichen, M.; Grouzmann, E.; Hoener, M.C.; Brenneisen, R.; Huwyler, J.; Liechti, M.E. The norepinephrine transporter inhibitor reboxetine reduces stimulant effects of MDMA (“Ecstasy”) in humans. Clin. Pharmacol. Ther., 2011, 90(2), 246-255.
[http://dx.doi.org/10.1038/clpt.2011.78]
[345]
Hysek, C.M.; Simmler, L.D.; Nicola, V.G.; Vischer, N.; Donzelli, M.; Krähenbühl, S.; Grouzmann, E.; Huwyler, J.; Hoener, M.C.; Liechti, M.E. Duloxetine inhibits effects of MDMA (“ecstasy”) in vitro and in humans in a randomized placebo-controlled laboratory study. PLoS One, 2012, 7(5), e36476.
[http://dx.doi.org/10.1371/journal.pone.0036476]
[346]
Schenk, S.; Highgate, Q. Methylenedioxymethamphetamine (MDMA): Serotonergic and dopaminergic mechanisms related to its use and misuse. J. Neurochem., 2021, 157(5), 1714-1724.
[http://dx.doi.org/10.1111/jnc.15348]
[347]
Ramos, L.; Hicks, C.; Caminer, A.; Couto, K.; Narlawar, R.; Kassiou, M.; McGregor, I.S. MDMA (‘Ecstasy’), oxytocin and vasopressin modulate social preference in rats: A role for handling and oxytocin receptors. Pharmacol. Biochem. Behav., 2016, 150-151, 115-123.
[http://dx.doi.org/10.1016/j.pbb.2016.10.002]
[348]
Vizeli, P.; Liechti, M.E. Oxytocin receptor gene variations and socio-emotional effects of MDMA: A pooled analysis of controlled studies in healthy subjects. PLoS One, 2018, 13(6), e0199384.
[http://dx.doi.org/10.1371/journal.pone.0199384]
[349]
Schmid, Y.; Hysek, C.M.; Simmler, L.D.; Crockett, M.J.; Quednow, B.B.; Liechti, M.E. Differential effects of MDMA and methylphenidate on social cognition. J. Psychopharmacol., 2014, 28(9), 847-856.
[http://dx.doi.org/10.1177/0269881114542454]
[350]
Kuypers, K.P.C.; Dolder, P.C.; Ramaekers, J.G.; Liechti, M.E. Multifaceted empathy of healthy volunteers after single doses of MDMA: A pooled sample of placebo-controlled studies. J. Psychopharmacol., 2017, 31(5), 589-598.
[http://dx.doi.org/10.1177/0269881117699617]
[351]
Hysek, C.M.; Schmid, Y.; Simmler, L.D.; Domes, G.; Heinrichs, M.; Eisenegger, C.; Preller, K.H.; Quednow, B.B.; Liechti, M.E. MDMA enhances emotional empathy and prosocial behavior. Soc. Cogn. Affect. Neurosci., 2014, 9(11), 1645-1652.
[http://dx.doi.org/10.1093/scan/nst161]
[352]
Kirkpatrick, M.G.; Francis, S.M.; Lee, R.; de Wit, H.; Jacob, S. Plasma oxytocin concentrations following MDMA or intranasal oxytocin in humans. Psychoneuroendocrinology, 2014, 46, 23-31.
[http://dx.doi.org/10.1016/j.psyneuen.2014.04.006]
[353]
Bershad, A.K.; Weafer, J.J.; Kirkpatrick, M.G.; Wardle, M.C.; Miller, M.A.; de Wit, H. Oxytocin receptor gene variation predicts subjective responses to MDMA. Soc. Neurosci., 2016, 11(6), 592-599.
[http://dx.doi.org/10.1080/17470919.2016.1143026]
[354]
Boxler, M.I.; Streun, G.L.; Liechti, M.E.; Schmid, Y.; Kraemer, T.; Steuer, A.E. Human metabolome changes after a single dose of 3,4-methylenedioxymethamphetamine (MDMA) with special focus on steroid metabolism and inflammation processes. J. Proteome Res., 2018, 17(8), 2900-2907.
[http://dx.doi.org/10.1021/acs.jproteome.8b00438]
[355]
Seibert, J.; Hysek, C.M.; Penno, C.A.; Schmid, Y.; Kratschmar, D.V.; Liechti, M.E.; Odermatt, A. Acute effects of 3,4-methylenedioxymethamphetamine and methylphenidate on circulating steroid levels in healthy subjects. Neuroendocrinology, 2014, 100(1), 17-25.
[http://dx.doi.org/10.1159/000364879]
[356]
Farré, M.; de la Torre, R.; Ó Mathúna, B.; Roset, P.N.; Peiró, A.M.; Torrens, M.; Ortuño, J.; Pujadas, M.; Camí, J. Repeated doses administration of MDMA in humans: Pharmacological effects and pharmacokinetics. Psychopharmacology, 2004, 173(3-4), 364-375.
[http://dx.doi.org/10.1007/s00213-004-1789-7]
[357]
Harris, D.S.; Baggott, M.; Mendelson, J.H.; Mendelson, J.E.; Jones, R.T. Subjective and hormonal effects of 3,4-methylenedioxy-methamphetamine (MDMA) in humans. Psychopharmacology, 2002, 162(4), 396-405.
[http://dx.doi.org/10.1007/s00213-002-1131-1]
[358]
Forsling, M.; Fallon, J.K.; Kicman, A.T.; Hutt, A.J.; Cowan, D.A.; Henry, J.A. Arginine vasopressin release in response to the administration of 3,4-methylenedioxymethamphetamine (“ecstasy”): Is metabolism a contributory factor? J. Pharm. Pharmacol., 2010, 53(10), 1357-1363.
[http://dx.doi.org/10.1211/0022357011777855]
[359]
Breeksema, J.J.; Kuin, B.W.; Kamphuis, J. Adverse events in clinical treatments with serotonergic psychedelics and MDMA: A mixed-methods systematic review. J. Psychopharm, 2022, 026988112211169.
[360]
McNamee, S.; Devenot, N.; Buisson, M. Studying harms is key to improving psychedelic-assisted therapy—participants call for changes to research landscape. JAMA Psychiatry, 2023, 80(5), 411.
[http://dx.doi.org/10.1001/jamapsychiatry.2023.0099]
[361]
Regan, A.; Margolis, S.; de Wit, H.; Lyubomirsky, S. Does ±3,4-methylenedioxymethamphetamine (ecstasy) induce subjective feelings of social connection in humans? A multilevel meta-analysis. PLoS One, 2021, 16(10), e0258849.
[http://dx.doi.org/10.1371/journal.pone.0258849]
[362]
Kirkpatrick, M.G.; Lee, R.; Wardle, M.C.; Jacob, S.; de Wit, H. Effects of MDMA and intranasal oxytocin on social and emotional processing. Neuropsychopharmacology, 2014, 39(7), 1654-1663.
[http://dx.doi.org/10.1038/npp.2014.12]
[363]
Bedi, G.; Hyman, D.; de Wit, H. Is Ecstasy an “Empathogen”? effects of ±3,4-methylenedioxymethamphetamine on prosocial feelings and identification of emotional states in others. Biol. Psychiatry, 2010, 68(12), 1134-1140.
[http://dx.doi.org/10.1016/j.biopsych.2010.08.003]
[364]
Hysek, C.M.; Simmler, L.D.; Schillinger, N.; Meyer, N.; Schmid, Y.; Donzelli, M.; Grouzmann, E.; Liechti, M.E. Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination. Int. J. Neuropsychopharmacol., 2014, 17(3), 371-381.
[http://dx.doi.org/10.1017/S1461145713001132]
[365]
Bedi, G.; Phan, K.L.; Angstadt, M.; de Wit, H. Effects of MDMA on sociability and neural response to social threat and social reward. Psychopharmacology, 2009, 207(1), 73-83.
[http://dx.doi.org/10.1007/s00213-009-1635-z]
[366]
Mithoefer, M.C.; Wagner, M.T.; Mithoefer, A.T.; Jerome, L.; Doblin, R. The safety and efficacy of ±3,4-methylenedioxy-methamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: The first randomized controlled pilot study. J. Psychopharmacol., 2011, 25(4), 439-452.
[http://dx.doi.org/10.1177/0269881110378371]
[367]
Bouso, J.C.; Doblin, R.; Farré, M.; Alcázar, M.Á.; Gómez-Jarabo, G. MDMA-assisted psychotherapy using low doses in a small sample of women with chronic posttraumatic stress disorder. J. Psychoactive Drugs, 2008, 40(3), 225-236.
[http://dx.doi.org/10.1080/02791072.2008.10400637]
[368]
Baggott, M.J.; Coyle, J.R.; Siegrist, J.D.; Garrison, K.J.; Galloway, G.P.; Mendelson, J.E. Effects of 3,4-methylenedioxy-methamphetamine on socioemotional feelings, authenticity, and autobiographical disclosure in healthy volunteers in a controlled setting. J. Psychopharmacol., 2016, 30(4), 378-387.
[http://dx.doi.org/10.1177/0269881115626348]
[369]
Baggott, M.J.; Kirkpatrick, M.G.; Bedi, G.; de Wit, H. Intimate insight: MDMA changes how people talk about significant others. J. Psychopharmacol., 2015, 29(6), 669-677.
[http://dx.doi.org/10.1177/0269881115581962]
[370]
Frye, C.G.; Wardle, M.C.; Norman, G.J.; de Wit, H. MDMA decreases the effects of simulated social rejection. Pharmacol. Biochem. Behav., 2014, 117, 1-6.
[http://dx.doi.org/10.1016/j.pbb.2013.11.030]
[371]
Howard, R.; Berry, K.; Haddock, G. Therapeutic alliance in psychological therapy for posttraumatic stress disorder: A systematic review and meta-analysis. Clin. Psychol. Psychother., 2022, 29(2), 373-399.
[http://dx.doi.org/10.1002/cpp.2642]
[372]
Borissova, A.; Ferguson, B.; Wall, M.B.; Morgan, C.J.A.; Carhart-Harris, R.L.; Bolstridge, M.; Bloomfield, M.A.P.; Williams, T.M.; Feilding, A.; Murphy, K.; Tyacke, R.J.; Erritzoe, D.; Stewart, L.; Wolff, K.; Nutt, D.; Curran, H.V.; Lawn, W. Acute effects of MDMA on trust, cooperative behaviour and empathy: A double-blind, placebo-controlled experiment. J. Psychopharmacol., 2021, 35(5), 547-555.
[http://dx.doi.org/10.1177/0269881120926673]
[373]
Gabay, A.S.; Kempton, M.J.; Gilleen, J.; Mehta, M.A. MDMA increases cooperation and recruitment of social brain areas when playing trustworthy players in an iterated prisoner’s dilemma. J. Neurosci., 2019, 39(2), 307-320.
[http://dx.doi.org/10.1523/JNEUROSCI.1276-18.2018]
[374]
Gamma, A. 3,4-methylenedioxymethamphetamine (MDMA) modulates cortical and limbic brain activity as measured by [H215O]-PET in healthy humans. Neuropsychopharmacology, 2000, 23(4), 388-395.
[http://dx.doi.org/10.1016/S0893-133X(00)00130-5]
[375]
Lanius, R.A.; Bluhm, R.L.; Frewen, P.A. How understanding the neurobiology of complex post-traumatic stress disorder can inform clinical practice: A social cognitive and affective neuroscience approach. Acta Psychiatr. Scand., 2011, 124(5), 331-348.
[http://dx.doi.org/10.1111/j.1600-0447.2011.01755.x]
[376]
Carhart-Harris, R.L.; Murphy, K.; Leech, R.; Erritzoe, D.; Wall, M.B.; Ferguson, B.; Williams, L.T.J.; Roseman, L.; Brugger, S.; De Meer, I.; Tanner, M.; Tyacke, R.; Wolff, K.; Sethi, A.; Bloomfield, M.A.P.; Williams, T.M.; Bolstridge, M.; Stewart, L.; Morgan, C.; Newbould, R.D.; Feilding, A.; Curran, H.V.; Nutt, D.J. The effects of acutely administered 3,4-methylenedioxymethamphetamine on spontaneous brain function in healthy volunteers measured with arterial spin labeling and blood oxygen level-dependent resting state functional connectivity. Biol. Psychiatry, 2015, 78(8), 554-562.
[http://dx.doi.org/10.1016/j.biopsych.2013.12.015]
[377]
Carhart-Harris, R.L.; Wall, M.B.; Erritzoe, D.; Kaelen, M.; Ferguson, B.; De Meer, I.; Tanner, M.; Bloomfield, M.; Williams, T.M.; Bolstridge, M.; Stewart, L.; Morgan, C.J.; Newbould, R.D.; Feilding, A.; Curran, H.V.; Nutt, D.J. The effect of acutely administered MDMA on subjective and BOLD-fMRI responses to favourite and worst autobiographical memories. Int. J. Neuropsychopharmacol., 2014, 17(4), 527-540.
[http://dx.doi.org/10.1017/S1461145713001405]
[378]
Carhart-Harris, R.L.; Erritzoe, D.; Williams, T.; Stone, J.M.; Reed, L.J.; Colasanti, A.; Tyacke, R.J.; Leech, R.; Malizia, A.L.; Murphy, K.; Hobden, P.; Evans, J.; Feilding, A.; Wise, R.G.; Nutt, D.J. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc. Natl. Acad. Sci., 2012, 109(6), 2138-2143.
[http://dx.doi.org/10.1073/pnas.1119598109]
[379]
Berman, M.G.; Peltier, S.; Nee, D.E.; Kross, E.; Deldin, P.J.; Jonides, J. Depression, rumination and the default network. Soc. Cogn. Affect. Neurosci., 2011, 6(5), 548-555.
[http://dx.doi.org/10.1093/scan/nsq080]
[380]
Walpola, I.C.; Nest, T.; Roseman, L.; Erritzoe, D.; Feilding, A.; Nutt, D.J.; Carhart-Harris, R.L. Altered insula connectivity under MDMA. Neuropsychopharmacology, 2017, 42(11), 2152-2162.
[http://dx.doi.org/10.1038/npp.2017.35]
[381]
Tsakiris, M; Critchley, H. Interoception beyond homeostasis: Affect, cognition and mental health. Biol. Sci., 2016, 371(1708), 20160002.
[http://dx.doi.org/10.1098/rstb.2016.0002]
[382]
Alvarez, R.P.; Kirlic, N.; Misaki, M. Increased anterior insula activity in anxious individuals is linked to diminished perceived control. Transl. Psychiat., 2015, 5, 591.
[http://dx.doi.org/10.1038/tp.2015.84]
[383]
Etkin, A.; Wager, T.D. Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry, 2007, 164(10), 1476-1488.
[http://dx.doi.org/10.1176/appi.ajp.2007.07030504]
[384]
Seeley, W.W.; Menon, V.; Schatzberg, A.F.; Keller, J.; Glover, G.H.; Kenna, H.; Reiss, A.L.; Greicius, M.D. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci., 2007, 27(9), 2349-2356.
[http://dx.doi.org/10.1523/JNEUROSCI.5587-06.2007]
[385]
Peterson, A.; Thome, J.; Frewen, P.; Lanius, R.A. Resting state neuroimaging studies: A new way of identifying differences and similarities among the anxiety disorders? Can. J. Psychiatry, 2014, 59(6), 294-300.
[http://dx.doi.org/10.1177/070674371405900602]
[386]
Lewis, C.R.; Tafur, J.; Spencer, S.; Green, J.M.; Harrison, C.; Kelmendi, B.; Rabin, D.M.; Yehuda, R.; Yazar-Klosinski, B.; Cahn, B.R. Pilot study suggests DNA methylation of the glucocorticoid receptor gene (NR3C1) is associated with MDMA-assisted therapy treatment response for severe PTSD. Front. Psychiatry, 2023, 14, 959590.
[http://dx.doi.org/10.3389/fpsyt.2023.959590]
[387]
Siegel, D.J. The developing mind: Toward a neurobiology of interpersonal experience; Guilford Press, 1999.
[388]
Corrigan, F.M.; Fisher, J.J.; Nutt, D.J. Autonomic dysregulation and the Window of Tolerance model of the effects of complex emotional trauma. J. Psychopharmacol., 2011, 25(1), 17-25.
[http://dx.doi.org/10.1177/0269881109354930]
[389]
Wilbarger, PaJ.W. Sensory defensiveness and related social/ emotional and neurological problems; Wilbarger: Van Nuys, 1997.
[390]
Vizeli, P.; Straumann, I.; Duthaler, U.; Varghese, N.; Eckert, A.; Paulus, M.P.; Risbrough, V.; Liechti, M.E. Effects of 3, 4-methylenedioxymethamphetamine on conditioned fear extinction and retention in a crossover study in healthy subjects. Front. Pharmacol., 2022, 13, 906639.
[http://dx.doi.org/10.3389/fphar.2022.906639]
[391]
Glavonic, E.; Mitic, M.; Adzic, M. Hallucinogenic drugs and their potential for treating fear-related disorders: Through the lens of fear extinction. J. Neurosci. Res., 2022, 100(4), 947-969.
[http://dx.doi.org/10.1002/jnr.25017]
[392]
Raut, S.B.; Marathe, P.A.; van Eijk, L.; Eri, R.; Ravindran, M.; Benedek, D.M.; Ursano, R.J.; Canales, J.J.; Johnson, L.R. Diverse therapeutic developments for post-traumatic stress disorder (PTSD) indicate common mechanisms of memory modulation. Pharmacol. Ther., 2022, 239, 108195.
[http://dx.doi.org/10.1016/j.pharmthera.2022.108195]
[393]
Maples-Keller, J.L.; Norrholm, S.D.; Burton, M.; Reiff, C.; Coghlan, C.; Jovanovic, T.; Yasinski, C.; Jarboe, K.; Rakofsky, J.; Rauch, S.; Dunlop, B.W.; Rothbaum, B.O. A randomized controlled trial of 3,4-methylenedioxymethamphetamine (MDMA) and fear extinction retention in healthy adults. J. Psychopharmacol., 2022, 36(3), 368-377.
[http://dx.doi.org/10.1177/02698811211069124]
[394]
Feduccia, A.A.; Mithoefer, M.C. MDMA-assisted psychotherapy for PTSD: Are memory reconsolidation and fear extinction underlying mechanisms? Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 84, 221-228.
[http://dx.doi.org/10.1016/j.pnpbp.2018.03.003]
[395]
Young, M.B.; Andero, R.; Ressler, K.J.; Howell, L.L. 3,4- methylenedioxymethamphetamine facilitates fear extinction learning. Transl. Psychiatry., 2015, 5(9), e634-e.
[396]
Young, M.B.; Norrholm, S.D.; Khoury, L.M.; Jovanovic, T.; Rauch, S.A.M.; Reiff, C.M.; Dunlop, B.W.; Rothbaum, B.O.; Howell, L.L. Inhibition of serotonin transporters disrupts the enhancement of fear memory extinction by 3,4-methylenedioxy-methamphetamine (MDMA). Psychopharmacology, 2017, 234(19), 2883-2895.
[http://dx.doi.org/10.1007/s00213-017-4684-8]
[397]
Calhoun, Ta. The posttraumatic growth inventory: Measuring the positive legacy of trauma. J. Trauma. Stress, 1996, 9(3), 455-471.
[398]
Feduccia, A.A.; Jerome, L.; Yazar-Klosinski, B.; Emerson, A.; Mithoefer, M.C.; Doblin, R. Breakthrough for trauma treatment: Safety and efficacy of MDMA-assisted psychotherapy compared to paroxetine and sertraline. Front. Psychiatry, 2019, 10, 650.
[http://dx.doi.org/10.3389/fpsyt.2019.00650]
[399]
Monson, C.M.; Wagner, A.C.; Mithoefer, A.T.; Liebman, R.E.; Feduccia, A.A.; Jerome, L.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R.; Mithoefer, M.C. MDMA-facilitated cognitive-behavioural conjoint therapy for posttraumatic stress disorder: An uncontrolled trial. Eur. J. Psychotraumatol., 2020, 11(1), 1840123.
[http://dx.doi.org/10.1080/20008198.2020.1840123]
[400]
Johnson, M.W.; Hendricks, P.S.; Barrett, F.S.; Griffiths, R.R. Classic psychedelics: An integrative review of epidemiology, therapeutics, mystical experience, and brain network function. Pharmacol. Ther., 2019, 197, 83-102.
[http://dx.doi.org/10.1016/j.pharmthera.2018.11.010]
[401]
Zamberlan, F.; Sanz, C.; Martínez, V.R.; Pallavicini, C.; Erowid, F.; Erowid, E.; Tagliazucchi, E. The varieties of the psychedelic experience: a preliminary study of the association between the reported subjective effects and the binding affinity profiles of substituted phenethylamines and tryptamines. Front. Integr. Nuerosci., 2018, 12, 54.
[http://dx.doi.org/10.3389/fnint.2018.00054]
[402]
Woolley, D.W.; Shaw, E. A biochemical and pharmacological suggestion about certain mental disorders. Proc. Natl. Acad. Sci., 1954, 40(4), 228-231.
[http://dx.doi.org/10.1073/pnas.40.4.228]
[403]
Carod-Artal, F.J. Hallucinogenic drugs in pre-Columbian Mesoamerican cultures. Neurologia, 2015, 30(1), 42-49.
[http://dx.doi.org/10.1016/j.nrl.2011.07.003]
[404]
Nichols, D.E. Psilocybin: From ancient magic to modern medicine. J. Antibiot., 2020, 73(10), 679-686.
[http://dx.doi.org/10.1038/s41429-020-0311-8]
[405]
Wasson, R.G. Life magazine: Seeking the magic mushroom. Time. Inc. Magaz. Comp., 1957, 100(2), 9-20.
[406]
Busch, A.K.; Johnson, W.C.L.S.D. 25 as an aid in psychotherapy: Preliminary report of a new drug. Dis. Nerv. Syst., 1950, 11(8), 241-243.
[407]
Bastiaans, J. Mental Liberation Facilitated by the Use of Hallucinogenic Drugs; Human Sciences: New York, 1984.
[408]
Luna, L.E. The Ethnopharmacology of Ayahuasca: Indigenous and mestizo use of ayahuasca. An overview: In: Transworl.Res. Netw; 2011, pp. 1-21.
[409]
McKenna, D.J.; Towers, G.H.N. Biochemistry and pharmacology of tryptamines and β-carbolines a minireview. J. Psychoactive Drugs, 1984, 16(4), 347-358.
[http://dx.doi.org/10.1080/02791072.1984.10472305]
[410]
Naranjo, P. Hallucinogenic plant use and related indigenous belief systems in the ecuadorian amazon. J. Ethnopharmacol., 1979, 1(2), 121-145.
[http://dx.doi.org/10.1016/0378-8741(79)90003-5]
[411]
Luna, L.E. The concept of plants as teachers among four mestizo shamans of iquitos. Northeastern Peru. J. Ethnopharmacol., 1984, 11(2), 135-156.
[http://dx.doi.org/10.1016/0378-8741(84)90036-9]
[412]
Villavicencio, M. Geography of the Republic of Ecuador; R; Craighead: New York, 1858.
[413]
McKenna, D.J. Clinical investigations of the therapeutic potential of ayahuasca: Rationale and regulatory challenges. Pharmacol. Ther., 2004, 102(2), 111-129.
[http://dx.doi.org/10.1016/j.pharmthera.2004.03.002]
[414]
Veteran Psychedelic Group Therapy Fellowship. Available from: https://www.veteransofwar.org/how (updated 07-2019).
[415]
Heroic Hearts Project | ayahuasca & psychedelic therapy for military veterans. Available from: https://heroicheartsproject.org/ (updated 03-2017).
[416]
Bogenschutz, M.P.; Forcehimes, A.A. Development of a psychotherapeutic model for psilocybin-assisted treatment of alcoholism. J. Humanist. Psychol., 2017, 57(4), 389-414.
[http://dx.doi.org/10.1177/0022167816673493]
[417]
Johnson, M.W.; Richards, W.A.; Griffiths, R.R. Human hallucinogen research: Guidelines for safety. J. Psychopharmacol., 2008, 22(6), 603-620.
[http://dx.doi.org/10.1177/0269881108093587]
[418]
Strickland, J.C.; Garcia-Romeu, A.; Johnson, M.W. Set and setting: A randomized study of different musical genres in supporting psychedelic therapy. ACS Pharmacol. Transl. Sci., 2021, 4(2), 472-478.
[http://dx.doi.org/10.1021/acsptsci.0c00187]
[419]
Kaelen, M.; Barrett, F.S.; Roseman, L.; Lorenz, R.; Family, N.; Bolstridge, M.; Curran, H.V.; Feilding, A.; Nutt, D.J.; Carhart-Harris, R.L. LSD enhances the emotional response to music. Psychopharmacology, 2015, 232(19), 3607-3614.
[http://dx.doi.org/10.1007/s00213-015-4014-y]
[420]
Studerus, E.; Gamma, A.; Kometer, M.; Vollenweider, F.X. Prediction of psilocybin response in healthy volunteers. PLoS One, 2012, 7(2), e30800.
[http://dx.doi.org/10.1371/journal.pone.0030800]
[421]
Griffiths, R.R.; Richards, W.A.; McCann, U.; Jesse, R. Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology, 2006, 187(3), 268-283.
[http://dx.doi.org/10.1007/s00213-006-0457-5]
[422]
Mithoefer, M.C.; Grob, C.S.; Brewerton, T.D. Novel psychopharmacological therapies for psychiatric disorders: Psilocybin and MDMA. Lancet Psychiatry, 2016, 3(5), 481-488.
[http://dx.doi.org/10.1016/S2215-0366(15)00576-3]
[423]
Fuentes, J.; Fuentes, J.J.; Fonseca, F.; Ellices, M.; Farré, M.; Torrens, M. Therapeutic use of lsd in psychiatry: A systematic review of randomized controlled clinical trials. Front. Psychiatry, 2020, 21, 10-943.
[http://dx.doi.org/10.3389/fpsyt.2019.00943]
[424]
Pahnke, W.N.; Kurland, A.A.; Unger, S.; Savage, C.; Grof, S. The experimental use of psychedelic (LSD) psychotherapy. JAMA, 1970, 212(11), 1856-1863.
[http://dx.doi.org/10.1001/jama.1970.03170240060010]
[425]
Labate, B. The therapeutic use of ayahuasca; Springer-Verlag: Berlin, Heidelberg, 2014.
[http://dx.doi.org/10.1007/978-3-642-40426-9]
[426]
Bathje, G.J.; Fenton, J.; Pillersdorf, D.; Hill, L.C. A qualitative study of intention and impact of ayahuasca use by westerners. J. Humanist. Psychol., 2021.
[http://dx.doi.org/10.1177/00221678211008331]
[427]
Uthaug, M.V.; Mason, N.L.; Toennes, S.W.; Reckweg, J.T.; de Sousa, F.P.E.B.; Kuypers, K.P.C.; van Oorsouw, K.; Riba, J.; Ramaekers, J.G. A placebo-controlled study of the effects of ayahuasca, set and setting on mental health of participants in ayahuasca group retreats. Psychopharmacology, 2021, 238(7), 1899-1910.
[http://dx.doi.org/10.1007/s00213-021-05817-8]
[428]
Baker, J.R. Psychedelic sacraments. J. Psychoactive Drugs, 2005, 37(2), 179-187.
[http://dx.doi.org/10.1080/02791072.2005.10399799]
[429]
Callon, C.; Williams, M.; Lafrance, A. “Meeting the medicine halfway”: Ayahuasca ceremony leaders’ perspectives on preparation and integration practices for participants. J. Humanist. Psychol., 2021.
[http://dx.doi.org/10.1177/00221678211043300]
[430]
Ludwig, A.M.; Levine, J. A controlled comparison of five brief treatment techniques employing LSD, hypnosis, and psychotherapy. Am. J. Psychother., 1965, 19(3), 417-435.
[http://dx.doi.org/10.1176/appi.psychotherapy.1965.19.3.417]
[431]
Preller, K.H.; Vollenweider, F.X. Phenomenology, structure, and dynamic of psychedelic states. Curr. Top. Behav. Neurosci., 2016, 36, 221-256.
[http://dx.doi.org/10.1007/7854_2016_459]
[432]
Díaz, J.L. Sacred plants and visionary consciousness. Phenomenol. Cogn. Sci., 2010, 9(2), 159-170.
[http://dx.doi.org/10.1007/s11097-010-9157-z]
[433]
Domínguez-Clavé, E.; Soler, J.; Elices, M.; Pascual, J.C.; Álvarez, E.; de la Fuente Revenga, M.; Friedlander, P.; Feilding, A.; Riba, J. Ayahuasca: Pharmacology, neuroscience and therapeutic potential. Brain Res. Bull., 2016, 126, 89-101.
[http://dx.doi.org/10.1016/j.brainresbull.2016.03.002]
[434]
de Araujo, D.B.; Ribeiro, S.; Cecchi, G.A.; Carvalho, F.M.; Sanchez, T.A.; Pinto, J.P.; de Martinis, B.S.; Crippa, J.A.; Hallak, J.E.C.; Santos, A.C. Seeing with the eyes shut: Neural basis of enhanced imagery following ayahuasca ingestion. Hum. Brain Mapp., 2012, 33(11), 2550-2560.
[http://dx.doi.org/10.1002/hbm.21381]
[435]
Kometer, M.; Cahn, B.R.; Andel, D.; Carter, O.L.; Vollenweider, F.X. The 5-HT2A/1A agonist psilocybin disrupts modal object completion associated with visual hallucinations. Biol. Psychiatry, 2011, 69(5), 399-406.
[http://dx.doi.org/10.1016/j.biopsych.2010.10.002]
[436]
Studerus, E.; Kometer, M.; Hasler, F.; Vollenweider, F.X. Acute, subacute and long-term subjective effects of psilocybin in healthy humans: A pooled analysis of experimental studies. J. Psychopharmacol., 2011, 25(11), 1434-1452.
[http://dx.doi.org/10.1177/0269881110382466]
[437]
Shanon, B. Ayahuasca visualizations: A structural typology. J. Conscious. Stud., 2002, 9, 3-30.
[438]
Dittrich, A. The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. Pharmacopsychiatry,, 1998, 31(S 2)(2), 80-84.
[http://dx.doi.org/10.1055/s-2007-979351]
[439]
Gallimore, A.R.; Strassman, R.J. A model for the application of target-controlled intravenous infusion for a prolonged immersive DMT psychedelic experience. Front. Pharmacol., 2016, 7, 211.
[http://dx.doi.org/10.3389/fphar.2016.00211]
[440]
Strassman, R.J.; Qualls, C.R.; Uhlenhuth, E.H.; Kellner, R. Dose-response study of N,N-dimethyltryptamine in humans. II. Subjective effects and preliminary results of a new rating scale. Arch. Gen. Psychiatry, 1994, 51(2), 98-108.
[http://dx.doi.org/10.1001/archpsyc.1994.03950020022002]
[441]
Barrett, F.S.; Robbins, H.; Smooke, D.; Brown, J.L.; Griffiths, R.R. Qualitative and quantitative features of music reported to support peak mystical experiences during psychedelic therapy sessions. Front. Psychol., 2017, 8, 1238.
[http://dx.doi.org/10.3389/fpsyg.2017.01238]
[442]
Leuner, H. Die experimentelle psychose: Ihre psychopharmakologie, phänomenologie und dynamik in beziehung zur person.In: Versuch Einer Konditonal-Genetischen und Funktionalen Psychopathologie der Psychose; Springer-Verlag, 2013, p. 286.
[443]
Fischer, R.; Georgi, F.; Weber, R. Psychophysical correlations. VIII. Experimental tests in schizophrenia; lysergic acid diethylamide and mescaline. Schweiz. Med. Wochenschr., 1951, 81(35), 837-840.
[444]
Fischer, R.; Griffin, F.; Archer, R.C.; Zinsmeister, S.C.; Jastram, P.S. Weber ratio in gustatory chemoreception; an indicator of systemic (Drug) reactivity. Nature, 1965, 207(5001), 1049-1053.
[http://dx.doi.org/10.1038/2071049a0]
[445]
Fischer, R.; Kaelbling, R. Increase in taste acuity with sympathetic stimulation: The relation of a justnoticeable taste difference to systemic psychotropic drug dose. Recent Adv. Biol. Psychiatry, 1966, 9, 183-195.
[446]
Hirschfeld, T.; Schmidt, T.T. Doseresponse relationships of psilocybininduced subjective experiences in humans. J. Psychopharmacol., 2021, 35(4), 384-397.
[http://dx.doi.org/10.1177/0269881121992676]
[447]
Hasler, F.; Grimberg, U.; Benz, M.A.; Huber, T.; Vollenweider, F.X. Acute psychological and physiological effects of psilocybin in healthy humans: A doubleblind, placebocontrolled dose?effect study. Psychopharmacology, 2004, 172(2), 145-156.
[http://dx.doi.org/10.1007/s00213-003-1640-6]
[448]
Cohen, S. Lysergic acid diethylamide: Side effects and complications. J. Nerv. Ment. Dis., 1960, 130(1), 30-40.
[http://dx.doi.org/10.1097/00005053-196001000-00005]
[449]
Belouin, S.J.; Averill, L.A.; Henningfield, J.E.; Xenakis, S.N.; Donato, I.; Grob, C.S.; Berger, A.; Magar, V.; Danforth, A.L.; Anderson, B.T. Policy considerations that support equitable access to responsible, accountable, safe, and ethical uses of psychedelic medicines. Neuropharmacology, 2022, 219, 109214.
[http://dx.doi.org/10.1016/j.neuropharm.2022.109214]
[450]
Gashi, L.; Sandberg, S.; Pedersen, W. Making “bad trips” good: How users of psychedelics narratively transform challenging trips into valuable experiences. Int. J. Drug Policy, 2021, 87, 102997.
[http://dx.doi.org/10.1016/j.drugpo.2020.102997]
[451]
Perkins, D.; Ruffell, S.G.D.; Day, K.; Pinzon Rubiano, D.; Sarris, J. Psychotherapeutic and neurobiological processes associated with ayahuasca: A proposed model and implications for therapeutic use. Front. Neurosci., 2023, 16, 879221.
[http://dx.doi.org/10.3389/fnins.2022.879221]
[452]
Griffiths, R.R.; Richards, W.A.; Johnson, M.W.; McCann, U.D.; Jesse, R. Mystical-type experiences occasioned by psilocybin mediate the attribution of personal meaning and spiritual significance 14 months later. J. Psychopharmacol., 2008, 22(6), 621-632.
[http://dx.doi.org/10.1177/0269881108094300]
[453]
Palhano-Fontes, F.; Barreto, D.; Onias, H.; Andrade, K.C.; Novaes, M.M.; Pessoa, J.A.; Mota-Rolim, S.A.; Osório, F.L.; Sanches, R.; dos Santos, R.G.; Tófoli, L.F.; de Oliveira Silveira, G.; Yonamine, M.; Riba, J.; Santos, F.R.; Silva-Junior, A.A.; Alchieri, J.C.; Galvão-Coelho, N.L.; Lobão-Soares, B.; Hallak, J.E.C.; Arcoverde, E.; Maia-de-Oliveira, J.P.; Araújo, D.B. Rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression: A randomized placebo-controlled trial. Psychol. Med., 2019, 49(4), 655-663.
[http://dx.doi.org/10.1017/S0033291718001356]
[454]
Liechti, M.E.; Dolder, P.C.; Schmid, Y. Alterations of consciousness and mystical-type experiences after acute LSD in humans. Psychopharmacology, 2017, 234(9-10), 1499-1510.
[http://dx.doi.org/10.1007/s00213-016-4453-0]
[455]
Holze, F.; Ley, L.; Müller, F.; Becker, A.M.; Straumann, I.; Vizeli, P.; Kuehne, S.S.; Roder, M.A.; Duthaler, U.; Kolaczynska, K.E.; Varghese, N.; Eckert, A.; Liechti, M.E. Direct comparison of the acute effects of lysergic acid diethylamide and psilocybin in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology, 2022, 47(6), 1180-1187.
[http://dx.doi.org/10.1038/s41386-022-01297-2]
[456]
Gandy, S. Predictors and potentiators of psychedelic-occasioned mystical experiences. J. Psychedelic Stud., 2022, 6(1), 31-47.
[http://dx.doi.org/10.1556/2054.2022.00198]
[457]
Roseman, L.; Nutt, D.J.; Carhart-Harris, R.L. Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression. Front. Pharmacol., 2018, 8, 974.
[http://dx.doi.org/10.3389/fphar.2017.00974]
[458]
Williams, M.T.; Davis, A.K.; Xin, Y.; Sepeda, N.D.; Grigas, P.C.; Sinnott, S.; Haeny, A.M. People of color in North America report improvements in racial trauma and mental health symptoms following psychedelic experiences. Drugs Educ. Prev. Policy, 2021, 28(3), 215-226.
[http://dx.doi.org/10.1080/09687637.2020.1854688]
[459]
Healy, C.J. The acute effects of classic psychedelics on memory in humans. Psychopharmacology, 2021, 238(3), 639-653.
[http://dx.doi.org/10.1007/s00213-020-05756-w]
[460]
Carter, O.L.; Burr, D.C.; Pettigrew, J.D.; Wallis, G.M.; Hasler, F.; Vollenweider, F.X. Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. J. Cogn. Neurosci., 2005, 17(10), 1497-1508.
[http://dx.doi.org/10.1162/089892905774597191]
[461]
Wittmann, M.; Carter, O.; Hasler, F.; Cahn, B.R.; Grimberg, U.; Spring, P.; Hell, D.; Flohr, H.; Vollenweider, F.X. Effects of psilocybin on time perception and temporal control of behaviour in humans. J. Psychopharmacol., 2007, 21(1), 50-64.
[http://dx.doi.org/10.1177/0269881106065859]
[462]
Family, N.; Maillet, E.L.; Williams, L.T.J.; Krediet, E.; Carhart-Harris, R.L.; Williams, T.M.; Nichols, C.D.; Goble, D.J.; Raz, S. Safety, tolerability, pharmacokinetics, and pharmacodynamics of low dose lysergic acid diethylamide (LSD) in healthy older volunteers. Psychopharmacology, 2020, 237(3), 841-853.
[http://dx.doi.org/10.1007/s00213-019-05417-7]
[463]
Bershad, A.K.; Schepers, S.T.; Bremmer, M.P.; Lee, R.; de Wit, H. Acute subjective and behavioral effects of microdoses of lysergic acid diethylamide in healthy human volunteers. Biol. Psychiatry, 2019, 86(10), 792-800.
[http://dx.doi.org/10.1016/j.biopsych.2019.05.019]
[464]
Bouso, J.C.; Fábregas, J.M.; Antonijoan, R.M.; Rodríguez-Fornells, A.; Riba, J. Acute effects of ayahuasca on neuropsychological performance: differences in executive function between experienced and occasional users. Psychopharmacology, 2013, 230(3), 415-424.
[http://dx.doi.org/10.1007/s00213-013-3167-9]
[465]
Pokorny, T.; Preller, K.H.; Kometer, M.; Dziobek, I.; Vollenweider, F.X. Effect of psilocybin on empathy and moral decision-making. Int. J. Neuropsychopharmacol., 2017, 20(9), 747-757.
[http://dx.doi.org/10.1093/ijnp/pyx047]
[466]
Dolder, P.C.; Schmid, Y.; Müller, F.; Borgwardt, S.; Liechti, M.E. LSD acutely impairs fear recognition and enhances emotional empathy and sociality. Neuropsychopharmacology, 2016, 41(11), 2638-2646.
[http://dx.doi.org/10.1038/npp.2016.82]
[467]
Kometer, M.; Schmidt, A.; Bachmann, R. Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. Biol. Psychiatry, 2012, 72(11), 898-906.
[468]
Watts, R.; Day, C.; Krzanowski, J.; Nutt, D.; Carhart-Harris, R. Patients’ accounts of increased “connectedness” and “acceptance” after psilocybin for treatment-resistant depression. J. Humanist. Psychol., 2017, 57(5), 520-564.
[http://dx.doi.org/10.1177/0022167817709585]
[469]
Bernasconi, F.; Schmidt, A.; Pokorny, T. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin. Cerebral cortex, 2014, 24(12), 3221-3231.
[470]
Schmidt, A.; Kometer, M.; Bachmann, R.; Seifritz, E.; Vollenweider, F. The NMDA antagonist ketamine and the 5-HT agonist psilocybin produce dissociable effects on structural encoding of emotional face expressions. Psychopharmacology, 2013, 225(1), 227-239.
[http://dx.doi.org/10.1007/s00213-012-2811-0]
[471]
Mueller, F.; Lenz, C.; Dolder, P.C. Acute effects of LSD on amygdala activity during processing of fearful stimuli in healthy subjects. Translational Psychiatry, 2017, 7(4), e1084-e.
[http://dx.doi.org/10.1038/tp.2017.54]
[472]
Kiraga, M.K.; Mason, N.L.; Uthaug, M.V.; van Oorsouw, K.I.M.; Toennes, S.W.; Ramaekers, J.G.; Kuypers, K.P.C. Persisting effects of ayahuasca on empathy, creative thinking, decentering, personality, and well-being. Front. Pharmacol., 2021, 12, 721537.
[http://dx.doi.org/10.3389/fphar.2021.721537]
[473]
Rocha, J.M.; Rossi, G.N.; de Lima Osório, F.; Bouso, J.C.; de Oliveira Silveira, G.; Yonamine, M.; Campos, A.C.; Bertozi, G.; Cecílio Hallak, J.E.; dos Santos, R.G. Effects of ayahuasca on the recognition of facial expressions of emotions in naive healthy volunteers. J. Clin. Psychopharmacol., 2021, 41(3), 267-274.
[http://dx.doi.org/10.1097/JCP.0000000000001396]
[474]
Sampedro, F.; de la Fuente Revenga, M.; Valle, M.; Roberto, N.; Domínguez-Clavé, E.; Elices, M.; Luna, L.E.; Crippa, J.A.S.; Hallak, J.E.C.; de Araujo, D.B.; Friedlander, P.; Barker, S.A.; Álvarez, E.; Soler, J.; Pascual, J.C.; Feilding, A.; Riba, J. Assessing the psychedelic “after-glow” in ayahuasca users: Post-acute neurometabolic and functional connectivity changes are associated with enhanced mindfulness capacities. Int. J. Neuropsychopharmacol., 2017, 20(9), 698-711.
[http://dx.doi.org/10.1093/ijnp/pyx036]
[475]
Soler, J.; Elices, M.; Franquesa, A.; Barker, S.; Friedlander, P.; Feilding, A.; Pascual, J.C.; Riba, J. Exploring the therapeutic potential of Ayahuasca: acute intake increases mindfulness-related capacities. Psychopharmacology, 2016, 233(5), 823-829.
[http://dx.doi.org/10.1007/s00213-015-4162-0]
[476]
Kometer, M.; Pokorny, T.; Seifritz, E.; Volleinweider, F.X. Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations. Psychopharmacology, 2015, 232(19), 3663-3676.
[http://dx.doi.org/10.1007/s00213-015-4026-7]
[477]
Frecska, E.; Móré, C.E.; Vargha, A.; Luna, L.E. Enhancement of creative expression and entoptic phenomena as after-effects of repeated ayahuasca ceremonies. J. Psychoactive Drugs, 2012, 44(3), 191-199.
[http://dx.doi.org/10.1080/02791072.2012.703099]
[478]
Madsen, M.K.; Fisher, P.M.; Stenbæk, D.S.; Kristiansen, S.; Burmester, D.; Lehel, S.; Páleníček, T.; Kuchař, M.; Svarer, C.; Ozenne, B.; Knudsen, G.M. A single psilocybin dose is associated with long-term increased mindfulness, preceded by a proportional change in neo-cortical 5-HT2A receptor binding. Eur. Neuropsychopharmacol., 2020, 33, 71-80.
[http://dx.doi.org/10.1016/j.euroneuro.2020.02.001]
[479]
Smigielski, L.; Scheidegger, M.; Kometer, M.; Vollenweider, F.X. Psilocybin-assisted mindfulness training modulates self-consciousness and brain default mode network connectivity with lasting effects. Neuroimage, 2019, 196, 207-215.
[http://dx.doi.org/10.1016/j.neuroimage.2019.04.009]
[480]
Wießner, I.; Falchi, M.; Palhano-Fontes, F.; Feilding, A.; Ribeiro, S.; Tófoli, L.F. LSD, madness and healing: Mystical experiences as possible link between psychosis model and therapy model. Psychol. Med., 2023, 53(4), 1151-1165.
[http://dx.doi.org/10.1017/S0033291721002531]
[481]
Uthaug, M.V.; Lancelotta, R.; van Oorsouw, K.; Kuypers, K.P.C.; Mason, N.; Rak, J.; Šuláková, A.; Jurok, R.; Maryška, M.; Kuchař, M.; Páleníček, T.; Riba, J.; Ramaekers, J.G. A single inhalation of vapor from dried toad secretion containing 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) in a naturalistic setting is related to sustained enhancement of satisfaction with life, mindfulness-related capacities, and a decrement of psychopathological symptoms. Psychopharmacology, 2019, 236(9), 2653-2666.
[http://dx.doi.org/10.1007/s00213-019-05236-w]
[482]
Uthaug, M.V.; van Oorsouw, K.; Kuypers, K.P.C.; van Boxtel, M.; Broers, N.J.; Mason, N.L.; Toennes, S.W.; Riba, J.; Ramaekers, J.G. Sub-acute and long-term effects of ayahuasca on affect and cognitive thinking style and their association with ego dissolution. Psychopharmacology, 2018, 235(10), 2979-2989.
[http://dx.doi.org/10.1007/s00213-018-4988-3]
[483]
Uthaug, M.V.; Lancelotta, R.; Szabo, A.; Davis, A.K.; Riba, J.; Ramaekers, J.G. Prospective examination of synthetic 5-methoxy-N,N-dimethyltryptamine inhalation: effects on salivary IL-6, cortisol levels, affect, and non-judgment. Psychopharmacology, 2020, 237(3), 773-785.
[http://dx.doi.org/10.1007/s00213-019-05414-w]
[484]
Domínguez-Clavé, E.; Soler, J.; Pascual, J.C.; Elices, M.; Franquesa, A.; Valle, M.; Alvarez, E.; Riba, J. Ayahuasca improves emotion dysregulation in a community sample and in individuals with borderline-like traits. Psychopharmacology, 2019, 236(2), 573-580.
[http://dx.doi.org/10.1007/s00213-018-5085-3]
[485]
Soler, J.; Elices, M.; Dominguez-Clavé, E.; Pascual, J.C.; Feilding, A.; Navarro-Gil, M.; García-Campayo, J.; Riba, J. Four weekly ayahuasca sessions lead to increases in “acceptance” capacities: A comparison study with a standard 8-week mindfulness training program. Front. Pharmacol., 2018, 9, 224.
[http://dx.doi.org/10.3389/fphar.2018.00224]
[486]
Franquesa, A.; Sainz-Cort, A.; Gandy, S.; Soler, J.; Alcázar-Córcoles, M.Á.; Bouso, J.C. Psychological variables implied in the therapeutic effect of ayahuasca: A contextual approach. Psychiatry Res., 2018, 264, 334-339.
[http://dx.doi.org/10.1016/j.psychres.2018.04.012]
[487]
Fresco, D.M.; Moore, M.T.; van Dulmen, M.H.M.; Segal, Z.V.; Ma, S.H.; Teasdale, J.D.; Williams, J.M.G. Initial psychometric properties of the experiences questionnaire: Validation of a self-report measure of decentering. Behav. Ther., 2007, 38(3), 234-246.
[http://dx.doi.org/10.1016/j.beth.2006.08.003]
[488]
González, D.; Cantillo, J.; Pérez, I.; Farré, M.; Feilding, A.; Obiols, J.E.; Bouso, J.C. Therapeutic potential of ayahuasca in grief: A prospective, observational study. Psychopharmacology, 2020, 237(4), 1171-1182.
[http://dx.doi.org/10.1007/s00213-019-05446-2]
[489]
Kuypers, K.P.C.; Riba, J.; de la Fuente Revenga, M.; Barker, S.; Theunissen, E.L.; Ramaekers, J.G. Ayahuasca enhances creative divergent thinking while decreasing conventional convergent thinking. Psychopharmacology, 2016, 233(18), 3395-3403.
[http://dx.doi.org/10.1007/s00213-016-4377-8]
[490]
Loizaga-Velder, A.; Pazzi, A.L. Therapist and patient perspectives on ayahuasca-assisted treatment for substance dependence. The Therapeutic Use of Ayahuasca; Labate, B.C.; Cavnar, C., Eds.; Springer: Berlin, Heidelberg, 2014, pp. 133-152.
[http://dx.doi.org/10.1007/978-3-642-40426-9_8]
[491]
Carhart-Harris, R.L.; Kaelen, M.; Whalley, M.G.; Bolstridge, M.; Feilding, A.; Nutt, D.J. LSD enhances suggestibility in healthy volunteers. Psychopharmacology, 2015, 232(4), 785-794.
[http://dx.doi.org/10.1007/s00213-014-3714-z]
[492]
Forgeard, M.J.C.; Elstein, J.G. Advancing the clinical science of creativity. Front. Psychol., 2014, 5, 613.
[http://dx.doi.org/10.3389/fpsyg.2014.00613]
[493]
Mason, N.L.; Kuypers, K.P.C.; Reckweg, J.T.; Müller, F.; Tse, D.H.Y.; Da Rios, B.; Toennes, S.W.; Stiers, P.; Feilding, A.; Ramaekers, J.G. Spontaneous and deliberate creative cognition during and after psilocybin exposure. Transl. Psychiatry, 2021, 11(1), 209.
[http://dx.doi.org/10.1038/s41398-021-01335-5]
[494]
Wießner, I.; Falchi, M.; Maia, L.O.; Daldegan-Bueno, D.; Palhano-Fontes, F.; Mason, N.L.; Ramaekers, J.G.; Gross, M.E.; Schooler, J.W.; Feilding, A.; Ribeiro, S.; Araujo, D.B.; Tófoli, L.F. LSD and creativity: Increased novelty and symbolic thinking, decreased utility and convergent thinking. J. Psychopharmacol., 2022, 36(3), 348-359.
[http://dx.doi.org/10.1177/02698811211069113]
[495]
Mednick, S.A. The remote associates test. J. Creat. Behav., 1968, 2(3), 213-214.
[http://dx.doi.org/10.1002/j.2162-6057.1968.tb00104.x]
[496]
Kjellgren, A.; Eriksson, A.; Norlander, T. Experiences of encounters with ayahuasca—“the vine of the soul”. J. Psychoactive Drugs, 2009, 41(4), 309-315.
[http://dx.doi.org/10.1080/02791072.2009.10399767]
[497]
Duerler, P.; Schilbach, L.; Stämpfli, P.; Vollenweider, F.X.; Preller, K.H. LSD-induced increases in social adaptation to opinions similar to one’s own are associated with stimulation of serotonin receptors. Sci. Rep., 2020, 10(1), 12181.
[http://dx.doi.org/10.1038/s41598-020-68899-y]
[498]
Bogenschutz, M.P.; Ross, S.; Bhatt, S.; Baron, T.; Forcehimes, A.A.; Laska, E.; Mennenga, S.E.; O’Donnell, K.; Owens, L.T.; Podrebarac, S.; Rotrosen, J.; Tonigan, J.S.; Worth, L. Percentage of heavy drinking days following psilocybin-assisted psychotherapy vs placebo in the treatment of adult patients with alcohol use disorder. JAMA Psychiatry, 2022, 79(10), 953.
[http://dx.doi.org/10.1001/jamapsychiatry.2022.2096]
[499]
Carhart-Harris, R.; Giribaldi, B.; Watts, R.; Baker-Jones, M.; Murphy-Beiner, A.; Murphy, R.; Martell, J.; Blemings, A.; Erritzoe, D.; Nutt, D.J. Trial of psilocybin versus escitalopram for depression. N. Engl. J. Med., 2021, 384(15), 1402-1411.
[http://dx.doi.org/10.1056/NEJMoa2032994]
[500]
Davis, A.K.; Barrett, F.S.; May, D.G.; Cosimano, M.P.; Sepeda, N.D.; Johnson, M.W.; Finan, P.H.; Griffiths, R.R. Effects of psilocybin-assisted therapy on major depressive disorder. JAMA Psychiatry, 2021, 78(5), 481-489.
[http://dx.doi.org/10.1001/jamapsychiatry.2020.3285]
[501]
Riba, J.; Valle, M.; Urbano, G.; Yritia, M.; Morte, A.; Barbanoj, M.J. Human pharmacology of ayahuasca: Subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics. J. Pharmacol. Exp. Ther., 2003, 306(1), 73-83.
[http://dx.doi.org/10.1124/jpet.103.049882]
[502]
Durante, Í.; dos Santos, R.G.; Bouso, J.C.; Hallak, J.E. Risk assessment of ayahuasca use in a religious context: self-reported risk factors and adverse effects. Br. J. Psychiatry, 2021, 43(4), 362-369.
[http://dx.doi.org/10.1590/1516-4446-2020-0913]
[503]
dos Santos, R.G.; Valle, M.; Bouso, J.C.; Nomdedéu, J.F.; Rodríguez-Espinosa, J.; McIlhenny, E.H.; Barker, S.A.; Barbanoj, M.J.; Riba, J. Autonomic, neuroendocrine, and immunological effects of ayahuasca. J. Clin. Psychopharmacol., 2011, 31(6), 717-726.
[http://dx.doi.org/10.1097/JCP.0b013e31823607f6]
[504]
Riba, J.; Barbanoj, M.J. Bringing ayahuasca to the clinical research laboratory. J. Psychoactive Drugs, 2005, 37(2), 219-230.
[http://dx.doi.org/10.1080/02791072.2005.10399804]
[505]
Strajhar, P.; Schmid, Y.; Liakoni, E.; Dolder, P.C.; Rentsch, K.M.; Kratschmar, D.V.; Odermatt, A.; Liechti, M.E. Acute effects of lysergic acid diethylamide on circulating steroid levels in healthy subjects. J. Neuroendocrinol., 2016, 28(3), 12374.
[http://dx.doi.org/10.1111/jne.12374]
[506]
House, R.V.; Thomas, P.T.; Bhargava, H.N. Immunological consequences of in vitro exposure to lysergic acid diethylamide (LSD). Immunopharmacol. Immunotoxicol., 1994, 16(1), 23-40.
[http://dx.doi.org/10.3109/08923979409029898]
[507]
Galvão, ACdM Cortisol modulation by ayahuasca in patients with treatment resistant depression and healthy controls. Front. Psychiatry, 2018, 9.
[508]
Galvão-Coelho, N.L.; de Menezes Galvão, A.C.; de Almeida, R.N.; Palhano-Fontes, F.; Campos Braga, I.; Lobão Soares, B.; Maia-de-Oliveira, J.P.; Perkins, D.; Sarris, J.; de Araujo, D.B. Changes in inflammatory biomarkers are related to the antidepressant effects of Ayahuasca. J. Psychopharmacol., 2020, 34(10), 1125-1133.
[http://dx.doi.org/10.1177/0269881120936486]
[509]
Flanagan, T.W.; Nichols, C.D. Psychedelics as anti-inflammatory agents. Int. Rev. Psychiatry, 2018, 30(4), 363-375.
[http://dx.doi.org/10.1080/09540261.2018.1481827]
[510]
Passie, T.; Halpern, J.H.; Stichtenoth, D.O.; Emrich, H.M.; Hintzen, A. The pharmacology of lysergic acid diethylamide: A review. CNS Neurosci. Ther., 2008, 14(4), 295-314.
[http://dx.doi.org/10.1111/j.1755-5949.2008.00059.x]
[511]
Dinis-Oliveira, R.J. Metabolism of psilocybin and psilocin: clinical and forensic toxicological relevance. Drug Metab. Rev., 2017, 49(1), 84-91.
[http://dx.doi.org/10.1080/03602532.2016.1278228]
[512]
Inserra, A.; De Gregorio, D.; Gobbi, G. Psychedelics in psychiatry: Neuroplastic, immunomodulatory, and neurotransmitter mechanisms. Pharmacol. Rev., 2021, 73(1), 202-277.
[http://dx.doi.org/10.1124/pharmrev.120.000056]
[513]
Canal, C.E.; Murnane, K.S. The serotonin 5-HT 2C receptor and the non-addictive nature of classic hallucinogens. J. Psychopharmacol., 2017, 31(1), 127-143.
[http://dx.doi.org/10.1177/0269881116677104]
[514]
(NIH) NIoH. National Center for Biotechnology Information. 2023. Available from: https://ncbi.nlm.nih.gov/
[515]
Barker, S.A. N,N-Dimethyltryptamine (DMT), an endogenous hallucinogen: Past, present, and future research to determine its role and function. Front. Neurosci., 2018, 12, 536.
[http://dx.doi.org/10.3389/fnins.2018.00536]
[516]
Frecska, E.; Bokor, P.; Winkelman, M. The therapeutic potentials of ayahuasca: Possible effects against various diseases of civilization. Front. Pharmacol., 2016, 7, 35.
[http://dx.doi.org/10.3389/fphar.2016.00035]
[517]
Brito-da-Costa, A.M.; Dias-da-Silva, D.; Gomes, N.G.M.; Dinis-Oliveira, R.J.; Madureira-Carvalho, Á. Toxicokinetics and toxicodynamics of ayahuasca alkaloids N,N-dimethyltryptamine (DMT), Harmine, harmaline and tetrahydroharmine: clinical and forensic impact. Pharmaceuticals (Basel), 2020, 13(11), 334.
[http://dx.doi.org/10.3390/ph13110334]
[518]
Gable, R.S. Risk assessment of ritual use of oral dimethyltryptamine (DMT) and harmala alkaloids. Addiction, 2007, 102(1), 24-34.
[http://dx.doi.org/10.1111/j.1360-0443.2006.01652.x]
[519]
dos Santos, R.G.; Grasa, E.; Valle, M.; Ballester, M.R.; Bouso, J.C.; Nomdedéu, J.F.; Homs, R.; Barbanoj, M.J.; Riba, J. Pharmacology of ayahuasca administered in two repeated doses. Psychopharmacology, 2012, 219(4), 1039-1053.
[http://dx.doi.org/10.1007/s00213-011-2434-x]
[520]
Riba, J.; McIlhenny, E.H.; Valle, M.; Bouso, J.C.; Barker, S.A. Metabolism and disposition of N,N-dimethyltryptamine and harmala alkaloids after oral administration of ayahuasca. Drug Test. Anal., 2012, 4(7-8), 610-616.
[http://dx.doi.org/10.1002/dta.1344]
[521]
Ruffell, S.; Netzband, N.; Bird, C.; Young, A.H.; Juruena, M.F. The pharmacological interaction of compounds in ayahuasca: A systematic review. Br. J. Psychiatry, 2020, 42(6), 646-656.
[http://dx.doi.org/10.1590/1516-4446-2020-0884]
[522]
Nichols, D.E. Hallucinogens. Pharmacol. Ther., 2004, 101(2), 131-181.
[http://dx.doi.org/10.1016/j.pharmthera.2003.11.002]
[523]
Rickli, A.; Moning, O.D.; Hoener, M.C.; Liechti, M.E. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur. Neuropsychopharmacol., 2016, 26(8), 1327-1337.
[http://dx.doi.org/10.1016/j.euroneuro.2016.05.001]
[524]
Luethi, D.; Hoener, M.C.; Krähenbühl, S.; Liechti, M.E.; Duthaler, U. Cytochrome P450 enzymes contribute to the metabolism of LSD to nor-LSD and 2-oxo-3-hydroxy-LSD: Implications for clinical LSD use. Biochem. Pharmacol., 2019, 164, 129-138.
[http://dx.doi.org/10.1016/j.bcp.2019.04.013]
[525]
Vollenweider, F.X.; Preller, K.H. Psychedelic drugs: Neurobiology and potential for treatment of psychiatric disorders. Nat. Rev. Neurosci., 2020, 21(11), 611-624.
[http://dx.doi.org/10.1038/s41583-020-0367-2]
[526]
Glennon, R.A.; Titeler, M.; McKenney, J.D. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci., 1984, 35(25), 2505-2511.
[http://dx.doi.org/10.1016/0024-3205(84)90436-3]
[527]
Jaster, A.M.; de la Fuente Revenga, M.; González-Maeso, J. Molecular targets of psychedelic-induced plasticity. J. Neurochem., 2022, 162(1), 80-88.
[http://dx.doi.org/10.1111/jnc.15536]
[528]
Carbonaro, T.M.; Gatch, M.B. Neuropharmacology of N,N-dimethyltryptamine. Brain Res. Bull., 2016, 126, 74-88.
[http://dx.doi.org/10.1016/j.brainresbull.2016.04.016]
[529]
Mckenna, D.J.; Repke, D.B.; Lo, L.; Peroutka, S.J. Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology, 1990, 29(3), 193-198.
[http://dx.doi.org/10.1016/0028-3908(90)90001-8]
[530]
Kadriu, B.; Greenwald, M.; Henter, I.D.; Gilbert, J.R.; Kraus, C.; Park, L.T.; Zarate, C.A., Jr Ketamine and serotonergic psychedelics: Common mechanisms underlying the effects of rapid-acting antidepressants. Int. J. Neuropsychopharmacol., 2021, 24(1), 8-21.
[http://dx.doi.org/10.1093/ijnp/pyaa087]
[531]
Banks, M.I.; Zahid, Z.; Jones, N.T.; Sultan, Z.W.; Wenthur, C.J. Catalysts for change: The cellular neurobiology of psychedelics. Mol. Biol. Cell, 2021, 32(12), 1135-1144.
[http://dx.doi.org/10.1091/mbc.E20-05-0340]
[532]
Reiff, C.M.; Richman, E.E.; Nemeroff, C.B.; Carpenter, L.L.; Widge, A.S.; Rodriguez, C.I.; Kalin, N.H.; McDonald, W.M. Psychedelics and psychedelic-assisted psychotherapy. Am. J. Psychiatry, 2020, 177(5), 391-410.
[http://dx.doi.org/10.1176/appi.ajp.2019.19010035]
[533]
Ray, T.S. Psychedelics and the human receptorome. PLoS One, 2010, 5(2), e9019.
[http://dx.doi.org/10.1371/journal.pone.0009019]
[534]
Smith, R.; Canton, H.; Barrett, R.J.; Sanders-Bush, E. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors. Pharmacol. Biochem. Behav., 1998, 61(3), 323-330.
[http://dx.doi.org/10.1016/S0091-3057(98)00110-5]
[535]
Cameron, L.P.; Olson, D.E. Dark classics in chemical neuroscience: N, N -Dimethyltryptamine (DMT). ACS Chem. Neurosci., 2018, 9(10), 2344-2357.
[http://dx.doi.org/10.1021/acschemneuro.8b00101]
[536]
Callaway, J.C.; Airaksinen, M.M.; Mckenna, D.J.; Brito, G.S.; Grob, C.S. Platelet serotonin uptake sites increased in drinkers of ayahuasca. Psychopharmacology, 1994, 116(3), 385-387.
[http://dx.doi.org/10.1007/BF02245347]
[537]
Strassman, R.J. Human psychopharmacology of N,N-dimethyltryptamine. Behav. Brain Res., 1995, 73(1-2), 121-124.
[http://dx.doi.org/10.1016/0166-4328(96)00081-2]
[538]
Buckholtz, N.S.; Boggan, W.O. Monoamine oxidase inhibition in brain and liver produced by β-carbolines: structure-activity relationships and substrate specificity. Biochem. Pharmacol., 1977, 26(21), 1991-1996.
[http://dx.doi.org/10.1016/0006-2952(77)90007-7]
[539]
Glennon, R.A.; Dukat, M.; Grella, B.; Hong, S-S.; Costantino, L.; Teitler, M.; Smith, C.; Egan, C.; Davis, K.; Mattson, M.V. Binding of β-carbolines and related agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepine receptors. Drug Alcohol Depend., 2000, 60(2), 121-132.
[http://dx.doi.org/10.1016/S0376-8716(99)00148-9]
[540]
Marona-Lewicka, D.; Thisted, R.A.; Nichols, D.E. Distinct temporal phases in the behavioral pharmacology of LSD: dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology, 2005, 180(3), 427-435.
[http://dx.doi.org/10.1007/s00213-005-2183-9]
[541]
Halberstadt, A.L.; Geyer, M.A. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 2011, 61(3), 364-381.
[http://dx.doi.org/10.1016/j.neuropharm.2011.01.017]
[542]
Bousquet, P.; Hudson, A.; García-Sevilla, J.A.; Li, J.X. Imidazoline receptor system: The past, the present, and the future. Pharmacol. Rev., 2020, 72(1), 50-79.
[http://dx.doi.org/10.1124/pr.118.016311]
[543]
Moreno, J.L.; Holloway, T.; Albizu, L.; Sealfon, S.C.; González-Maeso, J. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci. Lett., 2011, 493(3), 76-79.
[http://dx.doi.org/10.1016/j.neulet.2011.01.046]
[544]
Fontanilla, D.; Johannessen, M.; Hajipour, A.R.; Cozzi, N.V.; Jackson, M.B.; Ruoho, A.E. The Hallucinogen N,N-dimethyl-tryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science, 2009, 323(5916), 934-937.
[http://dx.doi.org/10.1126/science.1166127]
[545]
Inserra, A. Hypothesis: The psychedelic ayahuasca heals traumatic memories via a sigma 1 receptor-mediated epigenetic-mnemonic process. Front. Pharmacol., 2018, 9, 330.
[http://dx.doi.org/10.3389/fphar.2018.00330]
[546]
Chaudhari, N.; Talwar, P.; Parimisetty, A.; Lefebvre d’Hellencourt, C.; Ravanan, P. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front. Cell. Neurosci., 2014, 8(1), 213.
[http://dx.doi.org/10.3389/fncel.2014.00213]
[547]
Pal, A.; Fontanilla, D.; Gopalakrishnan, A.; Chae, Y-K.; Markley, J.L.; Ruoho, A.E. The sigma-1 receptor protects against cellular oxidative stress and activates antioxidant response elements. Eur. J. Pharmacol., 2012, 682(1-3), 12-20.
[http://dx.doi.org/10.1016/j.ejphar.2012.01.030]
[548]
Andersen, K.A.A.; Carhart-Harris, R.; Nutt, D.J.; Erritzoe, D. Therapeutic effects of classic serotonergic psychedelics: A systematic review of modern-era clinical studies. Acta Psychiatr. Scand., 2021, 143(2), 101-118.
[http://dx.doi.org/10.1111/acps.13249]
[549]
dos Santos, R.G.; Bouso, J.C.; Alcázar-Córcoles, M.Á.; Hallak, J.E.C. Efficacy, tolerability, and safety of serotonergic psychedelics for the management of mood, anxiety, and substance-use disorders: A systematic review of systematic reviews. Expert Rev. Clin. Pharmacol., 2018, 11(9), 889-902.
[http://dx.doi.org/10.1080/17512433.2018.1511424]
[550]
Brown, R.T.; Nicholas, C.R.; Cozzi, N.V.; Gassman, M.C.; Cooper, K.M.; Muller, D.; Thomas, C.D.; Hetzel, S.J.; Henriquez, K.M.; Ribaudo, A.S.; Hutson, P.R. Pharmacokinetics of escalating doses of oral psilocybin in healthy adults. Clin. Pharmacokinet., 2017, 56(12), 1543-1554.
[http://dx.doi.org/10.1007/s40262-017-0540-6]
[551]
Gukasyan, N.; Davis, A.K.; Barrett, F.S.; Cosimano, M.P.; Sepeda, N.D.; Johnson, M.W.; Griffiths, R.R. Efficacy and safety of psilocybin-assisted treatment for major depressive disorder: Prospective 12-month follow-up. J. Psychopharmacol., 2022, 36(2), 151-158.
[http://dx.doi.org/10.1177/02698811211073759]
[552]
Goodwin, G.M.; Aaronson, S.T.; Alvarez, O.; Arden, P.C.; Baker, A.; Bennett, J.C.; Bird, C.; Blom, R.E.; Brennan, C.; Brusch, D.; Burke, L.; Campbell-Coker, K.; Carhart-Harris, R.; Cattell, J.; Daniel, A.; DeBattista, C.; Dunlop, B.W.; Eisen, K.; Feifel, D.; Forbes, M.K.; Haumann, H.M.; Hellerstein, D.J.; Hoppe, A.I.; Husain, M.I.; Jelen, L.A.; Kamphuis, J.; Kawasaki, J.; Kelly, J.R.; Key, R.E.; Kishon, R.; Knatz Peck, S.; Knight, G.; Koolen, M.H.B.; Lean, M.; Licht, R.W.; Maples-Keller, J.L.; Mars, J.; Marwood, L.; McElhiney, M.C.; Miller, T.L.; Mirow, A.; Mistry, S.; Mletzko-Crowe, T.; Modlin, L.N.; Nielsen, R.E.; Nielson, E.M.; Offerhaus, S.R.; O’Keane, V.; Páleníček, T.; Printz, D.; Rademaker, M.C.; van Reemst, A.; Reinholdt, F.; Repantis, D.; Rucker, J.; Rudow, S.; Ruffell, S.; Rush, A.J.; Schoevers, R.A.; Seynaeve, M.; Shao, S.; Soares, J.C.; Somers, M.; Stansfield, S.C.; Sterling, D.; Strockis, A.; Tsai, J.; Visser, L.; Wahba, M.; Williams, S.; Young, A.H.; Ywema, P.; Zisook, S.; Malievskaia, E. Single-dose psilocybin for a treatment-resistant episode of major depression. N. Engl. J. Med., 2022, 387(18), 1637-1648.
[http://dx.doi.org/10.1056/NEJMoa2206443]
[553]
Chandler, A.L. Lysergic acid diethylamide (LSD-25) as a facilitating agent in psychotherapy. Arch. Gen. Psychiatry, 1960, 2(3), 286-299.
[http://dx.doi.org/10.1001/archpsyc.1960.03590090042008]
[554]
Malleson, N. Acute adverse reactions to LSD in clinical and experimental use in the United Kingdom. Br. J. Psychiatry, 1971, 118(543), 229-230.
[http://dx.doi.org/10.1192/bjp.118.543.229]
[555]
Sanches, R.F.; de Lima Osório, F.; dos Santos, R.G.; Macedo, L.R.H.; Maia-de-Oliveira, J.P.; Wichert-Ana, L.; de Araujo, D.B.; Riba, J.; Crippa, J.A.S.; Hallak, J.E.C. Antidepressant effects of a single dose of ayahuasca in patients with recurrent depression. J. Clin. Psychopharmacol., 2016, 36(1), 77-81.
[http://dx.doi.org/10.1097/JCP.0000000000000436]
[556]
dos Santos, R.G. A critical evaluation of reports associating ayahuasca with life-threatening adverse reactions. J. Psychoactive Drugs, 2013, 45(2), 179-188.
[http://dx.doi.org/10.1080/02791072.2013.785846]
[557]
Frecska, E. Therapeutic guidelines: Dangers and contra-indications in therapeutic applications of hallucinogens. Psychedelic medicine: new evidence for hallucinogenic substances as treatments., 2007, 69-95.
[558]
dos Santos, R.G.; Bouso, J.C.; Hallak, J.E.C. Ayahuasca, dimethyltryptamine, and psychosis: A systematic review of human studies. Ther. Adv. Psychopharmacol., 2017, 7(4), 141-157.
[http://dx.doi.org/10.1177/2045125316689030]
[559]
Callaway, J.C.; Grob, C.S. Ayahuasca preparations and serotonin reuptake inhibitors: A potential combination for severe adverse interactions. J. Psychoactive Drugs, 1998, 30(4), 367-369.
[http://dx.doi.org/10.1080/02791072.1998.10399712]
[560]
Sklerov, J.; Levine, B.; Moore, K.A.; King, T.; Fowler, D. A fatal intoxication following the ingestion of 5-methoxy-N,N-dimethyltryptamine in an ayahuasca preparation. J. Anal. Toxicol., 2005, 29(8), 838-841.
[http://dx.doi.org/10.1093/jat/29.8.838]
[561]
McEwen, B.S. Brain on stress: How the social environment gets under the skin. Proc. Natl. Acad. Sci., 2012, 109(2), 17180-17185.
[http://dx.doi.org/10.1073/pnas.1121254109]
[562]
D’Sa, C.; Duman, R.S. Antidepressants and neuroplasticity. Bipolar Disord., 2002, 4(3), 183-194.
[http://dx.doi.org/10.1034/j.1399-5618.2002.01203.x]
[563]
Olson, D.E. Psychoplastogens: A promising class of plasticity-promoting neurotherapeutics. J. Exp. Neurosci., 2018, 12, 1179069518800508.
[http://dx.doi.org/10.1177/1179069518800508]
[564]
Russo, S.J.; Dietz, D.M.; Dumitriu, D. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci., 2010, 33(6), 267-276.
[http://dx.doi.org/10.1016/j.tins.2010.02.002]
[565]
Ly, C.; Greb, A.C.; Cameron, L.P.; Wong, J.M.; Barragan, E.V.; Wilson, P.C.; Burbach, K.F.; Soltanzadeh, Z.S.; Sood, A.; Paddy, M.R.; Duim, W.C.; Dennis, M.Y.; McAllister, A.K.; Ori-McKenney, K.M.; Gray, J.A.; Olson, D.E. Psychedelics promote structural and functional neural plasticity. Cell Rep., 2018, 23(11), 3170-3182.
[http://dx.doi.org/10.1016/j.celrep.2018.05.022]
[566]
Frankel, P.S.; Cunningham, K.A. The hallucinogen d-lysergic acid diethylamide (d-LSD) induces the immediate-early gene c-Fos in rat forebrain. Brain Res., 2002, 958(2), 251-260.
[http://dx.doi.org/10.1016/S0006-8993(02)03548-5]
[567]
González-Maeso, J.; Weisstaub, N.V.; Zhou, M.; Chan, P.; Ivic, L.; Ang, R.; Lira, A.; Bradley-Moore, M.; Ge, Y.; Zhou, Q.; Sealfon, S.C.; Gingrich, J.A. Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron, 2007, 53(3), 439-452.
[http://dx.doi.org/10.1016/j.neuron.2007.01.008]
[568]
Gewirtz, J.C.; Chen, A.C.; Terwilliger, R.; Duman, R.C.; Marek, G.J. Modulation of DOI-induced increases in cortical BDNF expression by group II mGlu receptors. Pharmacol. Biochem. Behav., 2002, 73(2), 317-326.
[http://dx.doi.org/10.1016/S0091-3057(02)00844-4]
[569]
Jones, M.W.; Errington, M.L.; French, P.J.; Fine, A.; Bliss, T.V.P.; Garel, S.; Charnay, P.; Bozon, B.; Laroche, S.; Davis, S. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci., 2001, 4(3), 289-296.
[http://dx.doi.org/10.1038/85138]
[570]
DeSteno, D.A.; Schmauss, C. Induction of early growth response gene 2 expression in the forebrain of mice performing an attention-set-shifting task. Neuroscience, 2008, 152(2), 417-428.
[http://dx.doi.org/10.1016/j.neuroscience.2008.01.012]
[571]
Radiske, A.; Rossato, J.I.; Köhler, C.A.; Gonzalez, M.C.; Medina, J.H.; Cammarota, M. Requirement for BDNF in the reconsolidation of fear extinction. J. Neurosci., 2015, 35(16), 6570-6574.
[http://dx.doi.org/10.1523/JNEUROSCI.4093-14.2015]
[572]
Suárez-Pereira, I.; Carrión, Á.M. Updating stored memory requires adult hippocampal neurogenesis. Sci. Rep., 2015, 5(1), 13993.
[http://dx.doi.org/10.1038/srep13993]
[573]
Almeida, R.N.; Galvão, A.C.M.; da Silva, F.S.; Silva, E.A.S.; Palhano-Fontes, F.; Maia-de-Oliveira, J.P.; de Araújo, L-S.B.; Lobão-Soares, B.; Galvão-Coelho, N.L. Modulation of serum brain-derived neurotrophic factor by a single dose of ayahuasca: Observation from a randomized controlled trial. Front. Psychol., 2019, 10, 1234.
[http://dx.doi.org/10.3389/fpsyg.2019.01234]
[574]
Serra-Millàs, M. Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation? World J. Psychiatry, 2016, 6(1), 84-101.
[http://dx.doi.org/10.5498/wjp.v6.i1.84]
[575]
Kearney, D.J.; McManus, C.; Malte, C.A.; Martinez, M.E.; Felleman, B.; Simpson, T.L. Loving-kindness meditation and the broaden-and-build theory of positive emotions among veterans with posttraumatic stress disorder. Med. Care, 2014, 52(12)(5), S32-S38.
[http://dx.doi.org/10.1097/MLR.0000000000000221]
[576]
King, A.P.; Fresco, D.M. A neurobehavioral account for decentering as the salve for the distressed mind. Curr. Opin. Psychol., 2019, 28, 285-293.
[http://dx.doi.org/10.1016/j.copsyc.2019.02.009]
[577]
Bouso, J.C.; Palhano-Fontes, F.; Rodríguez-Fornells, A.; Ribeiro, S.; Sanches, R.; Crippa, J.A.S.; Hallak, J.E.C.; de Araujo, D.B.; Riba, J. Long-term use of psychedelic drugs is associated with differences in brain structure and personality in humans. Eur. Neuropsychopharmacol., 2015, 25(4), 483-492.
[http://dx.doi.org/10.1016/j.euroneuro.2015.01.008]
[578]
Preller, K.H.; Burt, J.B.; Ji, J.L.; Schleifer, C.H.; Adkinson, B.D.; Stämpfli, P.; Seifritz, E.; Repovs, G.; Krystal, J.H.; Murray, J.D.; Vollen-weider, F.X.; Anticevic, A. Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. eLife, 2018, 7, e35082.
[http://dx.doi.org/10.7554/eLife.35082]
[579]
Rousseau, P.F.; Malbos, E.; Verger, A.; Nicolas, F.; Lançon, C.; Khalfa, S.; Guedj, E. Increase of precuneus metabolism correlates with reduction of PTSD symptoms after EMDR therapy in military veterans: An 18F-FDG PET study during virtual reality exposure to war. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(9), 1817-1821.
[http://dx.doi.org/10.1007/s00259-019-04360-1]
[580]
Carhart-Harris, R.L.; Muthukumaraswamy, S.; Roseman, L.; Kaelen, M.; Droog, W.; Murphy, K.; Tagliazucchi, E.; Schenberg, E.E.; Nest, T.; Orban, C.; Leech, R.; Williams, L.T.; Williams, T.M.; Bolstridge, M.; Sessa, B.; McGonigle, J.; Sereno, M.I.; Nichols, D.; Hellyer, P.J.; Hobden, P.; Evans, J.; Singh, K.D.; Wise, R.G.; Curran, H.V.; Feilding, A.; Nutt, D.J. Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc. Natl. Acad. Sci., 2016, 113(17), 4853-4858.
[http://dx.doi.org/10.1073/pnas.1518377113]
[581]
Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The brain’s default network: Anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci., 2008, 1124(1), 1-38.
[http://dx.doi.org/10.1196/annals.1440.011]
[582]
Palhano-Fontes, F.; Andrade, K.C.; Tofoli, L.F.; Santos, A.C.; Crippa, J.A.S.; Hallak, J.E.C.; Ribeiro, S.; de Araujo, D.B. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network. PLoS One, 2015, 10(2), e0118143.
[http://dx.doi.org/10.1371/journal.pone.0118143]
[583]
Gattuso, J.J.; Perkins, D.; Ruffell, S.; Lawrence, A.J.; Hoyer, D.; Jacobson, L.H.; Timmermann, C.; Castle, D.; Rossell, S.L.; Downey, L.A.; Pagni, B.A.; Galvão-Coelho, N.L.; Nutt, D.; Sarris, J. Default mode network modulation by psychedelics: A systematic review. Int. J. Neuropsychopharmacol., 2023, 26(3), 155-188.
[http://dx.doi.org/10.1093/ijnp/pyac074]
[584]
Harnett, N.G.; van Rooij, S.J.H.; Ely, T.D.; Lebois, L.A.M.; Murty, V.P.; Jovanovic, T.; Hill, S.B.; Dumornay, N.M.; Merker, J.B.; Bruce, S.E.; House, S.L.; Beaudoin, F.L.; An, X.; Zeng, D.; Neylan, T.C.; Clifford, G.D.; Linnstaedt, S.D.; Germine, L.T.; Bollen, K.A.; Rauch, S.L.; Lewandowski, C.; Hendry, P.L.; Sheikh, S.; Storrow, A.B.; Musey, P.I., Jr; Haran, J.P.; Jones, C.W.; Punches, B.E.; Swor, R.A.; McGrath, M.E.; Pascual, J.L.; Seamon, M.J.; Mohiuddin, K.; Chang, A.M.; Pearson, C.; Peak, D.A.; Domeier, R.M.; Rathlev, N.K.; Sanchez, L.D.; Pietrzak, R.H.; Joormann, J.; Barch, D.M.; Pizzagalli, D.A.; Sheridan, J.F.; Harte, S.E.; Elliott, J.M.; Kessler, R.C.; Koenen, K.C.; Mclean, S.; Ressler, K.J.; Stevens, J.S. Prognostic neuroimaging biomarkers of trauma-related psychopathology: resting-state fMRI shortly after trauma predicts future PTSD and depression symptoms in the AURORA study. Neuropsychopharmacology, 2021, 46(7), 1263-1271.
[http://dx.doi.org/10.1038/s41386-020-00946-8]
[585]
Miller, D.R.; Hayes, S.M.; Hayes, J.P.; Spielberg, J.M.; Lafleche, G.; Verfaellie, M. Default mode network subsystems are differentially disrupted in posttraumatic stress disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2017, 2(4), 363-371.
[http://dx.doi.org/10.1016/j.bpsc.2016.12.006]
[586]
Barrett, F.S.; Doss, M.K.; Sepeda, N.D.; Pekar, J.J.; Griffiths, R.R. Emotions and brain function are altered up to one month after a single high dose of psilocybin. Sci. Rep., 2020, 10(1), 2214.
[http://dx.doi.org/10.1038/s41598-020-59282-y]
[587]
Carhart-Harris, R.L.; Roseman, L.; Bolstridge, M.; Demetriou, L.; Pannekoek, J.N.; Wall, M.B.; Tanner, M.; Kaelen, M.; McGonigle, J.; Murphy, K.; Leech, R.; Curran, H.V.; Nutt, D.J. Psilocybin for treatment-resistant depression: FMRI-measured brain mechanisms. Sci. Rep., 2017, 7(1), 13187.
[http://dx.doi.org/10.1038/s41598-017-13282-7]
[588]
Akiki, T.J.; Averill, C.L.; Abdallah, C.G. A network-based neurobiological model of PTSD: Evidence from structural and functional neuroimaging studies. Curr. Psychiatry Rep., 2017, 19(11), 81.
[http://dx.doi.org/10.1007/s11920-017-0840-4]
[589]
Henner, R.L.; Keshavan, M.S.; Hill, K.P. Review of otential sychedelic reatments for PTSD. J. Neurol. Sci., 2022, 439, 120302.
[http://dx.doi.org/10.1016/j.jns.2022.120302]
[590]
Preller, K.H.; Razi, A.; Zeidman, P.; Stämpfli, P.; Friston, K.J.; Vollenweider, F.X. Effective connectivity changes in LSD-induced altered states of consciousness in humans. Proc. Natl. Acad. Sci., 2019, 116(7), 2743-2748.
[http://dx.doi.org/10.1073/pnas.1815129116]
[591]
Vollenweider, F.X.; Geyer, M.A. A systems model of altered consciousness: Integrating natural and drug-induced psychoses. Brain Res. Bull., 2001, 56(5), 495-507.
[http://dx.doi.org/10.1016/S0361-9230(01)00646-3]
[592]
Kraehenmann, R.; Preller, K.H.; Scheidegger, M.; Pokorny, T.; Bosch, O.G.; Seifritz, E.; Vollenweider, F.X. Psilocybin-induced decrease in amygdala reactivity correlates with enhanced positive mood in healthy volunteers. Biol. Psychiatry, 2015, 78(8), 572-581.
[http://dx.doi.org/10.1016/j.biopsych.2014.04.010]
[593]
Carhart-Harris, R.L.; Friston, K.J. REBUS and the anarchic brain: Toward a unified model of the brain action of psychedelics. Pharmacol. Rev., 2019, 71(3), 316-344.
[http://dx.doi.org/10.1124/pr.118.017160]
[594]
Duerler, P.; Brem, S.; Fraga-González, G. Psilocybin induces aberrant prediction error processing of tactile mismatch responses: A simultaneous EEG-FMRI study. Cereb. Cortex, 2021, 32(1), 186-196.
[http://dx.doi.org/10.1093/cercor/bhab202]
[595]
Alonso, J.F.; Romero, S.; Mañanas, M.À.; Riba, J. Serotonergic psychedelics temporarily modify information transfer in humans. Int. J. Neuropsychopharmacol., 2015, 18(8), 1-9.
[http://dx.doi.org/10.1093/ijnp/pyv039]
[596]
Kida, S. Reconsolidation/destabilization, extinction and forgetting of fear memory as therapeutic targets for PTSD. Psychopharmacology, 2019, 236(1), 49-57.
[http://dx.doi.org/10.1007/s00213-018-5086-2]
[597]
de Vos, C.M.H.; Mason, N.L.; Kuypers, K.P.C. Psychedelics and neuroplasticity: A systematic review unraveling the biological underpinnings of psychedelics. Front. Psychiatry, 2021, 12, 724606.
[http://dx.doi.org/10.3389/fpsyt.2021.724606]
[598]
Catlow, B.J.; Song, S.; Paredes, D.A.; Kirstein, C.L.; Sanchez-Ramos, J. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp. Brain Res., 2013, 228(4), 481-491.
[http://dx.doi.org/10.1007/s00221-013-3579-0]
[599]
Kraehenmann, R.; Schmidt, A.; Friston, K.; Preller, K.H.; Seifritz, E.; Vollenweider, F.X. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity. Neuroimage Clin., 2016, 11, 53-60.
[http://dx.doi.org/10.1016/j.nicl.2015.08.009]
[600]
Grimm, O.; Kraehenmann, R.; Preller, K.H.; Seifritz, E.; Vollenweider, F.X. Psilocybin modulates functional connectivity of the amygdala during emotional face discrimination. Eur. Neuropsychopharmacol., 2018, 28(6), 691-700.
[http://dx.doi.org/10.1016/j.euroneuro.2018.03.016]
[601]
Menon, V. Salience Network. Brain Mapping; Toga, A.W., Ed.; Academic Press: Waltham, 2015, pp. 597-611.
[http://dx.doi.org/10.1016/B978-0-12-397025-1.00052-X]
[602]
Nielson, J.L.; Megler, J.D. Ayahuasca as a candidate therapy for PTSD. The Therapeutic Use of Ayahuasca; Labate, B.C.; Cavnar, C., Eds.; Springer: Berlin, Heidelberg, 2014, pp. 41-58.
[http://dx.doi.org/10.1007/978-3-642-40426-9_3]
[603]
Castro-Neto, E.F.; Cunha, R.H.; Silveira, D.X.; Yonamine, M.; Gouveia, T.L.F.; Cavalheiro, E.A.; Amado, D.; Naffah-Mazzacoratti, M.G. Changes in aminoacidergic and monoaminergic neurotransmission in the hippocampus and amygdala of rats after ayahuasca ingestion. World J. Biol. Chem., 2013, 4(4), 141-147.
[http://dx.doi.org/10.4331/wjbc.v4.i4.141]
[604]
Abraham, A.D.; Neve, K.A.; Lattal, K.M. Dopamine and extinction: A convergence of theory with fear and reward circuitry. Neurobiol. Learn. Mem., 2014, 108, 65-77.
[http://dx.doi.org/10.1016/j.nlm.2013.11.007]
[605]
Rau, V.; Iyer, S.V.; Oh, I.; Chandra, D.; Harrison, N.; Eger, E.I.; Fanselow, M.S.; Homanics, G.E.; Sonner, J.M. Gamma-aminobutyric acid type A receptor alpha 4 subunit knockout mice are resistant to the amnestic effect of isoflurane. Anesth. Analg., 2009, 109(6), 1816-1822.
[http://dx.doi.org/10.1213/ANE.0b013e3181bf6ae6]
[606]
Roseman, L.; Haijen, E.; Idialu-Ikato, K.; Kaelen, M.; Watts, R.; Carhart-Harris, R. Emotional breakthrough and psychedelics: Validation of the emotional breakthrough inventory. J. Psychopharmacol., 2019, 33(9), 1076-1087.
[http://dx.doi.org/10.1177/0269881119855974]
[607]
Gorman, I.; Nielson, E.M.; Molinar, A.; Cassidy, K.; Sabbagh, J. Psychedelic harm reduction and integration: A transtheoretical model for clinical practice. Front. Psychol., 2021, 12, 645246.
[http://dx.doi.org/10.3389/fpsyg.2021.645246]
[608]
Fischman, L.G. Seeing without self: Discovering new meaning with psychedelic-assisted psychotherapy. Neuro-psychoanalysis, 2019, 21(2), 53-78.
[http://dx.doi.org/10.1080/15294145.2019.1689528]
[609]
Janssen, P.G.J.; Stoltz, S.; Cillessen, A.H.N.; van Ee, E. Deployment-related PTSD symptomatology and social functioning: Probing the mediating roles of emotion regulation and mentalization in an outpatient veteran sample. J. Psychiatr. Res., 2022, 156, 444-450.
[http://dx.doi.org/10.1016/j.jpsychires.2022.10.050]
[610]
Saraiya, T.; Lopez-Castro, T. Ashamed and afraid: A scoping review of the role of shame in post-traumatic stress disorder (PTSD). J. Clin. Med., 2016, 5(11), 94.
[http://dx.doi.org/10.3390/jcm5110094]
[611]
Pickover, A.; Lowell, A.; Lazarov, A.; Lopez-Yianilos, A.; Sanchez-Lacay, A.; Ryba, M.; Such, S.; Arnon, S.; Amsalem, D.; Neria, Y.; Markowitz, J.C. Interpersonal psychotherapy of posttraumatic stress disorder for veterans and family members: An open trial. Psychiatr. Serv., 2021, 72(8), 866-873.
[http://dx.doi.org/10.1176/appi.ps.202000355]
[612]
De Gregorio, D.; Popic, J.; Enns, J.P. Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. Proc. Natl. Acad. Sci. USA, 2021, 118(5), e2020705118.
[613]
Preller, K.H.; Vollenweider, F.X. Modulation of social cognition via hallucinogens and “entactogens”. Front. Psychiatry, 2019, 10, 881.
[http://dx.doi.org/10.3389/fpsyt.2019.00881]
[614]
Carhart-Harris, R.L.; Goodwin, G.M. The therapeutic potential of psychedelic drugs: Past, present, and future. Neuropsychopharmacology, 2017, 42(11), 2105-2113.
[http://dx.doi.org/10.1038/npp.2017.84]
[615]
Noorani, T.; Garcia-Romeu, A.; Swift, T.C.; Griffiths, R.R.; Johnson, M.W. Psychedelic therapy for smoking cessation: Qualitative analysis of participant accounts. J. Psychopharmacol., 2018, 32(7), 756-769.
[http://dx.doi.org/10.1177/0269881118780612]
[616]
Weiss, B.; Nygart, V.; Pommerencke, L.M.; Carhart-Harris, R.L.; Erritzoe, D. Examining psychedelic-induced changes in social functioning and connectedness in a naturalistic online sample using the five-factor model of personality. Front. Psychol., 2021, 12, 749788.
[http://dx.doi.org/10.3389/fpsyg.2021.749788]
[617]
Griffiths, R.R.; Johnson, M.W.; Richards, W.A.; Richards, B.D.; Jesse, R.; MacLean, K.A.; Barrett, F.S.; Cosimano, M.P.; Klinedinst, M.A. Psilocybin-occasioned mystical-type experience in combination with meditation and other spiritual practices produces enduring positive changes in psychological functioning and in trait measures of prosocial attitudes and behaviors. J. Psychopharmacol., 2018, 32(1), 49-69.
[http://dx.doi.org/10.1177/0269881117731279]
[618]
Schmid, Y.; Liechti, M.E. Long-lasting subjective effects of LSD in normal subjects. Psychopharmacology, 2018, 235(2), 535-545.
[http://dx.doi.org/10.1007/s00213-017-4733-3]
[619]
Zeifman, R.J.; Wagner, A.C.; Watts, R.; Kettner, H.; Mertens, L.J.; Carhart-Harris, R.L. Post-psychedelic reductions in experiential avoidance are associated with decreases in depression severity and suicidal ideation. Front. Psychiatry, 2020, 11, 782.
[http://dx.doi.org/10.3389/fpsyt.2020.00782]
[620]
Khan, A.J.; Bradley, E.; O’Donovan, A.; Woolley, J. Psilocybin for trauma-related disorders. Curr. Top. Behav. Neurosci., 2022, 56, 319-322.
[http://dx.doi.org/10.1007/7854_2022_366]
[621]
Anderson, B.T.; Danforth, A.; Daroff, P.R.; Stauffer, C.; Ekman, E.; Agin-Liebes, G.; Trope, A.; Boden, M.T.; Dilley, P.J.; Mitchell, J.; Woolley, J. Psilocybin-assisted group therapy for demoralized older long-term AIDS survivor men: An open-label safety and feasibility pilot study. EClin. Med., 2020, 27, 100538.
[http://dx.doi.org/10.1016/j.eclinm.2020.100538]
[622]
Malone, T.C.; Mennenga, S.E.; Guss, J.; Podrebarac, S.K.; Owens, L.T.; Bossis, A.P.; Belser, A.B.; Agin-Liebes, G.; Bogenschutz, M.P.; Ross, S. Individual experiences in four cancer patients following psilocybin-assisted psychotherapy. Front. Pharmacol., 2018, 9, 256.
[http://dx.doi.org/10.3389/fphar.2018.00256]
[623]
Oehen, P.; Gasser, P. Using a MDMA- and LSD-group therapy model in clinical practice in Switzerland and highlighting the treatment of trauma-related disorders. Front. Psychiatry, 2022, 13, 863552.
[http://dx.doi.org/10.3389/fpsyt.2022.863552]
[624]
Perkins, D.; Schubert, V.; Simonová, H.; Tófoli, L.F.; Bouso, J.C.; Horák, M.; Galvão-Coelho, N.L.; Sarris, J. Influence of context and setting on the mental health and wellbeing outcomes of ayahuasca drinkers: Results of a large international survey. Front. Pharmacol., 2021, 12, 623979.
[http://dx.doi.org/10.3389/fphar.2021.623979]
[625]
Jiménez-Garrido, D.F.; Gómez-Sousa, M.; Ona, G.; Dos Santos, R.G.; Hallak, J.E.C.; Alcázar-Córcoles, M.Á.; Bouso, J.C. Effects of ayahuasca on mental health and quality of life in naïve users: A longitudinal and cross-sectional study combination. Sci. Rep., 2020, 10(1), 4075.
[http://dx.doi.org/10.1038/s41598-020-61169-x]
[626]
Osório, F.L.; Sanches, R.F.; Macedo, L.R.; dos Santos, R.G.; Maia-de-Oliveira, J.P.; Wichert-Ana, L.; de Araujo, D.B.; Riba, J.; Crippa, J.A.; Hallak, J.E. Antidepressant effects of a single dose of ayahuasca in patients with recurrent depression: A preliminary report. Rev. Bras. Psiquiatr., 2015, 37(1), 13-20.
[http://dx.doi.org/10.1590/1516-4446-2014-1496]
[627]
Ona, G.; Kohek, M.; Massaguer, T.; Gomariz, A.; Jiménez, D.F.; Dos Santos, R.G.; Hallak, J.E.C.; Alcázar-Córcoles, M.Á.; Bouso, J.C. Ayahuasca and public health: Health status, psychosocial well-being, lifestyle, and coping strategies in a large sample of ritual ayahuasca users. J. Psychoactive Drugs, 2019, 51(2), 135-145.
[http://dx.doi.org/10.1080/02791072.2019.1567961]
[628]
Santos, R.G.; Landeira-Fernandez, J.; Strassman, R.J.; Motta, V.; Cruz, A.P.M. Effects of ayahuasca on psychometric measures of anxiety, panic-like and hopelessness in Santo Daime members. J. Ethnopharmacol., 2007, 112(3), 507-513.
[http://dx.doi.org/10.1016/j.jep.2007.04.012]
[629]
Li, L.; Vlisides, P.E. Ketamine: 50 years of modulating the mind. Front. Hum. Neurosci., 2016, 10, 612.
[http://dx.doi.org/10.3389/fnhum.2016.00612]
[630]
Domino, E.F.; Chodoff, P.; Corssen, G. Pharmacologic effects of CI-581, a new dissociative anesthetic, in man. Clin. Pharmacol. Ther., 1965, 6(3), 279-291.
[http://dx.doi.org/10.1002/cpt196563279]
[631]
Mion, G.; Villevieille, T. Ketamine pharmacology: An Update (Pharmacodynamics and Molecular Aspects, Recent Findings). CNS Neurosci. Ther., 2013, 19(6), 370-380.
[http://dx.doi.org/10.1111/cns.12099]
[632]
Wei, Y.; Chang, L.; Hashimoto, K. A historical review of antidepressant effects of ketamine and its enantiomers. Pharmacol. Biochem. Behav., 2020, 190, 172870.
[http://dx.doi.org/10.1016/j.pbb.2020.172870]
[633]
Kohtala, S. Ketamine—50 years in use: From anesthesia to rapid antidepressant effects and neurobiological mechanisms. Pharmacol. Rep., 2021, 73(2), 323-345.
[http://dx.doi.org/10.1007/s43440-021-00232-4]
[634]
U.S. Department of Justice. Administration USDE. Schedules of controlled substances: Placement of ketamine into schedule III. rules and regulations. Fed. Regist., 1999, 64(133), 37663-37831.
[635]
Carboni, E.; Carta, A.R.; Carboni, E.; Novelli, A. Repurposing ketamine in depression and related disorders: Can this enigmatic drug achieve success? Front. Neurosci., 2021, 15, 657714.
[http://dx.doi.org/10.3389/fnins.2021.657714]
[636]
Liu, Y.; Lin, D.; Wu, B.; Zhou, W. Ketamine abuse potential and use disorder. Brain Res. Bull., 2016, 126, 68-73.
[http://dx.doi.org/10.1016/j.brainresbull.2016.05.016]
[637]
Walsh, Z.; Mollaahmetoglu, O.M.; Rootman, J.; Golsof, S.; Keeler, J.; Marsh, B.; Nutt, D.J.; Morgan, C.J.A. Ketamine for the treatment of mental health and substance use disorders: Comprehensive systematic review. BJPsych Open, 2022, 8(1), e19.
[http://dx.doi.org/10.1192/bjo.2021.1061]
[638]
Yensen, R. Ed.; Group Psychotherapy with a Variety of Hallucinogens; Association for Humanistic Psychology: Montreal, Quebec, Canada, 1973.
[639]
Zarate, C.A., Jr; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A randomized trial of an n-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry, 2006, 63(8), 856-864.
[http://dx.doi.org/10.1001/archpsyc.63.8.856]
[640]
Wilkinson, S.T.; Ballard, E.D.; Bloch, M.H.; Mathew, S.J.; Murrough, J.W.; Feder, A.; Sos, P.; Wang, G.; Zarate, C.A., Jr; Sanacora, G. The effect of a single dose of intravenous ketamine on suicidal ideation: A systematic review and individual participant data meta-analysis. Am. J. Psychiatry, 2018, 175(2), 150-158.
[http://dx.doi.org/10.1176/appi.ajp.2017.17040472]
[641]
Grunebaum, M.F.; Ellis, S.P.; Keilp, J.G.; Moitra, V.K.; Cooper, T.B.; Marver, J.E.; Burke, A.K.; Milak, M.S.; Sublette, M.E.; Oquendo, M.A.; Mann, J.J. Ketamine versus midazolam in bipolar depression with suicidal thoughts: A pilot midazolam-controlled randomized clinical trial. Bipolar Disord., 2017, 19(3), 176-183.
[http://dx.doi.org/10.1111/bdi.12487]
[642]
Feder, A.; Parides, M.K.; Murrough, J.W.; Perez, A.M.; Morgan, J.E.; Saxena, S.; Kirkwood, K. aan het Rot, M.; Lapidus, K.A.B.; Wan, L-B.; Iosifescu, D.; Charney, D.S. Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder. JAMA Psychiatry, 2014, 71(6), 681-688.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.62]
[643]
Stein, M.B.; Simon, N.M. Ketamine for PTSD: Well, Isn’t That Special. Am. J. Psychiatry, 2021, 178(2), 116-118.
[http://dx.doi.org/10.1176/appi.ajp.2020.20121677]
[644]
Mathai, D.S.; Mora, V.; Garcia-Romeu, A. Toward synergies of ketamine and psychotherapy. Front. Psychol., 2022, 13, 868103.
[http://dx.doi.org/10.3389/fpsyg.2022.868103]
[645]
Drozdz, S.J.; Goel, A.; McGarr, M.W.; Katz, J.; Ritvo, P.; Mattina, G.; Bhat, V.; Diep, C.; Ladha, K.S. Ketamine assisted psychotherapy: A systematic narrative review of the literature. J. Pain Res., 2022, 15, 1691-1706.
[http://dx.doi.org/10.2147/JPR.S360733]
[646]
McIntyre, R.S.; Rosenblat, J.D.; Nemeroff, C.B.; Sanacora, G.; Murrough, J.W.; Berk, M.; Brietzke, E.; Dodd, S.; Gorwood, P.; Ho, R.; Iosifescu, D.V.; Lopez Jaramillo, C.; Kasper, S.; Kratiuk, K.; Lee, J.G.; Lee, Y.; Lui, L.M.W.; Mansur, R.B.; Papakostas, G.I.; Subramaniapillai, M.; Thase, M.; Vieta, E.; Young, A.H.; Zarate, C.A., Jr; Stahl, S. Synthesizing the evidence for ketamine and esketamine in treatment-resistant depression: An international expert opinion on the available evidence and implementation. Am. J. Psychiatry, 2021, 178(5), 383-399.
[http://dx.doi.org/10.1176/appi.ajp.2020.20081251]
[647]
Stirling, J.; McCoy, L. Quantifying the psychological effects of ketamine: From euphoria to the k-hole. Subst. Use Misuse, 2010, 45(14), 2428-2443.
[http://dx.doi.org/10.3109/10826081003793912]
[648]
Ballard, E.D.; Zarate, C.A., Jr The role of dissociation in ketamine’s antidepressant effects. Nat. Commun., 2020, 11(1), 6431.
[http://dx.doi.org/10.1038/s41467-020-20190-4]
[649]
Dore, J.; Turnipseed, B.; Dwyer, S.; Turnipseed, A.; Andries, J.; Ascani, G.; Monnette, C.; Huidekoper, A.; Strauss, N.; Wolfson, P. Ketamine assisted psychotherapy (KAP): Patient demographics, clinical data and outcomes in three large practices administering ketamine with psychotherapy. J. Psychoactive Drugs, 2019, 51(2), 189-198.
[http://dx.doi.org/10.1080/02791072.2019.1587556]
[650]
Krystal, J.H.; Karper, L.P.; Seibyl, J.P. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch. Gen. Psychiatry, 1994, 51(3), 199-214.
[http://dx.doi.org/10.1001/archpsyc.1994.03950030035004]
[651]
Morgan, C.J.A.; Mofeez, A.; Brandner, B.; Bromley, L.; Curran, H.V. Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers. Neuropsychopharmacology, 2004, 29(1), 208-218.
[http://dx.doi.org/10.1038/sj.npp.1300342]
[652]
Zanos, P.; Moaddel, R.; Morris, P.J.; Riggs, L.M.; Highland, J.N.; Georgiou, P.; Pereira, E.F.R.; Albuquerque, E.X.; Thomas, C.J.; Zarate, C.A., Jr; Gould, T.D. Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms. Pharmacol. Rev., 2018, 70(3), 621-660.
[http://dx.doi.org/10.1124/pr.117.015198]
[653]
Nikayin, S.; Murphy, E.; Krystal, J.H.; Wilkinson, S.T. Long-term safety of ketamine and esketamine in treatment of depression. Expert Opin. Drug Saf., 2022, 21(6), 777-787.
[http://dx.doi.org/10.1080/14740338.2022.2066651]
[654]
Sanacora, G.; Frye, M.A.; McDonald, W.; Mathew, S.J.; Turner, M.S.; Schatzberg, A.F.; Summergrad, P.; Nemeroff, C.B. A consensus statement on the use of ketamine in the treatment of mood disorders. JAMA Psychiatry, 2017, 74(4), 399-405.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.0080]
[655]
Matveychuk, D.; Thomas, R.K.; Swainson, J.; Khullar, A.; MacKay, M-A.; Baker, G.B.; Dursun, S.M. Ketamine as an antidepressant: Overview of its mechanisms of action and potential predictive biomarkers Ther. Adv. Psychopharmacol., 2020, 10 ecollection 2020.
[http://dx.doi.org/10.1177/2045125320916657]
[656]
Bonaventura, J.; Lam, S.; Carlton, M.; Boehm, M.A.; Gomez, J.L.; Solís, O.; Sánchez-Soto, M.; Morris, P.J.; Fredriksson, I.; Thomas, C.J.; Sibley, D.R.; Shaham, Y.; Zarate, C.A., Jr; Michaelides, M. Pharmacological and behavioral divergence of ketamine enantiomers: Implications for abuse liability. Mol. Psychiatry, 2021, 26(11), 6704-6722.
[http://dx.doi.org/10.1038/s41380-021-01093-2]
[657]
Andrade, C. Ketamine for depression, 3: Does chirality matter? J. Clin. Psychiatry, 2017, 78(6), e674-e677.
[http://dx.doi.org/10.4088/JCP.17f11681]
[658]
Dinis-Oliveira, R.J. Metabolism and metabolomics of ketamine: A toxicological approach. Forensic Sci. Res., 2017, 2(1), 2-10.
[http://dx.doi.org/10.1080/20961790.2017.1285219]
[659]
Ahuja, S.; Brendle, M.; Smart, L.; Moore, C.; Thielking, P.; Robison, R. Real-world depression, anxiety and safety outcomes of intramuscular ketamine treatment: A retrospective descriptive cohort study. BMC Psychiatry, 2022, 22(1), 634.
[http://dx.doi.org/10.1186/s12888-022-04268-5]
[660]
Andrade, C. 1: Pharmacologic considerations and clinical evidence. J. Clin. Psychiatry, 2019, 80(2), 19f12820.
[661]
Zanos, P.; Gould, T.D. Mechanisms of ketamine action as an antidepressant. Mol. Psychiatry, 2018, 23(4), 801-811.
[http://dx.doi.org/10.1038/mp.2017.255]
[662]
Zorumski, C.F.; Izumi, Y.; Mennerick, S. Ketamine: NMDA receptors and beyond. J. Neurosci., 2016, 36(44), 11158-11164.
[http://dx.doi.org/10.1523/JNEUROSCI.1547-16.2016]
[663]
Asim, M.; Wang, B.; Hao, B.; Wang, X. Ketamine for post-traumatic stress disorders and it’s possible therapeutic mechanism. Neurochem. Int., 2021, 146, 105044.
[http://dx.doi.org/10.1016/j.neuint.2021.105044]
[664]
Witt, K.; Potts, J.; Hubers, A.; Grunebaum, M.F.; Murrough, J.W.; Loo, C.; Cipriani, A.; Hawton, K. Ketamine for suicidal ideation in adults with psychiatric disorders: A systematic review and meta-analysis of treatment trials. Aust. N. Z. J. Psychiatry, 2020, 54(1), 29-45.
[http://dx.doi.org/10.1177/0004867419883341]
[665]
Chilukuri, H.; Reddy, N.P.; Pathapati, R.M.; Manu, A.N.; Jollu, S.; Shaik, A.B. Acute antidepressant effects of intramuscular versus intravenous ketamine. Indian J. Psychol. Med., 2014, 36(1), 71-76.
[http://dx.doi.org/10.4103/0253-7176.127258]
[666]
Lapidus, K.A.B.; Levitch, C.F.; Perez, A.M.; Brallier, J.W.; Parides, M.K.; Soleimani, L.; Feder, A.; Iosifescu, D.V.; Charney, D.S.; Murrough, J.W. A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol. Psychiatry, 2014, 76(12), 970-976.
[http://dx.doi.org/10.1016/j.biopsych.2014.03.026]
[667]
Abdallah, C.G.; Sanacora, G.; Duman, R.S.; Krystal, J.H. Ketamine and rapid-acting antidepressants: A window into a new neurobiology for mood disorder therapeutics. Annu. Rev. Med., 2015, 66(1), 509-523.
[http://dx.doi.org/10.1146/annurev-med-053013-062946]
[668]
Kojic, M.; Saelens, J.; Kadriu, B.; Zarate, C.A., Jr; Kraus, C. Ketamine for depression: Advances in clinical treatment, rapid antidepressant mechanisms of action, and a contrast with serotonergic psychedelics. Curr. Top. Behav. Neurosci., 2022, 56, 141-167.
[http://dx.doi.org/10.1007/7854_2022_313]
[669]
Kadriu, B.; Musazzi, L.; Henter, I.D.; Graves, M.; Popoli, M.; Zarate, C.A., Jr Glutamatergic neurotransmission: Pathway to developing novel rapid-acting antidepressant treatments. Int. J. Neuropsychopharmacol., 2019, 22(2), 119-135.
[http://dx.doi.org/10.1093/ijnp/pyy094]
[670]
Deakin, J.F.W.; Lees, J.; McKie, S.; Hallak, J.E.C.; Williams, S.R.; Dursun, S.M. Glutamate and the neural basis of the subjective effects of ketamine: A pharmaco-magnetic resonance imaging study. Arch. Gen. Psychiatry, 2008, 65(2), 154-164.
[http://dx.doi.org/10.1001/archgenpsychiatry.2007.37]
[671]
Höflich, A.; Hahn, A.; Küblböck, M.; Kranz, G.S.; Vanicek, T.; Ganger, S.; Spies, M.; Windischberger, C.; Kasper, S.; Winkler, D.; Lanzenberger, R. Ketamine-dependent neuronal activation in healthy volunteers. Brain Struct. Funct., 2017, 222(3), 1533-1542.
[http://dx.doi.org/10.1007/s00429-016-1291-0]
[672]
Mueller, F.; Musso, F.; London, M.; de Boer, P.; Zacharias, N.; Winterer, G. Pharmacological fMRI: Effects of subanesthetic ketamine on resting-state functional connectivity in the default mode network, salience network, dorsal attention network and executive control network. Neuroimage Clin., 2018, 19, 745-757.
[http://dx.doi.org/10.1016/j.nicl.2018.05.037]
[673]
Zacharias, N.; Musso, F.; Müller, F.; Lammers, F.; Saleh, A.; London, M.; de Boer, P.; Winterer, G. Ketamine effects on default mode network activity and vigilance: A randomized, placebo-controlled crossover simultaneous fMRI/EEG study. Hum. Brain Mapp., 2020, 41(1), 107-119.
[http://dx.doi.org/10.1002/hbm.24791]
[674]
Morris, L.S.; Costi, S.; Tan, A.; Stern, E.R.; Charney, D.S.; Murrough, J.W. Ketamine normalizes subgenual cingulate cortex hyper-activity in depression. Neuropsychopharmacology, 2020, 45(6), 975-981.
[http://dx.doi.org/10.1038/s41386-019-0591-5]
[675]
Alexander, L.; Gaskin, P.L.R.; Sawiak, S.J.; Fryer, T.D.; Hong, Y.T.; Cockcroft, G.J.; Clarke, H.F.; Roberts, A.C. Fractionating blunted reward processing characteristic of anhedonia by over-activating primate subgenual anterior cingulate cortex. Neuron, 2019, 101(2), 307-320.e6.
[http://dx.doi.org/10.1016/j.neuron.2018.11.021]
[676]
Zanos, P.; Moaddel, R.; Morris, P.J.; Georgiou, P.; Fischell, J.; Elmer, G.I.; Alkondon, M.; Yuan, P.; Pribut, H.J.; Singh, N.S.; Dossou, K.S.S.; Fang, Y.; Huang, X-P.; Mayo, C.L.; Wainer, I.W.; Albuquerque, E.X.; Thompson, S.M.; Thomas, C.J.; Zarate, C.A., Jr; Gould, T.D. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature, 2016, 533(7604), 481-486.
[http://dx.doi.org/10.1038/nature17998]
[677]
Klein, M.E.; Chandra, J.; Sheriff, S.; Malinow, R. Opioid system is necessary but not sufficient for antidepressive actions of ketamine in rodents. Proc. Natl. Acad. Sci., 2020, 117(5), 2656-2662.
[http://dx.doi.org/10.1073/pnas.1916570117]
[678]
Williams, N.R.; Heifets, B.D.; Blasey, C.; Sudheimer, K.; Pannu, J.; Pankow, H.; Hawkins, J.; Birnbaum, J.; Lyons, D.M.; Rodriguez, C.I.; Schatzberg, A.F. Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am. J. Psychiatry, 2018, 175(12), 1205-1215.
[http://dx.doi.org/10.1176/appi.ajp.2018.18020138]
[679]
Yoon, G.; Petrakis, I.L.; Krystal, J.H. Association of combined naltrexone and ketamine with depressive symptoms in a case series of patients with depression and alcohol use disorder. JAMA Psychiatry, 2019, 76(3), 337-338.
[http://dx.doi.org/10.1001/jamapsychiatry.2018.3990]
[680]
Hess, E.M.; Riggs, L.M.; Michaelides, M.; Gould, T.D. Mechanisms of ketamine and its metabolites as antidepressants. Biochem. Pharmacol., 2022, 197, 114892.
[http://dx.doi.org/10.1016/j.bcp.2021.114892]
[681]
Chen, C.H.; Lee, M.H.; Chen, Y.C.; Lin, M.F. Ketamine-snorting associated cystitis. J. Formos. Med. Assoc., 2011, 110(12), 787-791.
[http://dx.doi.org/10.1016/j.jfma.2011.11.010]
[682]
Luby, E.D. Study of a new schizophrenomimetic drug—sernyl. Arch. Neurol. Psychiatry, 1959, 81(3), 363-369.
[http://dx.doi.org/10.1001/archneurpsyc.1959.02340150095011]
[683]
Strous, J.F.M.; Weeland, C.J.; van der Draai, F.A.; Daams, J.G.; Denys, D.; Lok, A.; Schoevers, R.A.; Figee, M. Brain changes associated with long-term ketamine abuse, a systematic review. Front. Neuroanat., 2022, 16, 795231.
[http://dx.doi.org/10.3389/fnana.2022.795231]
[684]
Morgan, C.J.A.; Muetzelfeldt, L.; Curran, H.V. Consequences of chronic ketamine self-administration upon neurocognitive function and psychological wellbeing: A 1-year longitudinal study. Addiction, 2010, 105(1), 121-133.
[http://dx.doi.org/10.1111/j.1360-0443.2009.02761.x]
[685]
Bokor, G.; Anderson, P.D. Ketamine. J. Pharm. Pract., 2014, 27(6), 582-586.
[http://dx.doi.org/10.1177/0897190014525754]
[686]
Wong, S.W.; Lee, K.F.; Wong, J. Dilated common bile ducts mimicking choledochal cysts in ketamine abusers. Hong Kong Med. J., 2009, 15(1), 53-56.
[687]
Lo, R.S.C.; Krishnamoorthy, R.; Freeman, J.G.; Austin, A.S. Cholestasis and biliary dilatation associated with chronic ketamine abuse: A case series. Singapore Med. J., 2011, 52(3), e52-e55.
[688]
Chu, P.S.K.; Ma, W.K.; Wong, S.C.W.; Chu, R.W-H.; Cheng, C-H.; Wong, S.; Tse, J.M.; Lau, F-L.; Yiu, M-K.; Man, C-W. The destruction of the lower urinary tract by ketamine abuse: A new syndrome? BJU Int., 2008, 102(11), 1616-1622.
[http://dx.doi.org/10.1111/j.1464-410X.2008.07920.x]
[689]
Chu, P.S.K.; Kwok, S.C.; Lam, K.M. ‘Street ketamine’-associated bladder dysfunction: A report of ten cases. Hong Kong Med. J., 2007, 13(4), 311-313.
[690]
Shahani, R.; Streutker, C.; Dickson, B.; Stewart, R.J. Ketamine-associated ulcerative cystitis: A new clinical entity. Urology, 2007, 69(5), 810-812.
[http://dx.doi.org/10.1016/j.urology.2007.01.038]
[691]
Cheung, RYK; Chan, SSC; Lee, JHS Urinary symptoms and impaired quality of life in female ketamine users: Persistence after cessation of use. Hong Kong Med. J., 2011, 17(4), 267-273.
[692]
Poon, T.L.; Wong, K.F.; Chan, M.Y.; Fung, K.W.; Chu, S.K.; Man, C.W.; Yiu, M.K.; Leung, S.K. Upper gastrointestinal problems in inhalational ketamine abusers. J. Dig. Dis., 2010, 11(2), 106-110.
[http://dx.doi.org/10.1111/j.1751-2980.2010.00424.x]
[693]
Ng, J.; Lui, L.M.W.; Rosenblat, J.D.; Teopiz, K.M.; Lipsitz, O.; Cha, D.S.; Xiong, J.; Nasri, F.; Lee, Y.; Kratiuk, K.; Rodrigues, N.B.; Gill, H.; Subramaniapillai, M.; Mansur, R.B.; Ho, R.; Cao, B.; McIntyre, R.S. Ketamine-induced urological toxicity: potential mechanisms and translation for adults with mood disorders receiving ketamine treatment. Psychopharmacology, 2021, 238(4), 917-926.
[http://dx.doi.org/10.1007/s00213-021-05767-1]
[694]
Findeis, H.; Sauer, C.; Cleare, A.; Bauer, M.; Ritter, P. Urothelial toxicity of esketamine in the treatment of depression. Psychopharmacology, 2020, 237(11), 3295-3302.
[http://dx.doi.org/10.1007/s00213-020-05611-y]
[695]
Cotter, S.; Wong, J.; Gada, N.; Gill, R.; Jones, S.C.; Chai, G.; Foster, D.; Avigan, M.; Mundkur, M. Repeated or continuous medically supervised ketamine administration associated with hepatobiliary adverse events: A retrospective case series. Drug Saf., 2021, 44(12), 1365-1374.
[http://dx.doi.org/10.1007/s40264-021-01120-9]
[696]
Du, R.; Han, R.; Niu, K.; Xu, J.; Zhao, Z.; Lu, G.; Shang, Y. The multivariate effect of ketamine on PTSD: Systematic review and meta-analysis. Front. Psychiatry, 2022, 13, 813103.
[http://dx.doi.org/10.3389/fpsyt.2022.813103]
[697]
Krystal, J.H.; Abdallah, C.G.; Averill, L.A.; Kelmendi, B.; Harpaz-Rotem, I.; Sanacora, G.; Southwick, S.M.; Duman, R.S. Synaptic loss and the pathophysiology of PTSD: Implications for ketamine as a prototype novel therapeutic. Curr. Psychiatry Rep., 2017, 19(10), 74.
[http://dx.doi.org/10.1007/s11920-017-0829-z]
[698]
Norbury, A.; Rutter, S.B.; Collins, A.B.; Costi, S.; Jha, M.K.; Horn, S.R.; Kautz, M.; Corniquel, M.; Collins, K.A.; Glasgow, A.M.; Brallier, J.; Shin, L.M.; Charney, D.S.; Murrough, J.W.; Feder, A. Neuroimaging correlates and predictors of response to repeated-dose intravenous ketamine in PTSD: Preliminary evidence. Neuropsychopharmacology, 2021, 46(13), 2266-2277.
[http://dx.doi.org/10.1038/s41386-021-01104-4]
[699]
Patel, R.; Spreng, R.N.; Shin, L.M.; Girard, T.A. Neurocircuitry models of posttraumatic stress disorder and beyond: A meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev., 2012, 36(9), 2130-2142.
[http://dx.doi.org/10.1016/j.neubiorev.2012.06.003]
[700]
Wu, H.; Savalia, N.K.; Kwan, A.C. Ketamine for a boost of neural plasticity: How, but also when? Biol. Psychiatry, 2021, 89(11), 1030-1032.
[http://dx.doi.org/10.1016/j.biopsych.2021.03.014]
[701]
Kavalali, E.T.; Monteggia, L.M. How does ketamine elicit a rapid antidepressant response? Curr. Opin. Pharmacol., 2015, 20, 35-39.
[http://dx.doi.org/10.1016/j.coph.2014.11.005]
[702]
Liriano, F.; Hatten, C.; Schwartz, T.L. Ketamine as treatment for post-traumatic stress disorder: A review. Drugs Context, 2019, 8, 1-7.
[http://dx.doi.org/10.7573/dic.212305]
[703]
Girgenti, M.J.; Ghosal, S.; LoPresto, D.; Taylor, J.R.; Duman, R.S. Ketamine accelerates fear extinction via mTORC1 signaling. Neurobiol. Dis., 2017, 100, 1-8.
[http://dx.doi.org/10.1016/j.nbd.2016.12.026]
[704]
Evers, A.G.; Murrough, J.W.; Charney, D.S.; Costi, S. Ketamine as a prophylactic resilience-enhancing agent. Front. Psychiatry, 2022, 13, 833259.
[http://dx.doi.org/10.3389/fpsyt.2022.833259]
[705]
Brachman, R.A.; McGowan, J.C.; Perusini, J.N.; Lim, S.C.; Pham, T.H.; Faye, C.; Gardier, A.M.; Mendez-David, I.; David, D.J.; Hen, R.; Denny, C.A. Ketamine as a prophylactic against stress-induced depressive-like behavior. Biol. Psychiatry, 2016, 79(9), 776-786.
[http://dx.doi.org/10.1016/j.biopsych.2015.04.022]
[706]
Mastrodonato, A.; Martinez, R.; Pavlova, I.P.; LaGamma, C.T.; Brachman, R.A.; Robison, A.J.; Denny, C.A. Ventral CA3 activation mediates prophylactic ketamine efficacy against stress-induced depressive-like behavior. Biol. Psychiatry, 2018, 84(11), 846-856.
[http://dx.doi.org/10.1016/j.biopsych.2018.02.011]
[707]
McGowan, J.C.; LaGamma, C.T.; Lim, S.C.; Tsitsiklis, M.; Neria, Y.; Brachman, R.A.; Denny, C.A. Prophylactic ketamine attenuates learned fear. Neuropsychopharmacology, 2017, 42(8), 1577-1589.
[http://dx.doi.org/10.1038/npp.2017.19]
[708]
Sala, N.; Paoli, C.; Bonifacino, T.; Mingardi, J.; Schiavon, E.; La Via, L.; Milanese, M.; Tornese, P.; Datusalia, A.K.; Rosa, J.; Facchinetti, R.; Frumento, G.; Carini, G.; Salerno Scarzella, F.; Scuderi, C.; Forti, L.; Barbon, A.; Bonanno, G.; Popoli, M.; Musazzi, L. Acute ketamine facilitates fear memory extinction in a rat model of PTSD along with restoring glutamatergic alterations and dendritic atrophy in the pre-frontal cortex. Front. Pharmacol., 2022, 13, 759626.
[http://dx.doi.org/10.3389/fphar.2022.759626]
[709]
Lazarevic, V.; Yang, Y.; Flais, I.; Svenningsson, P. Ketamine decreases neuronally released glutamate via retrograde stimulation of pre-synaptic adenosine A1 receptors. Mol. Psychiatry, 2021, 26(12), 7425-7435.
[http://dx.doi.org/10.1038/s41380-021-01246-3]
[710]
Asim, M.; Hao, B.; Waris, A.; Liang, Y.M.; Wang, X.G. Ketamine attenuates the PTSD-like effect via regulation of glutamatergic signaling in the nucleus accumbens of mice. Mol. Cell. Neurosci., 2022, 120, 103723.
[http://dx.doi.org/10.1016/j.mcn.2022.103723]
[711]
Feder, A.; Rutter, S.B.; Schiller, D.; Charney, D.S. The emergence of ketamine as a novel treatment for posttraumatic stress disorder. Adv. Pharmacol., 2020, 89, 261-286.
[http://dx.doi.org/10.1016/bs.apha.2020.05.004]
[712]
Hasler, G. Toward specific ways to combine ketamine and psychotherapy in treating depression. CNS Spectr., 2020, 25(3), 445-447.
[http://dx.doi.org/10.1017/S1092852919001007]
[713]
Clinical Trial. NCT04889664; , 2021. Available from: https://ClinicalTrials.gov/show/NCT04889664
[714]
Mollaahmetoglu, O.M.; Keeler, J.; Ashbullby, K.J.; Ketzitzidou-Argyri, E.; Grabski, M.; Morgan, C.J.A. “This is something that changed my life”: A qualitative study of patients’ experiences in a clinical trial of ketamine treatment for alcohol use disorders. Front. Psychiatry, 2021, 12, 695335.
[http://dx.doi.org/10.3389/fpsyt.2021.695335]
[715]
Krupitsky, E.M.; Grinenko, A.Y. Ketamine psychedelic therapy (KPT): A review of the results of ten years of research. J. Psychoactive Drugs, 1997, 29(2), 165-183.
[http://dx.doi.org/10.1080/02791072.1997.10400185]
[716]
Rothberg, R.L.; Azhari, N.; Haug, N.A.; Dakwar, E. Mystical-type experiences occasioned by ketamine mediate its impact on at-risk drinking: Results from a randomized, controlled trial. J. Psychopharmacol., 2021, 35(2), 150-158.
[http://dx.doi.org/10.1177/0269881120970879]
[717]
Dakwar, E.; Anerella, C.; Hart, C.L.; Levin, F.R.; Mathew, S.J.; Nunes, E.V. Therapeutic infusions of ketamine: Do the psychoactive effects matter? Drug Alcohol Depend., 2014, 136, 153-157.
[http://dx.doi.org/10.1016/j.drugalcdep.2013.12.019]
[718]
Dakwar, E.; Nunes, E.V.; Hart, C.L.; Hu, M.C.; Foltin, R.W.; Levin, F.R. A sub-set of psychoactive effects may be critical to the behavioral impact of ketamine on cocaine use disorder: Results from a randomized, controlled laboratory study. Neuropharmacology, 2018, 142, 270-276.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.005]
[719]
Veen, C.; Jacobs, G.; Philippens, I.; Vermetten, E. Subanesthetic dose ketamine in posttraumatic stress disorder: A role for reconsolidation during trauma-focused psychotherapy?Behavioral Neurobiology of PTSD. Current Topics in Behavioral Neurosciences; Vermetten, E.; Baker, D.G.; Risbrough, V.B., Eds.; Springer International Publishing: Cham, 2018, pp. 137-162.
[http://dx.doi.org/10.1007/7854_2017_34]
[720]
Sumner, R.L.; Chacko, E.; McMillan, R.; Spriggs, M.J.; Anderson, C.; Chen, J.; French, A.; Jung, S.H.; Rajan, A.; Malpas, G.; Hay, J.; Ponton, R.; Muthukumaraswamy, S.D.; Sundram, F. A qualitative and quantitative account of patient’s experiences of ketamine and its antidepressant properties. J. Psychopharmacol., 2021, 35(8), 946-961.
[http://dx.doi.org/10.1177/0269881121998321]
[721]
Joneborg, I.; Lee, Y.; Di Vincenzo, J.D.; Ceban, F.; Meshkat, S.; Lui, L.M.W.; Fancy, F.; Rosenblat, J.D.; McIntyre, R.S. Active mechanisms of ketamine-assisted psychotherapy: A systematic review. J. Affect. Disord., 2022, 315, 105-112.
[http://dx.doi.org/10.1016/j.jad.2022.07.030]
[722]
Price, RB; Spotts, C; Panny, BA Novel, Brief, Fully automated intervention to extend the antidepressant effect of a single ketamine infusion: A randomized clinical trial. Am. J. Psychiat., 2022, 20220216.
[723]
Feder, A.; Costi, S.; Rutter, S.B.; Collins, A.B.; Govindarajulu, U.; Jha, M.K.; Horn, S.R.; Kautz, M.; Corniquel, M.; Collins, K.A.; Bevilacqua, L.; Glasgow, A.M.; Brallier, J.; Pietrzak, R.H.; Murrough, J.W.; Charney, D.S. A randomized controlled trial of repeated ketamine administration for chronic posttraumatic stress disorder. Am. J. Psychiatry, 2021, 178(2), 193-202.
[http://dx.doi.org/10.1176/appi.ajp.2020.20050596]
[724]
Abdallah, C.G.; Roache, J.D.; Gueorguieva, R.; Averill, L.A.; Young-McCaughan, S.; Shiroma, P.R.; Purohit, P.; Brundige, A.; Murff, W.; Ahn, K-H.; Sherif, M.A.; Baltutis, E.J.; Ranganathan, M.; D’Souza, D.; Martini, B.; Southwick, S.M.; Petrakis, I.L.; Burson, R.R.; Guthmiller, K.B.; López-Roca, A.L.; Lautenschlager, K.A.; McCallin, J.P., III; Hoch, M.B.; Timchenko, A.; Souza, S.E.; Bryant, C.E.; Mintz, J.; Litz, B.T.; Williamson, D.E.; Keane, T.M.; Peterson, A.L.; Krystal, J.H. Dose-related effects of ketamine for antidepressant-resistant symptoms of posttraumatic stress disorder in veterans and active duty military: A double-blind, randomized, placebo-controlled multi-center clinical trial. Neuropsychopharmacology, 2022, 47(8), 1574-1581.
[http://dx.doi.org/10.1038/s41386-022-01266-9]
[725]
Mischel, N.A.; Balon, R. Esketamine. J. Clin. Psychopharmacol., 2021, 41(3), 233-235.
[http://dx.doi.org/10.1097/JCP.0000000000001395]
[726]
Commissioner Oot. FDA approves new nasal spray medication for treatmentresistant depression: Available only at a certified doctor’s office or clinic Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-new-nasal-spray-medicationtreatment-resistant-depression-available-only-certified ([updated Tue, 03/24/2020 - 22:210
[727]
Murrough, J.W.; Iosifescu, D.V.; Chang, L.C.; Al Jurdi, R.K.; Green, C.E.; Perez, A.M.; Iqbal, S.; Pillemer, S.; Foulkes, A.; Shah, A.; Charney, D.S.; Mathew, S.J. Antidepressant efficacy of ketamine in treatmentresistant major depression: A two-site randomized controlled trial. Am. J. Psychiatry, 2013, 170(10), 1134-1142.
[http://dx.doi.org/10.1176/appi.ajp.2013.13030392]
[728]
Shiroma, P.R.; Thuras, P.; Wels, J.; Albott, C.S.; Erbes, C.; Tye, S.; Lim, K.O. A randomized, double-blind, active placebo-controlled study of efficacy, safety, and durability of repeated vs single subanesthetic ketamine for treatment-resistant depression. Transl. Psychiatry, 2020, 10(1), 206.
[http://dx.doi.org/10.1038/s41398-020-00897-0]
[729]
Ross, C.; Jain, R.; Bonnett, C.J.; Wolfson, P. High-dose ketamine infusion for the treatment of posttraumatic stress disorder in combat veterans. Ann. Clin. Psychiatry, 2019, 31(4), 271-279.
[730]
Albott, C.S.; Lim, K.O.; Forbes, M.K. Efficacy, safety, and durability of repeated ketamine infusions for comorbid posttraumatic stress disorder and treatmentresistant depression. The J. Clin. Psych., 2018, 79(3), 17m11634.
[731]
Keizer, B.M.; Roache, J.D.; Jones, J.R.; Kalpinski, R.J.; Porcerelli, J.H.; Krystal, J.H. Continuous ketamine infusion for pain as an opportunity for psychotherapy for PTSD: A case series of ketamine-enhanced psychotherapy for PTSD and Pain (KEP-P2). Psychother. Psychosom., 2020, 89(5), 326-329.
[http://dx.doi.org/10.1159/000507095]
[732]
Shiroma, P.R.; Johns, B.; Kuskowski, M.; Wels, J.; Thuras, P.; Albott, C.S.; Lim, K.O. Augmentation of response and remission to serial intravenous subanesthetic ketamine in treatment resistant depression. J. Affect. Disord., 2014, 155, 123-129.
[http://dx.doi.org/10.1016/j.jad.2013.10.036]
[733]
Pradhan, B.; Wainer, I.; Moaddel, R.; Torjman, M.C.; Goldberg, M.; Sabia, M.; Parikh, T.; Pumariega, A.J. Trauma Interventions using Mindfulness Based Extinction and Reconsolidation (TIMBER) psychotherapy prolong the therapeutic effects of single ketamine infusion on post-traumatic stress disorder and comorbid depression: a pilot randomized, placebo-controlled, crossover clinical trial. Asia Pacif. J. Clin. Trial.Nerv. Sys. Dis., 2017, 2(3), 80.
[http://dx.doi.org/10.4103/2542-3932.211589]
[734]
Research VOo. ClinicalTrialsgov. NCT04560660, 2021. Available from: https://ClinicalTrials.gov/show/NCT04560660
[735]
University Qs. Combined Ketamine and eCBT Intervention for PTSD. 2021. Available from: https://ClinicalTrials.gov/show/NCT04771767
[736]
Kelly, J.R.; Gillan, C.M.; Prenderville, J.; Kelly, C.; Harkin, A.; Clarke, G.; O’Keane, V. Psychedelic therapy’s transdiagnostic effects: A research domain criteria (RDoC) perspective. Front. Psychiatry, 2021, 12, 800072.
[http://dx.doi.org/10.3389/fpsyt.2021.800072]
[737]
Baldwin, J.R.; Reuben, A.; Newbury, J.B.; Danese, A. Agreement between prospective and retrospective measures of childhood maltreatment. JAMA Psychiatry, 2019, 76(6), 584-593.
[http://dx.doi.org/10.1001/jamapsychiatry.2019.0097]
[738]
Collishaw, S.; Pickles, A.; Messer, J.; Rutter, M.; Shearer, C.; Maughan, B. Resilience to adult psychopathology following childhood maltreatment: Evidence from a community sample. Child Abuse Negl., 2007, 31(3), 211-229.
[http://dx.doi.org/10.1016/j.chiabu.2007.02.004]
[739]
Felitti, V.J.; Anda, R.F.; Nordenberg, D.; Williamson, D.F.; Spitz, A.M.; Edwards, V.; Koss, M.P.; Marks, J.S. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am. J. Prev. Med., 1998, 14(4), 245-258.
[http://dx.doi.org/10.1016/S0749-3797(98)00017-8]
[740]
McLaughlin, K.A.; Conron, K.J.; Koenen, K.C.; Gilman, S.E. Childhood adversity, adult stressful life events, and risk of past-year psychiatric disorder: A test of the stress sensitization hypothesis in a population-based sample of adults. Psychol. Med., 2010, 40(10), 1647-1658.
[http://dx.doi.org/10.1017/S0033291709992121]
[741]
(US) CfSAT. Trauma-Informed Care in Behavioral Health Services. Rockville (MD); Substance Abuse and Mental Health Services Administration: US, 2014.
[742]
Carlson, E.B.; Rosser-Hogan, R. Trauma experiences, posttraumatic stress, dissociation, and depression in Cambodian refugees. Am. J. Psychiatry, 1991, 148(11), 1548-1551.
[http://dx.doi.org/10.1176/ajp.148.11.1548]
[743]
Grant, D.M.; Beck, J.G.; Marques, L.; Palyo, S.A.; Clapp, J.D. The structure of distress following trauma: Posttraumatic stress disorder, major depressive disorder, and generalized anxiety disorder. J. Abnorm. Psychol., 2008, 117(3), 662-672.
[http://dx.doi.org/10.1037/a0012591]
[744]
Gros, D.F.; Price, M.; Magruder, K.M.; Frueh, B.C. Symptom overlap in posttraumatic stress disorder and major depression. Psychiatry Res., 2012, 196(2-3), 267-270.
[http://dx.doi.org/10.1016/j.psychres.2011.10.022]
[745]
Levitan, R.D.; Parikh, S.V.; Lesage, A.D.; Hegadoren, K.M.; Adams, M.; Kennedy, S.H.; Goering, P.N. Major depression in individuals with a history of childhood physical or sexual abuse: relationship to neurovegetative features, mania, and gender. Am. J. Psychiatry, 1998, 155(12), 1746-1752.
[http://dx.doi.org/10.1176/ajp.155.12.1746]
[746]
Singer, M.I.; Anglin, T.M.; Song, L.Y.; Lunghofer, L. Adolescents’ exposure to violence and associated symptoms of psychological trauma. JAMA, 1995, 273(6), 477-482.
[http://dx.doi.org/10.1001/jama.1995.03520300051036]
[747]
Artin, H.; Zisook, S.; Ramanathan, D. How do serotonergic psychedelics treat depression: The potential role of neuroplasticity. World J. Psychiatry, 2021, 11(6), 201-214.
[http://dx.doi.org/10.5498/wjp.v11.i6.201]
[748]
Kuburi, S.; Di Passa, A.M.; Tassone, V.K.; Mahmood, R.; Lalovic, A.; Ladha, K.S.; Dunlop, K.; Rizvi, S.; Demchenko, I.; Bhat, V. Neuroimaging correlates of treatment response with psychedelics in major depressive disorder: A systematic review. Chronic Stress, 2022, 6
[http://dx.doi.org/10.1177/24705470221115342]
[749]
Carhart-Harris, R.L.; Bolstridge, M.; Rucker, J.; Day, C.M.J.; Erritzoe, D.; Kaelen, M.; Bloomfield, M.; Rickard, J.A.; Forbes, B.; Feilding, A.; Taylor, D.; Pilling, S.; Curran, V.H.; Nutt, D.J. Psilocybin with psychological support for treatment-resistant depression: An open-label feasibility study. Lancet Psychiatry, 2016, 3(7), 619-627.
[http://dx.doi.org/10.1016/S2215-0366(16)30065-7]
[750]
Carhart-Harris, R.L.; Bolstridge, M.; Day, C.M.J.; Rucker, J.; Watts, R.; Erritzoe, D.E.; Kaelen, M.; Giribaldi, B.; Bloomfield, M.; Pilling, S.; Rickard, J.A.; Forbes, B.; Feilding, A.; Taylor, D.; Curran, H.V.; Nutt, D.J. Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacology, 2018, 235(2), 399-408.
[http://dx.doi.org/10.1007/s00213-017-4771-x]
[751]
Pribish, A.; Wood, N.; Kalava, A. A review of nonanesthetic uses of ketamine. Anesthesiol. Res. Pract., 2020, 2020, 1-15.
[http://dx.doi.org/10.1155/2020/5798285]
[752]
Mathew, S.J.; Shah, A.; Lapidus, K.; Clark, C.; Jarun, N.; Ostermeyer, B.; Murrough, J.W. Ketamine for treatment-resistant unipolar depression: Current evidence. CNS Drugs, 2012, 26(3), 189-204.
[http://dx.doi.org/10.2165/11599770-000000000-00000]
[753]
Ignácio, Z.M.; Réus, G.Z.; Arent, C.O.; Abelaira, H.M.; Pitcher, M.R.; Quevedo, J. New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br. J. Clin. Pharmacol., 2016, 82(5), 1280-1290.
[http://dx.doi.org/10.1111/bcp.12845]
[754]
Aleksandrova, L.R.; Phillips, A.G.; Wang, Y.T. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. J. Psychiatry Neurosci., 2017, 42(4), 222-229.
[http://dx.doi.org/10.1503/jpn.160175]
[755]
Lara, D.R.; Bisol, L.W.; Munari, L.R. Antidepressant, mood stabilizing and procognitive effects of very low dose sublingual ketamine in refractory unipolar and bipolar depression. Int. J. Neuropsychopharmacol., 2013, 16(9), 2111-2117.
[http://dx.doi.org/10.1017/S1461145713000485]
[756]
Rasmussen, K.G.; Lineberry, T.W.; Galardy, C.W.; Kung, S.; Lapid, M.I.; Palmer, B.A.; Ritter, M.J.; Schak, K.M.; Sola, C.L.; Hanson, A.J.; Frye, M.A. Serial infusions of low-dose ketamine for major depression. J. Psychopharmacol., 2013, 27(5), 444-450.
[http://dx.doi.org/10.1177/0269881113478283]
[757]
Xu, Y.; Hackett, M.; Carter, G.; Loo, C.; Gálvez, V.; Glozier, N.; Glue, P.; Lapidus, K.; McGirr, A.; Somogyi, A.A.; Mitchell, P.B.; Rodgers, A. Effects of low-dose and very low-dose ketamine among patients with major depression: A systematic review and meta-analysis. Int. J. Neuropsychopharmacol., 2016, 19(4), pyv124.
[http://dx.doi.org/10.1093/ijnp/pyv124]
[758]
Khoury, L.; Tang, Y.L.; Bradley, B.; Cubells, J.F.; Ressler, K.J. Substance use, childhood traumatic experience, and Posttraumatic Stress Disorder in an urban civilian population. Depress. Anxiety, 2010, 27(12), 1077-1086.
[http://dx.doi.org/10.1002/da.20751]
[759]
Sacks, J.Y.; McKendrick, K.; Banks, S. The impact of early trauma and abuse on residential substance abuse treatment outcomes for women. J. Subst. Abuse Treat., 2008, 34(1), 90-100.
[http://dx.doi.org/10.1016/j.jsat.2007.01.010]
[760]
Khantzian, E.J. The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence; Springer, 1987.
[761]
DiVito, A.J.; Leger, R.F. Psychedelics as an emerging novel intervention in the treatment of substance use disorder: a review. Mol. Biol. Rep., 2020, 47(12), 9791-9799.
[http://dx.doi.org/10.1007/s11033-020-06009-x]
[762]
Bogenschutz, M.P.; Johnson, M.W. Classic hallucinogens in the treatment of addictions. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 250-258.
[http://dx.doi.org/10.1016/j.pnpbp.2015.03.002]
[763]
Bogenschutz, M.P.; Forcehimes, A.A.; Pommy, J.A.; Wilcox, C.E.; Barbosa, P.C.R.; Strassman, R.J. Psilocybin-assisted treatment for alcohol dependence: A proof-of-concept study. J. Psychopharmacol., 2015, 29(3), 289-299.
[http://dx.doi.org/10.1177/0269881114565144]
[764]
Rodrigues, L.S.; Rossi, G.N.; Rocha, J.M.; L Osório, F.; Bouso, J.C.; Hallak, J.E.C.; dos Santos, R.G. Effects of ayahuasca and its alkaloids on substance use disorders: An updated (2016-2020) systematic review of preclinical and human studies. Eur. Arch. Psychiatry Clin. Neurosci., 2022, 272(4), 541-556.
[http://dx.doi.org/10.1007/s00406-021-01267-7]
[765]
Fábregas, J.M.; González, D.; Fondevila, S.; Cutchet, M.; Fernández, X.; Barbosa, P.C.R.; Alcázar-Córcoles, M.Á.; Barbanoj, M.J.; Riba, J.; Bouso, J.C. Assessment of addiction severity among ritual users of ayahuasca. Drug Alcohol Depend., 2010, 111(3), 257-261.
[http://dx.doi.org/10.1016/j.drugalcdep.2010.03.024]
[766]
Thomas, G.; Lucas, P.; Capler, N.; Tupper, K.; Martin, G. Ayahuasca-assisted therapy for addiction: Results from a preliminary observational study in Canada. Curr. Drug Abuse Rev., 2013, 6(1), 30-42.
[http://dx.doi.org/10.2174/15733998113099990003]
[767]
Doering-Silveira, E.; Grob, C.S.; de Rios, M.D.; Lopez, E.; Alonso, L.K.; Tacla, C.; Da Silveira, D.X. Report on psychoactive drug use among adolescents using ayahuasca within a religious context. J. Psychoactive Drugs, 2005, 37(2), 141-144.
[http://dx.doi.org/10.1080/02791072.2005.10399794]
[768]
Bouso, J.C.; Riba, J. Ayahuasca and the treatment of drug addiction. The Therapeutic use of Ayahuasca., 2014, 95-104.
[http://dx.doi.org/10.1007/978-3-642-40426-9_6]
[769]
Loizaga-Velder, A.; Verres, R. Therapeutic effects of ritual ayahuasca use in the treatment of substance dependence—qualitative results. J. Psychoactive Drugs, 2014, 46(1), 63-72.
[http://dx.doi.org/10.1080/02791072.2013.873157]
[770]
Sessa, B.; Higbed, L.; Nutt, D. A review of 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy. Front. Psychiatry, 2019, 10, 138.
[http://dx.doi.org/10.3389/fpsyt.2019.00138]
[771]
Grabski, M.; McAndrew, A.; Lawn, W.; Marsh, B.; Raymen, L.; Stevens, T.; Hardy, L.; Warren, F.; Bloomfield, M.; Borissova, A.; Maschauer, E.; Broomby, R.; Price, R.; Coathup, R.; Gilhooly, D.; Palmer, E.; Gordon-Williams, R.; Hill, R.; Harris, J.; Mollaahmetoglu, O.M.; Curran, H.V.; Brandner, B.; Lingford-Hughes, A.; Morgan, C.J.A. Adjunctive ketamine with relapse prevention-based psychological therapy in the treatment of alcohol use disorder. Am. J. Psychiatry, 2022, 179(2), 152-162.
[http://dx.doi.org/10.1176/appi.ajp.2021.21030277]
[772]
Jovaiša, T.; Laurinėnas, G.; Vosylius, S. Effects of ketamine on precipitated opiate withdrawal. Medicina, 2006, 42(8), 625-634.
[773]
Dakwar, E.; Nunes, E.V.; Hart, C.L.; Foltin, R.W.; Mathew, S.J.; Carpenter, K.M.; Choi, C.J.J.; Basaraba, C.N.; Pavlicova, M.; Levin, F.R. A single ketamine infusion combined with mindfulness-based behavioral modification to treat cocaine dependence: A randomized clinical trial. Am. J. Psychiatry, 2019, 176(11), 923-930.
[http://dx.doi.org/10.1176/appi.ajp.2019.18101123]
[774]
Krupitsky, E.; Burakov, A.; Romanova, T.; Dunaevsky, I.; Strassman, R.; Grinenko, A. Ketamine psychotherapy for heroin addiction: Immediate effects and two-year follow-up. J. Subst. Abuse Treat., 2002, 23(4), 273-283.
[http://dx.doi.org/10.1016/S0740-5472(02)00275-1]
[775]
Yaden, D.B.; Nayak, S.M.; Gukasyan, N.; Anderson, B.T.; Griffiths, R.R. The potential of psychedelics for end of life and palliative care; Disruptive Psychopharmacology, 2021, pp. 169-184.
[http://dx.doi.org/10.1007/7854_2021_278]
[776]
Castellanos, J.P.; Woolley, C.; Bruno, K.A.; Zeidan, F.; Halberstadt, A.; Furnish, T. Chronic pain and psychedelics: A review and proposed mechanism of action. Reg. Anesth. Pain Med., 2020, 45(7), 486-494.
[http://dx.doi.org/10.1136/rapm-2020-101273]
[777]
Yu, C.L.; Yang, F.C.; Yang, S.N.; Tseng, P.T.; Stubbs, B.; Yeh, T.C.; Hsu, C.W.; Li, D.J.; Liang, C.S. Psilocybin for end-of-life anxiety symptoms: A systematic review and meta-analysis. Psychiatry Investig., 2021, 18(10), 958-967.
[http://dx.doi.org/10.30773/pi.2021.0209]
[778]
Gasser, P.; Kirchner, K.; Passie, T. LSD-assisted psychotherapy for anxiety associated with a life-threatening disease: A qualitative study of acute and sustained subjective effects. J. Psychopharmacol., 2015, 29(1), 57-68.
[http://dx.doi.org/10.1177/0269881114555249]
[779]
Sharp, T.J.; Harvey, A.G. Chronic pain and posttraumatic stress disorder: Mutual maintenance? Clin. Psychol. Rev., 2001, 21(6), 857-877.
[http://dx.doi.org/10.1016/S0272-7358(00)00071-4]
[780]
Beck, J.G.; Clapp, J.D. A different kind of comorbidity: Understanding posttraumatic stress disorder and chronic pain. Psychol. Trauma, 2011, 3(2), 101-108.
[http://dx.doi.org/10.1037/a0021263]
[781]
Schindler, E.A.D. Psychedelics in the treatment of headache and chronic pain disorders. Disruptive Psychopharmacology. Current Topics in Behavioral Neurosciences; Barrett, F.S.; Preller, K.H., Eds.; Springer International Publishing: Cham, 2022, pp. 261-285.
[http://dx.doi.org/10.1007/7854_2022_365]
[782]
Christie, D.; Yazar-Klosinski, B.; Nosova, E.; Kryskow, P.; Siu, W.; Lessor, D.; Argento, E. MDMA-assisted therapy is associated with a reduction in chronic pain among people with post-traumatic stress disorder. Front. Psychiatry, 2022, 13, 939302.
[http://dx.doi.org/10.3389/fpsyt.2022.939302]
[783]
Edinoff, A.N.; Fort, J.M.; Singh, C.; Wagner, S.E.; Rodriguez, J.R.; Johnson, C.A.; Cornett, E.M.; Murnane, K.S.; Kaye, A.M.; Kaye, A.D. Alternative options for complex, recurrent pain states using cannabinoids, psilocybin, and ketamine: A narrative review of clinical evidence. Neurol. Int., 2022, 14(2), 423-436.
[http://dx.doi.org/10.3390/neurolint14020035]
[784]
Ramaekers, J.G.; Hutten, N.; Mason, N.L.; Dolder, P.; Theunissen, E.L.; Holze, F.; Liechti, M.E.; Feilding, A.; Kuypers, K.P.C. A low dose of lysergic acid diethylamide decreases pain perception in healthy volunteers. J. Psychopharmacol., 2021, 35(4), 398-405.
[http://dx.doi.org/10.1177/0269881120940937]
[785]
Bonnelle, V.; Smith, W.J.; Mason, N.L.; Cavarra, M.; Kryskow, P.; Kuypers, K.P.C.; Ramaekers, J.G.; Feilding, A. Analgesic potential of macrodoses and microdoses of classical psychedelics in chronic pain sufferers: A population survey. Br. J. Pain, 2022, 16(6), 619-631.
[http://dx.doi.org/10.1177/20494637221114962]
[786]
Chaparro, L.E.; Smith, S.A.; Moore, R.A.; Wiffen, P.J.; Gilron, I. Pharmacotherapy for the prevention of chronic pain after surgery in adults. Cochrane Database Syst. Rev., 2013, 2013(7), CD008307.
[787]
Aveline, C.; Roux, A.L.; Hetet, H.L.; Gautier, J.F.; Vautier, P.; Cognet, F.; Bonnet, F. Pain and recovery after total knee arthroplasty: a 12-month follow-up after a prospective randomized study evaluating Nefopam and Ketamine for early rehabilitation. Clin. J. Pain, 2014, 30(9), 749-754.
[http://dx.doi.org/10.1097/AJP.0000000000000033]
[788]
Michelet, D.; Brasher, C.; Horlin, A.L.; Bellon, M.; Julien-Marsollier, F.; Vacher, T.; Pontone, S.; Dahmani, S. Ketamine for chronic non-cancer pain: A meta-analysis and trial sequential analysis of randomized controlled trials. Eur. J. Pain, 2018, 22(4), 632-646.
[http://dx.doi.org/10.1002/ejp.1153]
[789]
Orhurhu, V.; Orhurhu, M.S.; Bhatia, A.; Cohen, S.P. Ketamine infusions for chronic pain: A systematic review and meta-analysis of randomized controlled trials. Anesth. Analg., 2019, 129(1), 241-254.
[http://dx.doi.org/10.1213/ANE.0000000000004185]
[790]
Grande, L.; Delacruz, H.; Thompson, M.; Terman, G.; Rosenblatt, R. (417) Oral ketamine for chronic pain: A 32-subject placebo-controlled trial in patients on chronic opioids. J. Pain, 2016, 17(4), S78-S79.
[http://dx.doi.org/10.1016/j.jpain.2016.01.394]
[791]
Marchetti, F.; Coutaux, A.; Bellanger, A.; Magneux, C.; Bourgeois, P.; Mion, G. Efficacy and safety of oral ketamine for the relief of intractable chronic pain: A retrospective 5-year study of 51 patients. Eur. J. Pain, 2015, 19(7), 984-993.
[http://dx.doi.org/10.1002/ejp.624]
[792]
Niesters, M.; Martini, C.; Dahan, A. Ketamine for chronic pain: Risks and benefits. Br. J. Clin. Pharmacol., 2014, 77(2), 357-367.
[http://dx.doi.org/10.1111/bcp.12094]
[793]
Avanceña, A.L.V.; Kahn, J.G.; Marseille, E. The costs and health benefits of expanded access to MDMA-assisted therapy for chronic and severe PTSD in the USA: A modeling study. Clin. Drug Investig., 2022, 42(3), 243-252.
[http://dx.doi.org/10.1007/s40261-022-01122-0]
[794]
Marseille, E.; Kahn, J.G.; Yazar-Klosinski, B.; Doblin, R. The cost-effectiveness of MDMA-assisted psychotherapy for the treatment of chronic, treatment-resistant PTSD. PLoS One, 2020, 15(10), e0239997.
[http://dx.doi.org/10.1371/journal.pone.0239997]
[795]
Marseille, E.; Mitchell, J.M.; Kahn, J.G. Updated cost-effectiveness of MDMA-assisted therapy for the treatment of posttraumatic stress disorder in the United States: Findings from a phase 3 trial. PLoS One, 2022, 17(2), e0263252.
[http://dx.doi.org/10.1371/journal.pone.0263252]
[796]
Morland, L.A.; Wells, S.Y.; Glassman, L.H.; Greene, C.J.; Hoffman, J.E.; Rosen, C.S. Advances in PTSD treatment delivery: Review of findings and clinical considerations for the use of telehealth interventions for PTSD. Curr. Treat. Options Psychiatry, 2020, 7(3), 221-241.
[http://dx.doi.org/10.1007/s40501-020-00215-x]
[797]
Smith, J.R.; Workneh, A.; Yaya, S. Barriers and facilitators to help-seeking for individuals with posttraumatic stress disorder: A systematic review. J. Trauma. Stress, 2020, 33(2), 137-150.
[http://dx.doi.org/10.1002/jts.22456]
[798]
Vargas, M.V.; Meyer, R.; Avanes, A.A.; Rus, M.; Olson, D.E. Psychedelics and other psychoplastogens for treating mental illness. Front. Psychiatry, 2021, 12, 727117.
[http://dx.doi.org/10.3389/fpsyt.2021.727117]
[799]
Wilkinson, S.T.; Holtzheimer, P.E.; Gao, S.; Kirwin, D.S.; Price, R.B. Leveraging neuroplasticity to enhance adaptive learning: The potential for synergistic somatic-behavioral treatment combinations to improve clinical outcomes in depression. Biol. Psychiatry, 2019, 85(6), 454-465.
[http://dx.doi.org/10.1016/j.biopsych.2018.09.004]
[800]
Zanos, P.; Highland, J.N.; Liu, X.; Troppoli, T.A.; Georgiou, P.; Lovett, J.; Morris, P.J.; Stewart, B.W.; Thomas, C.J.; Thompson, S.M.; Moaddel, R.; Gould, T.D. (R)-Ketamine exerts antidepressant actions partly via conversion to (2R,6R)-hydroxynorketamine, while causing adverse effects at sub-anaesthetic doses. Br. J. Pharmacol., 2019, 176(14), 2573-2592.
[http://dx.doi.org/10.1111/bph.14683]
[801]
Watkins, L.E.; Sprang, K.R.; Rothbaum, B.O. Treating PTSD: A review of evidence-based psychotherapy interventions. Front. Behav. Neurosci., 2018, 12, 258.
[http://dx.doi.org/10.3389/fnbeh.2018.00258]
[802]
Gutner, C.A.; Gallagher, M.W.; Baker, A.S.; Sloan, D.M.; Resick, P.A. Time course of treatment dropout in cognitive-behavioral therapies for posttraumatic stress disorder. Psychol. Trauma, 2016, 8(1), 115-121.
[http://dx.doi.org/10.1037/tra0000062]
[803]
Hundt, N.E.; Helm, A.; Smith, T.L.; Lamkin, J.; Cully, J.A.; Stanley, M.A. Failure to engage: A qualitative study of veterans who decline evidence-based psychotherapies for PTSD. Psychol. Serv., 2018, 15(4), 536-542.
[http://dx.doi.org/10.1037/ser0000212]
[804]
Wells, S.Y.; Morland, L.A.; Hurst, S. Veterans’ reasons for dropping out of prolonged exposure therapy across three delivery modalities: A qualitative examination. Psychol. Serv., 2022, 20(3), 483-495.
[805]
Goldstein, L.A.; Colvonen, P.J.; Sarmiento, K.F. Advancing treatment of comorbid PTSD and OSA. J. Clin. Sleep Med., 2017, 13(6), 843-844.
[http://dx.doi.org/10.5664/jcsm.6638]
[806]
Michaels, T.I.; Purdon, J.; Collins, A.; Williams, M.T. Inclusion of people of color in psychedelic-assisted psychotherapy: A review of the literature. BMC Psychiatry, 2018, 18(1), 245.
[http://dx.doi.org/10.1186/s12888-018-1824-6]
[807]
Goldstein, R.B.; Smith, S.M.; Chou, S.P.; Saha, T.D.; Jung, J.; Zhang, H.; Pickering, R.P.; Ruan, W.J.; Huang, B.; Grant, B.F. The epidemiology of DSM-5 posttraumatic stress disorder in the United States: Results from the National Epidemiologic Survey on Alcohol and Related Conditions-III. Soc. Psychiatry Psychiatr. Epidemiol., 2016, 51(8), 1137-1148.
[http://dx.doi.org/10.1007/s00127-016-1208-5]
[808]
Thrul, J.; Garcia-Romeu, A. Whitewashing psychedelics: Racial equity in the emerging field of psychedelic-assisted mental health research and treatment. Drugs Educ. Prev. Policy, 2021, 28(3), 211-214.
[http://dx.doi.org/10.1080/09687637.2021.1897331]
[809]
Eylem, O.; De Wit, L.; Van Straten, A. Stigma for common mental disorders in racial minorities and majorities a systematic review and meta-analysis. BMC Public Health, 2020, 20(1), 1-20.
[810]
Williams, M.T.; Metzger, I.W.; Leins, C.; DeLapp, C. Assessing racial trauma within a DSM-5 framework: The UConn Racial/] Ethnic Stress & Trauma Survey. Pract. Innov., 2018, 3(4), 242-260.
[http://dx.doi.org/10.1037/pri0000076]
[811]
Meyer, O.L.; Zane, N. The influence of race and ethnicity in clients’ experiences of mental health treatment. J. Community Psychol., 2013, 41(7), 884-901.
[http://dx.doi.org/10.1002/jcop.21580]
[812]
Leary, T. Drugs, set & suggestibility [Paper presentation]. Annual meeting of the American Psychological Association, 1961.
[813]
Ulrich, R.S.; Bogren, L.; Gardiner, S.K.; Lundin, S. Psychiatric ward design can reduce aggressive behavior. J. Environ. Psychol., 2018, 57, 53-66.
[http://dx.doi.org/10.1016/j.jenvp.2018.05.002]
[814]
Ulrich, R.S. Effects of interior design on wellness: Theory and recent scientific research. J. Health Care Interior. Design., 1991, 3, 97-109.
[815]
Papoulias, C.; Csipke, E.; Rose, D.; McKellar, S.; Wykes, T. The psychiatric ward as a therapeutic space: Systematic review. Br. J. Psychiatry, 2014, 205(3), 171-176.
[http://dx.doi.org/10.1192/bjp.bp.114.144873]
[816]
Iyendo, T.O. Exploring the effect of sound and music on health in hospital settings: A narrative review. Int. J. Nurs. Stud., 2016, 63, 82-100.
[http://dx.doi.org/10.1016/j.ijnurstu.2016.08.008]
[817]
McCartney, A.; McGovern, H.; De Foe, A. Predictors of psychedelic experience: A thematic analysis. J. Psychoactive Drugs, 2022, 1-9.
[818]
Rucker, J.J.H.; Iliff, J.; Nutt, D. J. Psychiatry & the psychedelic drugs. Past, present & future. Neuropharmacology, 2018, 142, 200-218.
[http://dx.doi.org/10.1016/j.neuropharm.2017.12.040]
[819]
Colloca, L.; Barsky, A.J. Placebo and nocebo effects. N. Engl. J. Med., 2020, 382(6), 554-561.
[http://dx.doi.org/10.1056/NEJMra1907805]
[820]
Ioannidis, J.P.A. Why most published research findings are false. PLoS Med., 2005, 2(8), e124.
[http://dx.doi.org/10.1371/journal.pmed.0020124]
[821]
Burke, M.J.; Kaptchuk, T.J.; Pascual-Leone, A. Challenges of differential placebo effects in contemporary medicine: The example of brain stimulation. Ann. Neurol., 2019, 85(1), 12-20.
[http://dx.doi.org/10.1002/ana.25387]
[822]
Burke, M.J.; Blumberger, D.M. Caution at psychiatry’s psychedelic frontier. Nat. Med., 2021, 27(10), 1687-1688.
[http://dx.doi.org/10.1038/s41591-021-01524-1]
[823]
Goodwin, G.M.; Croal, M.; Feifel, D.; Kelly, J.R.; Marwood, L.; Mistry, S.; O'Keane, V.; Peck, S.K.; Simmons, H.; Sisa, C.; Stansfield, S.C.; Tsai, J.; Williams, S.; Malievskaia, E. Psilocybin for treatment resistant depression in patients taking a concomitant SSRI medication. Neuropsychopharmacology., 2023, 48(10), 1492-1499.
[http://dx.doi.org/10.1038/s41386-023-01648-7] [PMID: 37443386]
[824]
Walsh, Z.; Thiessen, M.S. Psychedelics and the new behaviourism: Considering the integration of third-wave behaviour therapies with psychedelic-assisted therapy. Int. Rev. Psychiatry, 2018, 30(4), 343-349.
[http://dx.doi.org/10.1080/09540261.2018.1474088]
[825]
Maples-Keller, J.; Watkins, L.E.; Nylocks, K.M.; Yasinski, C.; Coghlan, C.; Black, K.; Jovanovic, T.; Rauch, S.A.M.; Rothbaum, B.O.; Norrholm, S.D. Acquisition, extinction, and return of fear in veterans in intensive outpatient prolonged exposure therapy: A fear-potentiated startle study. Behav. Res. Ther., 2022, 154, 104124.
[http://dx.doi.org/10.1016/j.brat.2022.104124]
[826]
Boyd, J.E.; Lanius, R.A.; McKinnon, M.C. Mindfulness-based treatments for posttraumatic stress disorder: A review of the treatment literature and neurobiological evidence. J. Psychiatry Neurosci., 2018, 43(1), 7-25.
[http://dx.doi.org/10.1503/jpn.170021]
[827]
Monson, C.M.; Fredman, S.J. Cognitive-behavioral conjoint therapy for PTSD: Harnessing the healing power of relationships; Guilford Press, 2012.
[828]
Johnson, M.W.; Griffiths, R.R. Potential therapeutic effects of psilocybin. Neurotherapeutics, 2017, 14(3), 734-740.
[http://dx.doi.org/10.1007/s13311-017-0542-y]
[829]
Trope, A.; Anderson, B.T.; Hooker, A.R.; Glick, G.; Stauffer, C.; Woolley, J.D. Psychedelic-assisted group therapy: A systematic review. J. Psychoactive Drugs, 2019, 51(2), 174-188.
[http://dx.doi.org/10.1080/02791072.2019.1593559]
[830]
Blake, D.D.; Weathers, F.W.; Nagy, L.M.; Kaloupek, D.G.; Gusman, F.D.; Charney, D.S.; Keane, T.M. The development of a clinician-administered PTSD scale. J. Trauma. Stress, 1995, 8(1), 75-90.
[http://dx.doi.org/10.1002/jts.2490080106]
[831]
Weathers, F.W.; Bovin, M.J.; Lee, D.J.; Sloan, D.M.; Schnurr, P.P.; Kaloupek, D.G.; Keane, T.M.; Marx, B.P. The clinician-administered PTSD scale for DSM-5 (CAPS-5): Development and initial psychometric evaluation in military veterans. Psychol. Assess., 2018, 30(3), 383-395.
[http://dx.doi.org/10.1037/pas0000486]
[832]
Galatzer-Levy, I.R.; Bryant, R.A. 636,120 ways to have posttraumatic stress disorder. Perspect. Psychol. Sci., 2013, 8(6), 651-662.
[http://dx.doi.org/10.1177/1745691613504115]
[833]
Kraemer, H.C. DSM categories and dimensions in clinical and research contexts. Int. J. Methods Psychiatr. Res., 2007, 16(S1), S8-S15.
[http://dx.doi.org/10.1002/mpr.211]
[834]
McFarlane, A.C.; Lawrence-Wood, E.; Van Hooff, M.; Malhi, G.S.; Yehuda, R. The need to take a staging approach to the biological mechanisms of PTSD and its treatment. Curr. Psychiatry Rep., 2017, 19(2), 10.
[http://dx.doi.org/10.1007/s11920-017-0761-2]
[835]
Rasmusson, A.M.; Pineles, S.L. Neurotransmitter, peptide, and steroid hormone abnormalities in PTSD: biological endophenotypes relevant to treatment. Curr. Psychiatry Rep., 2018, 20(7), 52.
[http://dx.doi.org/10.1007/s11920-018-0908-9]
[836]
Held, P.; Smith, D.L.; Bagley, J.M.; Kovacevic, M.; Steigerwald, V.L.; Van Horn, R.; Karnik, N.S. Treatment response trajectories in a three-week CPT-Based intensive treatment for veterans with PTSD. J. Psychiatr. Res., 2021, 141, 226-232.
[http://dx.doi.org/10.1016/j.jpsychires.2021.07.004]
[837]
Korte, K.J.; Allan, N.P.; Gros, D.F.; Acierno, R. Differential treatment response trajectories in individuals with subclinical and clinical PTSD. J. Anxiety Disord., 2016, 38, 95-101.
[http://dx.doi.org/10.1016/j.janxdis.2016.01.006]
[838]
Insel, T.; Cuthbert, B.; Garvey, M. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. In: Am. Psychiatric Assoc., 2010, 748-751.
[839]
Kotov, R.; Krueger, R.F.; Watson, D.; Achenbach, T.M.; Althoff, R.R.; Bagby, R.M.; Brown, T.A.; Carpenter, W.T.; Caspi, A.; Clark, L.A.; Eaton, N.R.; Forbes, M.K.; Forbush, K.T.; Goldberg, D.; Hasin, D.; Hyman, S.E.; Ivanova, M.Y.; Lynam, D.R.; Markon, K.; Miller, J.D.; Moffitt, T.E.; Morey, L.C.; Mullins-Sweatt, S.N.; Ormel, J.; Patrick, C.J.; Regier, D.A.; Rescorla, L.; Ruggero, C.J.; Samuel, D.B.; Sellbom, M.; Simms, L.J.; Skodol, A.E.; Slade, T.; South, S.C.; Tackett, J.L.; Waldman, I.D.; Waszczuk, M.A.; Widiger, T.A.; Wright, A.G.C.; Zimmerman, M. The hierarchical taxonomy of psychopathology (HiTOP): A dimensional alternative to traditional nosologies. J. Abnorm. Psychol., 2017, 126(4), 454-477.
[http://dx.doi.org/10.1037/abn0000258]
[840]
Kotov, R.; Krueger, R.F.; Watson, D.; Cicero, D.C.; Conway, C.C.; DeYoung, C.G.; Eaton, N.R.; Forbes, M.K.; Hallquist, M.N.; Latzman, R.D.; Mullins-Sweatt, S.N.; Ruggero, C.J.; Simms, L.J.; Waldman, I.D.; Waszczuk, M.A.; Wright, A.G.C. The hierarchical taxonomy of psychopathology (HiTOP): A quantitative nosology based on consensus of evidence. Annu. Rev. Clin. Psychol., 2021, 17(1), 83-108.
[http://dx.doi.org/10.1146/annurev-clinpsy-081219-093304]
[841]
Lingiardi, V.; McWilliams, N.; Bornstein, R.F.; Gazzillo, F.; Gordon, R.M. The psychodynamic diagnostic manual version 2 (PDM-2): Assessing patients for improved clinical practice and research. Psychoanal. Psychol., 2015, 32(1), 94-115.
[http://dx.doi.org/10.1037/a0038546]
[842]
Passos, I.C.; Ballester, P.; Rabelo-da-Ponte, F.D.; Kapczinski, F. Precision psychiatry: The future is now. Can. J. Psychiatry, 2022, 67(1), 21-25.
[http://dx.doi.org/10.1177/0706743721998044]
[843]
Rezaii, N.; Wolff, P.; Price, B.H. Natural language processing in psychiatry: The promises and perils of a transformative approach. Br. J. Psychiatry, 2022, 220(5), 251-253.
[http://dx.doi.org/10.1192/bjp.2021.188]
[844]
Schultebraucks, K.; Yadav, V.; Shalev, A.Y.; Bonanno, G.A.; Galatzer-Levy, I.R. Deep learning-based classification of posttraumatic stress disorder and depression following trauma utilizing visual and auditory markers of arousal and mood. Psychol. Med., 2022, 52(5), 957-967.
[http://dx.doi.org/10.1017/S0033291720002718]
[845]
Hsin, H.; Fromer, M.; Peterson, B.; Walter, C.; Fleck, M.; Campbell, A.; Varghese, P.; Califf, R. Transforming psychiatry into data-driven medicine with digital measurement tools. NPJ Digit. Med., 2018, 1(1), 37.
[http://dx.doi.org/10.1038/s41746-018-0046-0]
[846]
Yetisen, A.K.; Martinez-Hurtado, J.L.; Ünal, B.; Khademhosseini, A.; Butt, H. Wearables in medicine. Adv. Mater., 2018, 30(33), 1706910.
[http://dx.doi.org/10.1002/adma.201706910]
[847]
Insel, T.R. Digital phenotyping. JAMA, 2017, 318(13), 1215-1216.
[http://dx.doi.org/10.1001/jama.2017.11295]
[848]
Moskowitz, D.S.; Young, S.N. Ecological momentary assessment: What it is and why it is a method of the future in clinical psychopharmacology. J. Psychiatry Neurosci., 2006, 31(1), 13-20.
[849]
Yue, L.; Tian, D.; Chen, W.; Han, X.; Yin, M. Deep learning for heterogeneous medical data analysis. World Wide Web, 2020, 23(5), 2715-2737.
[http://dx.doi.org/10.1007/s11280-019-00764-z]
[850]
Appelt, A.L.; Elhaminia, B.; Gooya, A.; Gilbert, A.; Nix, M. Deep learning for radiotherapy outcome prediction using dose data: A review. Clin. Oncol., 2022, 34(2), e87-e96.
[http://dx.doi.org/10.1016/j.clon.2021.12.002]
[851]
Bera, K.; Braman, N.; Gupta, A.; Velcheti, V.; Madabhushi, A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat. Rev. Clin. Oncol., 2022, 19(2), 132-146.
[http://dx.doi.org/10.1038/s41571-021-00560-7]
[852]
Capobianco, E. High-dimensional role of AI and machine learning in cancer research. Br. J. Cancer, 2022, 126(4), 523-532.
[http://dx.doi.org/10.1038/s41416-021-01689-z]
[853]
Tuppad, A.; Patil, S.D. Machine learning for diabetes clinical decision support: A review. Adv.Comput. Intell., 2022, 2(2), 22.
[http://dx.doi.org/10.1007/s43674-022-00034-y]
[854]
Chekroud, A.M.; Bondar, J.; Delgadillo, J.; Doherty, G.; Wasil, A.; Fokkema, M.; Cohen, Z.; Belgrave, D.; DeRubeis, R.; Iniesta, R.; Dwyer, D.; Choi, K. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry, 2021, 20(2), 154-170.
[http://dx.doi.org/10.1002/wps.20882]
[855]
Gao, S.; Calhoun, V.D.; Sui, J. Machine learning in major depression: From classification to treatment outcome prediction. CNS Neurosci. Ther., 2018, 24(11), 1037-1052.
[http://dx.doi.org/10.1111/cns.13048]
[856]
Rost, N.; Binder, E.B.; Brückl, T.M. Predicting treatment outcome in depression: An introduction into current concepts and challenges. Eur. Arch. Psychiatry Clin. Neurosci., 2023, 273(1), 113-127.
[http://dx.doi.org/10.1007/s00406-022-01418-4]
[857]
Chekroud, A.M.; Zotti, R.J.; Shehzad, Z.; Gueorguieva, R.; Johnson, M.K.; Trivedi, M.H.; Cannon, T.D.; Krystal, J.H.; Corlett, P.R. Cross-trial prediction of treatment outcome in depression: A machine learning approach. Lancet Psychiatry, 2016, 3(3), 243-250.
[http://dx.doi.org/10.1016/S2215-0366(15)00471-X]
[858]
Aday, J.S.; Davis, A.K.; Mitzkovitz, C.M.; Bloesch, E.K.; Davoli, C.C. Predicting reactions to psychedelic drugs: A systematic review of states and traits related to acute drug effects. ACS Pharmacol. Transl. Sci., 2021, 4(2), 424-435.
[http://dx.doi.org/10.1021/acsptsci.1c00014]
[859]
Neria, Y.; Lazarov, A.; Zhu, X. Identifying neurobiological markers of posttraumatic stress disorder using resting-state functional magnetic resonance imaging data: The promise of data-driven computational approaches. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2022, 7(2), 121-123.
[http://dx.doi.org/10.1016/j.bpsc.2021.11.002]
[860]
Romeo, B.; Hermand, M.; Pétillion, A.; Karila, L.; Benyamina, A. Clinical and biological predictors of psychedelic response in the treatment of psychiatric and addictive disorders: A systematic review. J. Psychiatr. Res., 2021, 137, 273-282.
[http://dx.doi.org/10.1016/j.jpsychires.2021.03.002]
[861]
Cavanna, F.; Pallavicini, C.; Milano, V.; Cuiule, J.; Di Tella, R.; González, P.; Tagliazucchi, E. Lifetime use of psychedelics is associated with better mental health indicators during the COVID-19 pandemic. J. Psychedelic Stud., 2021, 5(2), 83-93.
[http://dx.doi.org/10.1556/2054.2021.00172]
[862]
Mans, K.; Kettner, H.; Erritzoe, D.; Haijen, E.C.H.M.; Kaelen, M.; Carhart-Harris, R.L. Sustained, multifaceted improvements in mental well-being following psychedelic experiences in a prospective opportunity sample. Front. Psychiatry, 2021, 12, 647909.
[http://dx.doi.org/10.3389/fpsyt.2021.647909]
[863]
Gandy, S.; Bonnelle, V.; Jacobs, E.; Luke, D. Psychedelics as potential catalysts of scientific creativity and insight. Drug Sci. Policy Law, 2022, 8.
[http://dx.doi.org/10.1177/20503245221097649]
[864]
Horn, S.R.; Charney, D.S.; Feder, A. Understanding resilience: New approaches for preventing and treating PTSD. Exp. Neurol., 2016, 284, 119-132.
[http://dx.doi.org/10.1016/j.expneurol.2016.07.002]
[865]
McCulloch, D.E.W.; Grzywacz, M.Z.; Madsen, M.K.; Jensen, P.S.; Ozenne, B.; Armand, S.; Knudsen, G.M.; Fisher, P.M.D.; Stenbæk, D.S. Psilocybin-induced mystical-type experiences are related to persisting positive effects: A quantitative and qualitative report. Front. Pharmacol., 2022, 13, 841648.
[http://dx.doi.org/10.3389/fphar.2022.841648]
[866]
Ona, G.; Révész, D.; Kohek, M.; Rossi, G.N.; Rocha, J.M.; dos Santos, R.G.; Hallak, J.E.C.; Alcázar-Córcoles, M.Á.; Bouso, J.C. Tripping to Cope: Coping strategies and use of hallucinogens during the COVID-19 pandemic in three cultural contexts. Psychoactives, 2022, 1(1), 16-30.
[http://dx.doi.org/10.3390/psychoactives1010003]
[867]
Roseman, L.; Ron, Y.; Saca, A.; Ginsberg, N.; Luan, L.; Karkabi, N.; Doblin, R.; Carhart-Harris, R. Relational processes in ayahuasca groups of Palestinians and Israelis. Front. Pharmacol., 2021, 12, 607529.
[http://dx.doi.org/10.3389/fphar.2021.607529]
[868]
Byock, I. Taking psychedelics seriously. J. Palliat. Med., 2018, 21(4), 417-421.
[http://dx.doi.org/10.1089/jpm.2017.0684]
[869]
Davis, A.K.; Xin, Y.; Sepeda, N.D.; Garcia-Romeu, A.; Williams, M.T. Increases in psychological flexibility mediate relationship between acute psychedelic effects and decreases in racial trauma symptoms among people of color. Chronic Stress, 2021, 5 ecollection 2021
[http://dx.doi.org/10.1177/24705470211035607]
[870]
Ching, T.H.W.; Williams, M.T.; Wang, J.B.; Jerome, L.; Yazar-Klosinski, B.; Emerson, A.; Doblin, R. MDMA-assisted therapy for post-traumatic stress disorder: A pooled analysis of ethnoracial differences in efficacy and safety from two Phase 2 open-label lead-in trials and a Phase 3 randomized, blinded placebo-controlled trial. J. Psychopharmacol., 2022, 36(8), 974-986.
[http://dx.doi.org/10.1177/02698811221104052]
[871]
Hutten, N.R.P.W.; Mason, N.L.; Dolder, P.C.; Kuypers, K.P.C. Self-rated effectiveness of microdosing with psychedelics for mental and physical health problems among microdosers. Front. Psychiatry, 2019, 10, 672.
[http://dx.doi.org/10.3389/fpsyt.2019.00672]
[872]
Hendricks, P.S.; Thorne, C.B.; Clark, C.B.; Coombs, D.W.; Johnson, M.W. Classic psychedelic use is associated with reduced psychological distress and suicidality in the United States adult population. J. Psychopharmacol., 2015, 29(3), 280-288.
[http://dx.doi.org/10.1177/0269881114565653]
[873]
Ot’alora, G. M.; Grigsby, J.; Poulter, B.; Van Derveer, J.W., III; Giron, S.G.; Jerome, L.; Feduccia, A.A.; Hamilton, S.; Yazar-Klosinski, B.; Emerson, A.; Mithoefer, M.C.; Doblin, R. 3,4-methylenedioxymethamphetamine-assisted psychotherapy for treatment of chronic post-traumatic stress disorder: A randomized phase 2 controlled trial. J. Psychopharmacol., 2018, 32(12), 1295-1307.
[http://dx.doi.org/10.1177/0269881118806297]
[874]
Oehen, P.; Traber, R.; Widmer, V.; Schnyder, U. A randomized, controlled pilot study of MDMA (±3,4-methylenedioxy-methamphetamine)-assisted psychotherapy for treatment of resistant, chronic Post-Traumatic Stress Disorder (PTSD). J. Psychopharmacol., 2013, 27(1), 40-52.
[http://dx.doi.org/10.1177/0269881112464827]
[875]
Dadabayev, A.R.; Joshi, S.A.; Reda, M.H.; Lake, T.; Hausman, M.S.; Domino, E.; Liberzon, I. Low dose ketamine infusion for comorbid posttraumatic stress disorder and chronic pain: A randomized double-blind clinical trial. Chronic Stress, 2020, 4 ecollection 2020
[http://dx.doi.org/10.1177/2470547020981670]
[876]
Grof, S.; Goodman, L.E.; Richards, W.A.; Kurland, A.A. LSD-assisted psychotherapy in patients with terminal cancer. Int. Pharmacopsychiatry, 1973, 8(3), 129-144.
[http://dx.doi.org/10.1159/000467984]
[877]
Wilkinson, S.T.; Toprak, M.; Turner, M.S.; Levine, S.P.; Katz, R.B.; Sanacora, G. A survey of the clinical, off-label use of ketamine as a treatment for psychiatric disorders. Am. J. Psychiatry, 2017, 174(7), 695-696.
[http://dx.doi.org/10.1176/appi.ajp.2017.17020239]
[878]
Berlowitz, I.; Walt, H.; Ghasarian, C.; Mendive, F.; Martin-Soelch, C. Short-term treatment effects of a substance use disorder therapy involving traditional Amazonian medicine. J. Psychoactive Drugs, 2019, 51(4), 323-334.
[http://dx.doi.org/10.1080/02791072.2019.1607956]
[879]
Barbosa, P.C.R.; Tófoli, L.F.; Bogenschutz, M.P.; Hoy, R.; Berro, L.F.; Marinho, E.A.V.; Areco, K.N.; Winkelman, M.J. Assessment of alcohol and tobacco use disorders among religious users of ayahuasca. Front. Psychiatry, 2018, 9, 136.
[http://dx.doi.org/10.3389/fpsyt.2018.00136]
[880]
Dakwar, E.; Levin, F.; Hart, C.L.; Basaraba, C.; Choi, J.; Pavlicova, M.; Nunes, E.V. A single ketamine infusion combined with motivational enhancement therapy for alcohol use disorder: A randomized midazolam-controlled pilot trial. Am. J. Psychiatry, 2020, 177(2), 125-133.
[http://dx.doi.org/10.1176/appi.ajp.2019.19070684]
[881]
Krupitsky, E.M.; Burakov, A.M.; Dunaevsky, I.V.; Romanova, T.N.; Slavina, T.Y.; Grinenko, A.Y. Single versus repeated sessions of ketamine-assisted psychotherapy for people with heroin dependence. J. Psychoactive Drugs, 2007, 39(1), 13-19.
[http://dx.doi.org/10.1080/02791072.2007.10399860]
[882]
Danforth, A.L.; Grob, C.S.; Struble, C.; Feduccia, A.A.; Walker, N.; Jerome, L.; Yazar-Klosinski, B.; Emerson, A. Reduction in social anxiety after MDMA-assisted psychotherapy with autistic adults: A randomized, double-blind, placebo-controlled pilot study. Psychopharmacology, 2018, 235(11), 3137-3148.
[http://dx.doi.org/10.1007/s00213-018-5010-9]
[883]
Holze, F.; Gasser, P.; Müller, F.; Dolder, P.C.; Liechti, M.E. Lysergic acid diethylamide-assisted therapy in patients with anxiety with and without a life-threatening illness: A randomized, double-blind, placebo-controlled phase II study. Biol. Psychiatry, 2023, 93(3), 215-223.
[http://dx.doi.org/10.1016/j.biopsych.2022.08.025]
[884]
Wilkinson, S.T.; Rhee, T.G.; Joormann, J.; Webler, R.; Ortiz Lopez, M.; Kitay, B.; Fasula, M.; Elder, C.; Fenton, L.; Sanacora, G. Cognitive behavioral therapy to sustain the antidepressant effects of ketamine in treatment-resistant depression: A randomized clinical trial. Psychother. Psychosom., 2021, 90(5), 318-327.
[http://dx.doi.org/10.1159/000517074]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy