Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Antibiotic Potentiation Through Phytochemical-Based Efflux Pump Inhibitors to Combat Multidrug Resistance Bacteria

Author(s): Harveer Singh Cheema, Anupam Maurya*, Sandeep Kumar, Vineet Kumar Pandey and Raman Mohan Singh

Volume 20, Issue 6, 2024

Published on: 27 October, 2023

Page: [557 - 575] Pages: 19

DOI: 10.2174/0115734064263586231022135644

Price: $65

Abstract

Background: Antimicrobial resistance development poses a significant danger to the efficacy of antibiotics, which were once believed to be the most efficient method for treating infections caused by bacteria. Antimicrobial resistance typically involves various mechanisms, such as drug inactivation or modification, drug target modification, drug uptake restriction, and drug efflux, resulting in decreased antibiotic concentrations within the cell. Antimicrobial resistance has been associated with efflux Pumps, known for their capacity to expel different antibiotics from the cell non-specifically. This makes EPs fascinating targets for creating drugs to combat antimicrobial resistance (AMR). The varied structures of secondary metabolites (phytomolecules) found in plants have positioned them as a promising reservoir of efflux pump inhibitors. These inhibitors act as modifiers of bacterial resistance and facilitate the reintroduction of antibiotics that have lost clinical effectiveness. Additionally, they may play a role in preventing the emergence of multidrug resistant strains.

Objective: The objective of this review article is to discuss the latest studies on plant-based efflux pump inhibitors such as terpenoids, alkaloids, flavonoids, glycosides, and tetralones. It highlighted their potential in enhancing the effectiveness of antibiotics and combating the development of multidrug resistance.

Results: Efflux pump inhibitors (EPIs) derived from botanical sources, including compounds like lysergol, chanaoclavine, niazrin, 4-hydroxy-α-tetralone, ursolic acid, phytol, etc., as well as their partially synthesized forms, have shown significant potential as practical therapeutic approaches in addressing antimicrobial resistance caused by efflux pumps. Further, several phyto-molecules and their analogs demonstrated superior potential for reversing drug resistance, surpassing established agents like reserpine, niaziridin, etc.

Conclusion: This review found that while the phyto-molecules and their derivatives did not possess notable antimicrobial activity, their combination with established antibiotics significantly reduced their minimum inhibitory concentration (MIC). Specific molecules, such as chanaoclavine and niaziridin, exhibited noteworthy potential in reversing the effectiveness of drugs, resulting in a reduction of the MIC of tetracycline by up to 16 times against the tested strain of bacteria. These molecules inhibited the efflux pumps responsible for drug resistance and displayed a stronger affinity for membrane proteins. By employing powerful EPIs, these molecules can selectively target and obstruct drug efflux pumps. This targeted approach can significantly augment the strength and efficacy of older antibiotics against various drug resistant bacteria, given that active drug efflux poses a susceptibility for nearly all antibiotics.

Graphical Abstract

[1]
O’Neill, J. Review on Antimicrobial Resistance: Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016.
[2]
Antibacterial agents in clinical and preclinical development: An overview and analysis. 2023. Available from: https://www.who.int/publications/i/item/9789240047655
[3]
Khare, T.; Anand, U.; Dey, A. Exploring phytochemicals for combating antibiotic resistance in microbial pathogens. Front. Pharmacol., 2021, 12, 720726.
[http://dx.doi.org/10.3389/fphar.2021.720726]
[4]
Magiorakos, A.P.; Srinivasan, A.; Carey, R.B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infec., 2012, 18(3), 268-281.
[5]
Piddock, L.J.V. The crisis of no new antibiotics—what is the way forward? Lancet Infect. Dis., 2012, 12(3), 249-253.
[http://dx.doi.org/10.1016/S1473-3099(11)70316-4] [PMID: 22101066]
[6]
Sengupta, S.; Chattopadhyay, M.K.; Grossart, H.P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front. Microbiol., 2013, 4, 47.
[http://dx.doi.org/10.3389/fmicb.2013.00047] [PMID: 23487476]
[7]
Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers, 2018, 4(1), 18033.
[http://dx.doi.org/10.1038/nrdp.2018.33] [PMID: 29849094]
[8]
Choi, U.; Lee, C.R. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front. Microbiol., 2019, 10, 953.
[http://dx.doi.org/10.3389/fmicb.2019.00953] [PMID: 31114568]
[9]
McCusker, M.P.; Ferreira, A.D.; Cooney, D.; Martins Alves, B.; Fanning, S.; Pagès, J.M.; Martins, M.; Davin-Regli, A. Modulation of antimicrobial resistance in clinical isolates of Enterobacter aerogenes: A strategy combining antibiotics and chemosensitisers. J. Glob. Antimicrob. Resist., 2019, 16, 187-198.
[http://dx.doi.org/10.1016/j.jgar.2018.10.009] [PMID: 30321623]
[10]
Laws, M.; Shaaban, A.; Rahman, K.M. Antibiotic resistance breakers: Current approaches and future directions. FEMS Microbiol. Rev., 2019, 43(5), 490-516.
[http://dx.doi.org/10.1093/femsre/fuz014] [PMID: 31150547]
[11]
Paul, D.; Verma, J.; Banerjee, A.; Konar, D.; Das, B. Antimicrobial resistance traits and resistance mechanisms in bacterial pathogens. In: Antimicrobial Resistance; Kumar, V.; Shriram, V.; Paul, A.; Thakur, M., Eds.; Springer: Singapore, 2022; pp. 1-27.
[http://dx.doi.org/10.1007/978-981-16-3120-7_1]
[12]
Benveniste, R.; Davies, J. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc. Natl. Acad. Sci., 1973, 70(8), 2276-2280.
[http://dx.doi.org/10.1073/pnas.70.8.2276] [PMID: 4209515]
[13]
Ogawara, H. Self-resistance in streptomyces, with special reference to beta-lactam. Molecules, 2016, 21(5), 605.
[http://dx.doi.org/10.3390/molecules21050605] [PMID: 27171072]
[14]
Sattler, S.A.; Wang, X.; Lewis, K.M.; DeHan, P.J.; Park, C.M.; Xin, Y.; Liu, H.; Xian, M.; Xun, L.; Kang, C. Characterizations of two bacterial persulfide dioxygenases of the metallo-beta-lactamase superfamily. J. Biol. Chem., 2015, 290(31), 18914-18923.
[http://dx.doi.org/10.1074/jbc.M115.652537] [PMID: 26082492]
[15]
Khare, S.; Gupta, M.; Cheema, H.S.; Maurya, A.K.; Rout, P.; Darokar, M.P.; Pal, A. Rosa damascena restrains Plasmodium falciparum progression in vitro and impedes malaria pathogenesis in murine model. Biomed. Pharmacother., 2018, 97, 1654-1662.
[http://dx.doi.org/10.1016/j.biopha.2017.11.130] [PMID: 29793328]
[16]
Paterson, D.L.; Bonomo, R.A. Extended-spectrum beta-lactamases: A clinical update. Clin. Microbiol. Rev., 2005, 18(4), 657-686.
[http://dx.doi.org/10.1128/CMR.18.4.657-686.2005] [PMID: 16223952]
[17]
Yeats, C.; Finn, R.D.; Bateman, A. The PASTA domain: A β-lactam-binding domain. Trends Biochem. Sci., 2002, 27(9), 438-440.
[http://dx.doi.org/10.1016/S0968-0004(02)02164-3] [PMID: 12217513]
[18]
Gorgani, N.; Ahlbrand, S.; Patterson, A.; Pourmand, N. Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa. Int. J. Antimicrob. Agents, 2009, 34(5), 414-418.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.05.013] [PMID: 19656662]
[19]
Binda, E.; Marinelli, F.; Marcone, G. Old and new glycopeptide antibiotics: Action and resistance. Antibiotics, 2014, 3(4), 572-594.
[http://dx.doi.org/10.3390/antibiotics3040572] [PMID: 27025757]
[20]
Douthwaite, S.; Crain, P.F.; Liu, M.; Poehlsgaard, J. The tylosin-resistance methyltransferase RlmA(II) (TlrB) modifies the N-1 position of 23S rRNA nucleotide G748. J. Mol. Biol., 2004, 337(5), 1073-1077.
[http://dx.doi.org/10.1016/j.jmb.2004.02.030] [PMID: 15046978]
[21]
Shakil, S.; Khan, R.; Zarrilli, R.; Khan, A.U. Aminoglycosides versus bacteria – a description of the action, resistance mechanism, and nosocomial battleground. J. Biomed. Sci., 2008, 15(1), 5-14.
[http://dx.doi.org/10.1007/s11373-007-9194-y] [PMID: 17657587]
[22]
Blanco, M.G.; Hardisson, C.; Salas, J.A. Resistance in inhibitors of RNA polymerase in actinomycetes which produce them. Microbiology, 1984, 130(11), 2883-2891.
[http://dx.doi.org/10.1099/00221287-130-11-2883] [PMID: 6084703]
[23]
Sánchez-Hidalgo, M.; Núñez, L.E.; Méndez, C.; Salas, J.A. Involvement of the beta subunit of RNA polymerase in resistance to streptolydigin and streptovaricin in the producer organisms Streptomyces lydicus and Streptomyces spectabilis. Antimicrob. Agents Chemother., 2010, 54(5), 1684-1692.
[http://dx.doi.org/10.1128/AAC.01406-09] [PMID: 20176899]
[24]
Peterson, R.M.; Huang, T.; Rudolf, J.D.; Smanski, M.J.; Shen, B. Mechanisms of self-resistance in the platensimycin- and platencin-producing Streptomyces platensis MA7327 and MA7339 strains. Chem. Biol., 2014, 21(3), 389-397.
[http://dx.doi.org/10.1016/j.chembiol.2014.01.005] [PMID: 24560608]
[25]
Sugiyama, M.; Kumagai, T. Molecular and structural biology of bleomycin and its resistance determinants. J. Biosci. Bioeng., 2002, 93(2), 105-116.
[http://dx.doi.org/10.1016/S1389-1723(02)80001-9] [PMID: 16233174]
[26]
Gatignol, A.; Durand, H.; Tiraby, G. Bleomycin resistance conferred by a drug‐binding protein. FEBS Lett., 1988, 230(1-2), 171-175.
[http://dx.doi.org/10.1016/0014-5793(88)80665-3] [PMID: 2450783]
[27]
Rudolf, J.D.; Bigelow, L.; Chang, C.; Cuff, M.E.; Lohman, J.R.; Chang, C.Y.; Ma, M.; Yang, D.; Clancy, S.; Babnigg, G.; Joachimiak, A.; Phillips, G.N., Jr; Shen, B. Crystal structure of the zorbamycin-binding protein ZbmA, the primary self-resistance element in Streptomyces flavoviridis ATCC21892. Biochemistry, 2015, 54(45), 6842-6851.
[http://dx.doi.org/10.1021/acs.biochem.5b01008] [PMID: 26512730]
[28]
Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev., 2003, 67(4), 593-656.
[http://dx.doi.org/10.1128/MMBR.67.4.593-656.2003] [PMID: 14665678]
[29]
Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.M.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K.; Hossain, M.J.; Koirala, N. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health, 2021, 14(12), 1750-1766.
[http://dx.doi.org/10.1016/j.jiph.2021.10.020] [PMID: 34756812]
[30]
Burrus, V.; Pavlovic, G.; Decaris, B.; Guédon, G. Conjugative transposons: The tip of the iceberg. Mol. Microbiol., 2002, 46(3), 601-610.
[http://dx.doi.org/10.1046/j.1365-2958.2002.03191.x] [PMID: 12410819]
[31]
Johnson, C.M.; Grossman, A.D. Integrative and conjugative elements (ICEs): What they do and how they work. Annu. Rev. Genet., 2015, 49(1), 577-601.
[http://dx.doi.org/10.1146/annurev-genet-112414-055018] [PMID: 26473380]
[32]
Thomas, C.M.; Nielsen, K.M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol., 2005, 3(9), 711-721.
[http://dx.doi.org/10.1038/nrmicro1234] [PMID: 16138099]
[33]
Datta, N.; Hedges, R.W. Compatibility groups among fi - R factors. Nature, 1971, 234(5326), 222-223.
[http://dx.doi.org/10.1038/234222a0] [PMID: 5002028]
[34]
Bennett, P.M. Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol., 2008, 153(S1), S347-S357.
[http://dx.doi.org/10.1038/sj.bjp.0707607] [PMID: 18193080]
[35]
Reznikoff, W.S. The TN5 transposon. Ann. Rev. Microbiol., 1993, 1993, 945-964.
[http://dx.doi.org/10.1146/annurev.mi.47.100193.004501]
[36]
Foster, T.J.; Davis, M.A.; Roberts, D.E.; Takeshita, K.; Kleckner, N. Genetic organization of transposon Tn10. Cell, 1981, 23(1), 201-213.
[http://dx.doi.org/10.1016/0092-8674(81)90285-3] [PMID: 6260375]
[37]
Jo, A.; Ahn, J. Phenotypic and genotypic characterisation of multiple antibiotic-resistant Staphylococcus aureus exposed to subinhibitory levels of oxacillin and levofloxacin. BMC Microbiol., 2016, 16(1), 170.
[http://dx.doi.org/10.1186/s12866-016-0791-7] [PMID: 27473500]
[38]
Webber, M.A.; Piddock, L.J. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother., 2003, 51(1), 9-11.
[http://dx.doi.org/10.1093/jac/dkg050] [PMID: 12493781]
[39]
Du, D.; Wang-Kan, X.; Neuberger, A.; van Veen, H.W.; Pos, K.M.; Piddock, L.J.V.; Luisi, B.F. Multidrug efflux pumps: Structure, function and regulation. Nat. Rev. Microbiol., 2018, 16(9), 523-539.
[http://dx.doi.org/10.1038/s41579-018-0048-6] [PMID: 30002505]
[40]
Neuberger, A.; Du, D.; Luisi, B.F. Structure and mechanism of bacterial tripartite efflux pumps. Res. Microbiol., 2018, 169(7-8), 401-413.
[http://dx.doi.org/10.1016/j.resmic.2018.05.003] [PMID: 29787834]
[41]
Dwivedi, G.R.; Upadhyay, H.C.; Yadav, D.K.; Singh, V.; Srivastava, S.K.; Khan, F.; Darmwal, N.S.; Darokar, M.P. 4-Hydroxy-α-tetralone and its derivative as drug resistance reversal agents in multi drug resistant Escherichia coli. Chem. Biol. Drug Des., 2014, 83(4), 482-492.
[http://dx.doi.org/10.1111/cbdd.12263] [PMID: 24267788]
[42]
Higgins, C.F. ABC transporters: From microorganisms to man. Annu. Rev. Cell Biol., 1992, 8(1), 67-113.
[http://dx.doi.org/10.1146/annurev.cb.08.110192.000435] [PMID: 1282354]
[43]
Thomas, C.; Tampé, R. Multifaceted structures and mechanisms of ABC transport systems in health and disease. Curr. Opin. Struct. Biol., 2018, 51, 116-128.
[http://dx.doi.org/10.1016/j.sbi.2018.03.016] [PMID: 29635113]
[44]
Hellmich, U.A.; Mönkemeyer, L.; Velamakanni, S.; van Veen, H.W.; Glaubitz, C. Effects of nucleotide binding to LmrA: A combined MAS-NMR and solution NMR study. Biochim. Biophys. Acta Biomembr., 2015, 1848(12), 3158-3165.
[http://dx.doi.org/10.1016/j.bbamem.2015.10.003] [PMID: 26449340]
[45]
Lerma, L.; Benomar, N.; Valenzuela, S.A.; Muñoz, M.C.; Gálvez, A.; Abriouel, H. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol., 2014, 44, 249-257.
[http://dx.doi.org/10.1016/j.fm.2014.06.009] [PMID: 25084670]
[46]
Hellmich, U.A.; Lyubenova, S.; Kaltenborn, E.; Doshi, R.; van Veen, H.W.; Prisner, T.F.; Glaubitz, C. Probing the ATP hydrolysis cycle of the ABC multidrug transporter LmrA by pulsed EPR spectroscopy. J. Am. Chem. Soc., 2012, 134(13), 5857-5862.
[http://dx.doi.org/10.1021/ja211007t] [PMID: 22397466]
[47]
Baylay, A.J.; Piddock, L.J.V. Clinically relevant fluoroquinolone resistance due to constitutive overexpression of the PatAB ABC transporter in Streptococcus pneumoniae is conferred by disruption of a transcriptional attenuator. J. Antimicrob. Chemother., 2015, 70(3), 670-679.
[http://dx.doi.org/10.1093/jac/dku449] [PMID: 25411187]
[48]
Fitzpatrick, A.W.P.; Llabrés, S.; Neuberger, A.; Blaza, J.N.; Bai, X.C.; Okada, U.; Murakami, S.; van Veen, H.W.; Zachariae, U.; Scheres, S.H.W.; Luisi, B.F.; Du, D. Structure of the MacAB–TolC ABC-type tripartite multidrug efflux pump. Nat. Microbiol., 2017, 2(7), 17070.
[http://dx.doi.org/10.1038/nmicrobiol.2017.70] [PMID: 28504659]
[49]
Reddy, V.S.; Shlykov, M.A.; Castillo, R.; Sun, E.I.; Saier, M.H., Jr The major facilitator superfamily (MFS) revisited. FEBS J., 2012, 279(11), 2022-2035.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08588.x] [PMID: 22458847]
[50]
Li, X.Z.; Nikaido, H. Efflux-mediated drug resistance in bacteria. Drugs, 2004, 64(2), 159-204.
[http://dx.doi.org/10.2165/00003495-200464020-00004] [PMID: 14717618]
[51]
Alav, I.; Kobylka, J.; Kuth, M.S.; Pos, K.M.; Picard, M.; Blair, J.M.A.; Bavro, V.N. Structure, assembly, and function of tripartite efflux and type 1 secretion systems in gram-negative bacteria. Chem. Rev., 2021, 121(9), 5479-5596.
[http://dx.doi.org/10.1021/acs.chemrev.1c00055] [PMID: 33909410]
[52]
Pasqua, M.; Grossi, M.; Zennaro, A.; Fanelli, G.; Micheli, G.; Barras, F.; Colonna, B.; Prosseda, G. The varied role of efflux pumps of the MFS family in the interplay of bacteria with animal and plant cells. Microorganisms, 2019, 7(9), 285.
[http://dx.doi.org/10.3390/microorganisms7090285] [PMID: 31443538]
[53]
Blair, J.M.A.; Richmond, G.E.; Piddock, L.J.V. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol., 2014, 9(10), 1165-1177.
[http://dx.doi.org/10.2217/fmb.14.66] [PMID: 25405886]
[54]
Du, D.; van Veen, H.W.; Murakami, S.; Pos, K.M.; Luisi, B.F. Structure, mechanism and cooperation of bacterial multidrug transporters. Curr. Opin. Struct. Biol., 2015, 33, 76-91.
[http://dx.doi.org/10.1016/j.sbi.2015.07.015] [PMID: 26282926]
[55]
Lu, M. Structures of multidrug and toxic compound extrusion transporters and their mechanistic implications. Channels, 2016, 10(2), 88-100.
[http://dx.doi.org/10.1080/19336950.2015.1106654] [PMID: 26488689]
[56]
Mousa, J.J.; Yang, Y.; Tomkovich, S.; Shima, A.; Newsome, R.C.; Tripathi, P.; Oswald, E.; Bruner, S.D.; Jobin, C. MATE transport of the E. coli-derived genotoxin colibactin. Nat. Microbiol., 2016, 1(1), 15009.
[http://dx.doi.org/10.1038/nmicrobiol.2015.9] [PMID: 27571755]
[57]
Masuda, S.; Terada, T.; Yonezawa, A.; Tanihara, Y.; Kishimoto, K.; Katsura, T.; Ogawa, O.; Inui, K. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J. Am. Soc. Nephrol., 2006, 17(8), 2127-2135.
[http://dx.doi.org/10.1681/ASN.2006030205] [PMID: 16807400]
[58]
Kusakizako, T.; Miyauchi, H.; Ishitani, R.; Nureki, O. Structural biology of the multidrug and toxic compound extrusion superfamily transporters. Biochim. Biophys. Acta Biomembr., 2020, 1862(12), 183154.
[http://dx.doi.org/10.1016/j.bbamem.2019.183154] [PMID: 31866287]
[59]
Morita, Y.; Kataoka, A.; Shiota, S.; Mizushima, T.; Tsuchiya, T. NorM of vibrio parahaemolyticus is an Na(+)-driven multidrug efflux pump. J. Bacteriol., 2000, 182(23), 6694-6697.
[http://dx.doi.org/10.1128/JB.182.23.6694-6697.2000] [PMID: 11073914]
[60]
Chen, J.; Morita, Y.; Huda, M.N.; Kuroda, T.; Mizushima, T.; Tsuchiya, T. VmrA, a member of a novel class of Na(+)-coupled multidrug efflux pumps from Vibrio parahaemolyticus. J. Bacteriol., 2002, 184(2), 572-576.
[http://dx.doi.org/10.1128/JB.184.2.572-576.2002] [PMID: 11751837]
[61]
Huda, M.N.; Morita, Y.; Kuroda, T.; Mizushima, T.; Tsuchiya, T. Na + -driven multidrug efflux pump VcmA from Vibrio cholerae non-O1, a non-halophilic bacterium. FEMS Microbiol. Lett., 2001, 203(2), 235-239.
[http://dx.doi.org/10.1111/j.1574-6968.2001.tb10847.x] [PMID: 11583854]
[62]
Su, X.Z.; Chen, J.; Mizushima, T.; Kuroda, T.; Tsuchiya, T. AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob. Agents Chemother., 2005, 49(10), 4362-4364.
[http://dx.doi.org/10.1128/AAC.49.10.4362-4364.2005] [PMID: 16189122]
[63]
He, G.X.; Thorpe, C.; Walsh, D.; Crow, R.; Chen, H.; Kumar, S.; Varela, M.F. EmmdR, a new member of the MATE family of multidrug transporters, extrudes quinolones from Enterobacter cloacae. Arch. Microbiol., 2011, 193(10), 759-765.
[http://dx.doi.org/10.1007/s00203-011-0738-1] [PMID: 21822795]
[64]
He, G.X.; Kuroda, T.; Mima, T.; Morita, Y.; Mizushima, T.; Tsuchiya, T. An H(+)-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J. Bacteriol., 2004, 186(1), 262-265.
[http://dx.doi.org/10.1128/JB.186.1.262-265.2004] [PMID: 14679249]
[65]
Tanaka, Y.; Hipolito, C.J.; Maturana, A.D.; Ito, K.; Kuroda, T.; Higuchi, T.; Katoh, T.; Kato, H.E.; Hattori, M.; Kumazaki, K.; Tsukazaki, T.; Ishitani, R.; Suga, H.; Nureki, O. Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature, 2013, 496(7444), 247-251.
[http://dx.doi.org/10.1038/nature12014] [PMID: 23535598]
[66]
Heir, E.; Sundheim, G.; Holck, A.L. Identification and characterization of quaternary ammonium compound resistant staphylococci from the food industry. Int. J. Food Microbiol., 1999, 48(3), 211-219.
[http://dx.doi.org/10.1016/S0168-1605(99)00044-6] [PMID: 10443540]
[67]
Littlejohn, T.G.; Paulsen, I.T.; Gillespie, M.T.; Tennent, J.M.; Midgley, M.; Jones, I.G.; Purewal, A.S.; Skurray, R.A. Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol. Lett., 1992, 95(2-3), 259-265.
[http://dx.doi.org/10.1111/j.1574-6968.1992.tb05376.x] [PMID: 1526458]
[68]
Heir, E.; Sundheim, G.; Holck, A.L. Resistance to quaternary ammonium compounds in Staphylococcus spp. isolated from the food industry and nucleotide sequence of the resistance plasmid pST827. J. Appl. Bacteriol., 1995, 79(2), 149-156.
[http://dx.doi.org/10.1111/j.1365-2672.1995.tb00928.x] [PMID: 7592110]
[69]
Jack, D.L.; Storms, M.L.; Tchieu, J.H.; Paulsen, I.T.; Saier, M.H., Jr A broad-specificity multidrug efflux pump requiring a pair of homologous SMR-type proteins. J. Bacteriol., 2000, 182(8), 2311-2313.
[http://dx.doi.org/10.1128/JB.182.8.2311-2313.2000] [PMID: 10735877]
[70]
Grinius, L.L.; Goldberg, E.B. Bacterial multidrug resistance is due to a single membrane protein which functions as a drug pump. J. Biol. Chem., 1994, 269(47), 29998-30004.
[http://dx.doi.org/10.1016/S0021-9258(18)43980-4] [PMID: 7962000]
[71]
Lin, M.F.; Lin, Y.Y.; Tu, C.C.; Lan, C.Y. Distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance. J. Microbiol. Immunol. Infect., 2017, 50(2), 224-231.
[http://dx.doi.org/10.1016/j.jmii.2015.04.004] [PMID: 26055688]
[72]
Srinivasan, V.B.; Rajamohan, G. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob. Agents Chemother., 2013, 57(9), 4449-4462.
[http://dx.doi.org/10.1128/AAC.02284-12] [PMID: 23836167]
[73]
Padariya, M.; Kalathiya, U.; Baginski, M. Structural and dynamic insights on the EmrE protein with TPP + and related substrates through molecular dynamics simulations. Chem. Phys. Lipids, 2018, 212, 1-11.
[http://dx.doi.org/10.1016/j.chemphyslip.2017.12.004] [PMID: 29288640]
[74]
Leus, I.V.; Weeks, J.W.; Bonifay, V.; Smith, L.; Richardson, S.; Zgurskaya, H.I. Substratem specificities and efflux efficiencies of RND efflux pumps of Acinetobacter baumannii. J. Bacteriol., 2018, 200(13), e00049-e18.
[http://dx.doi.org/10.1128/JB.00049-18] [PMID: 29661860]
[75]
Dreier, J.; Ruggerone, P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front. Microbiol., 2015, 6, 660.
[http://dx.doi.org/10.3389/fmicb.2015.00660] [PMID: 26217310]
[76]
Pérez-Boto, D.; Acebo, P.; García-Peña, F.J.; Abad, J.C.; Echeita, M.A.; Amblar, M. Isolation of a point mutation associated with altered expression of the CmeABC efflux pump in a multidrug-resistant Campylobacter jejuni population of poultry origin. J. Glob. Antimicrob. Resist., 2015, 3(2), 115-122.
[http://dx.doi.org/10.1016/j.jgar.2015.03.010] [PMID: 27873659]
[77]
Castanheira, M.; Deshpande, L.M.; Jones, R.N.; Farrell, D.J. Evaluation of quinolone resistance–determining region mutations and efflux pump expression in Neisseria meningitidis resistant to fluoroquinolones. Diagn. Microbiol. Infect. Dis., 2012, 72(3), 263-266.
[http://dx.doi.org/10.1016/j.diagmicrobio.2011.12.001] [PMID: 22321998]
[78]
Yuan, J.; Xu, X.; Guo, Q.; Zhao, X.; Ye, X.; Guo, Y.; Wang, M. Prevalence of the oqxAB gene complex in Klebsiella pneumoniae and Escherichia coli clinical isolates. J. Antimicrob. Chemother., 2012, 67(7), 1655-1659.
[http://dx.doi.org/10.1093/jac/dks086] [PMID: 22438434]
[79]
Basler, G.; Thompson, M.; Tullman-Ercek, D.; Keasling, J. A Pseudomonas putida efflux pump acts on short-chain alcohols. Biotechnol. Biofuels, 2018, 11(1), 136.
[http://dx.doi.org/10.1186/s13068-018-1133-9] [PMID: 29760777]
[80]
Fisher, M.A.; Boyarskiy, S.; Yamada, M.R.; Kong, N.; Bauer, S.; Tullman-Ercek, D. Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synth. Biol., 2014, 3(1), 30-40.
[http://dx.doi.org/10.1021/sb400065q] [PMID: 23991711]
[81]
Nakashima, R.; Sakurai, K.; Yamasaki, S.; Nishino, K.; Yamaguchi, A. Structures of the multidrug exporter AcrB reveal a proximal multi-site drug-binding pocket. Nature, 2011, 480(7378), 565-569.
[http://dx.doi.org/10.1038/nature10641] [PMID: 22121023]
[82]
Vaara, M. Antibiotic-supersusceptible mutants of Escherichia coli and Salmonella typhimurium. Antimicrob. Agents Chemother., 1993, 37(11), 2255-2260.
[http://dx.doi.org/10.1128/AAC.37.11.2255] [PMID: 8285603]
[83]
Nikaido, H.; Basina, M.; Nguyen, V.; Rosenberg, E.Y. Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those beta-lactam antibiotics containing lipophilic side chains. J. Bacteriol., 1998, 180(17), 4686-4692.
[http://dx.doi.org/10.1128/JB.180.17.4686-4692.1998] [PMID: 9721312]
[84]
Hassan, K.A.; Liu, Q.; Elbourne, L.D.H.; Ahmad, I.; Sharples, D.; Naidu, V.; Chan, C.L.; Li, L.; Harborne, S.P.D.; Pokhrel, A.; Postis, V.L.G.; Goldman, A.; Henderson, P.J.F.; Paulsen, I.T. Pacing across the membrane: The novel PACE family of efflux pumps is widespread in Gram-negative pathogens. Res. Microbiol., 2018, 169(7-8), 450-454.
[http://dx.doi.org/10.1016/j.resmic.2018.01.001] [PMID: 29409983]
[85]
Bolla, J.R.; Howes, A.C.; Fiorentino, F.; Robinson, C.V. Assembly and regulation of the chlorhexidine-specific efflux pump AceI. Proc. Natl. Acad. Sci. USA, 2020, 117(29), 17011-17018.
[http://dx.doi.org/10.1073/pnas.2003271117] [PMID: 32636271]
[86]
Hassan, K.A.; Elbourne, L.D.H.; Li, L.; Gamage, H.K.A.H.; Liu, Q.; Jackson, S.M.; Sharples, D.; Kolstø, A.B.; Henderson, P.J.F.; Paulsen, I.T. An ace up their sleeve: A transcriptomic approach exposes the AceI efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens. Front. Microbiol., 2015, 6, 333.
[http://dx.doi.org/10.3389/fmicb.2015.00333] [PMID: 25954261]
[87]
Samy, R.P.; Gopalakrishnakone, P. Therapeutic potential of plants as anti- microbials for drug discovery. Evid. based Complement. Altern. Med., 2010, 7, 283-294.
[http://dx.doi.org/10.1093/ecam/nen036]
[88]
Schmitz, R. Friedrich Wilhelm Sertürner and the discovery of morphine. Pharm. Hist., 1985, 27(2), 61-74.
[PMID: 11611724]
[89]
Upadhyay, H.C.; Dwivedi, G.R.; Roy, S.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Phytol derivatives as drug resistance reversal agents. ChemMedChem, 2014, 9(8), n/a.
[http://dx.doi.org/10.1002/cmdc.201402027] [PMID: 24891085]
[90]
Upadhyay, H.C.; Sisodia, B.S.; Cheema, H.S.; Agrawal, J.; Pal, A.; Darokar, M.P.; Srivastava, S.K. Novel antiplasmodial agents from christia vespertilionis. Nat. Prod. Commun., 2013, 8(11), 1934578X1300801.
[http://dx.doi.org/10.1177/1934578X1300801123]
[91]
Boniface, P.K.; Verma, S.; Shukla, A.; Cheema, H.S.; Srivastava, S.K.; Khan, F.; Darokar, M.P.; Pal, A. Bioactivity-guided isolation of antiplasmodial constituents from Conyza sumatrensis (Retz.) E.H. Walker. Parasitol. Int., 2015, 64(1), 118-123.
[http://dx.doi.org/10.1016/j.parint.2014.10.010] [PMID: 25449289]
[92]
Saxena, A.; Yadav, D.; Mohanty, S.; Cheema, H.S.; Gupta, M.M.; Darokar, M.P.; Bawankule, D.U. Diarylheptanoids rich fraction of alnus nepalensis attenuates malaria pathogenesis: In-vitro and In-vivo Study. Phytother. Res., 2016, 30(6), 940-948.
[http://dx.doi.org/10.1002/ptr.5596] [PMID: 26969854]
[93]
Mohanty, S.; Srivastava, P.; Maurya, A.K.; Cheema, H.S.; Shanker, K.; Dhawan, S.; Darokar, M.P.; Bawankule, D.U. Antimalarial and safety evaluation of Pluchea lanceolata (DC.) Oliv. & Hiern: In-vitro and in-vivo study. J. Ethnopharmacol., 2013, 149(3), 797-802.
[http://dx.doi.org/10.1016/j.jep.2013.08.003] [PMID: 23954323]
[94]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[95]
Prasch, S.; Bucar, F. Plant derived inhibitors of bacterial efflux pumps: An update. Phytochem. Rev., 2015, 14(6), 961-974.
[http://dx.doi.org/10.1007/s11101-015-9436-y]
[96]
Casciaro, B.; Mangiardi, L.; Cappiello, F.; Romeo, I.; Loffredo, M.R.; Iazzetti, A.; Calcaterra, A.; Goggiamani, A.; Ghirga, F.; Mangoni, M.L.; Botta, B.; Quaglio, D. Naturally-occurring alkaloids of plant origin as potential antimicrobials against antibiotic-resistant infections. Molecules, 2020, 25(16), 3619.
[http://dx.doi.org/10.3390/molecules25163619] [PMID: 32784887]
[97]
Cushnie, T. An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents, 2014, 44, 377-386.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001]
[98]
Hung, D.T.; Shakhnovich, E.A.; Pierson, E.; Mekalanos, J.J. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science, 2005, 310(5748), 670-674.
[http://dx.doi.org/10.1126/science.1116739] [PMID: 16223984]
[99]
Stavri, M.; Piddock, L.J.V.; Gibbons, S. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother., 2007, 59(6), 1247-1260.
[http://dx.doi.org/10.1093/jac/dkl460] [PMID: 17145734]
[100]
Gibbons, S.; Oluwatuyi, M.; Kaatz, G.W. A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J. Antimicrob. Chemother., 2003, 51(1), 13-17.
[http://dx.doi.org/10.1093/jac/dkg044] [PMID: 12493782]
[101]
Gibbons, S.; Udo, E.E. The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant. Phytother. Res., 2000, 14(2), 139-140.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200003)14:2<139::AID-PTR608>3.0.CO;2-8] [PMID: 10685116]
[102]
Gibbons, S.; Moser, E.; Kaatz, G.W. Catechin gallates inhibit multidrug resistance (MDR) in Staphylococcus aureus. Planta Med., 2004, 70(12), 1240-1242.
[http://dx.doi.org/10.1055/s-2004-835860] [PMID: 15643566]
[103]
Dwivedi, G.R.; Gupta, S.; Maurya, A.; Tripathi, S.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Synergy potential of indole alkaloids and its derivative against drug-resistant escherichia coli. Chem. Biol. Drug Des., 2015, 86(6), 1471-1481.
[http://dx.doi.org/10.1111/cbdd.12613] [PMID: 26132412]
[104]
Dwivedi, G.R.; Tyagi, R.; Sanchita; Tripathi, S.; Pati, S.; Srivastava, S.K.; Darokar, M.P.; Sharma, A. Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa. J. Biomol. Struct. Dyn., 2018, 36(16), 4270-4284.
[http://dx.doi.org/10.1080/07391102.2017.1413424] [PMID: 29210342]
[105]
Khan, I.A.; Mirza, Z.M.; Kumar, A.; Verma, V.; Qazi, G.N. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother., 2006, 50(2), 810-812.
[http://dx.doi.org/10.1128/AAC.50.2.810-812.2006] [PMID: 16436753]
[106]
Kumar, A.; Khan, I.A.; Koul, S.; Koul, J.L.; Taneja, S.C.; Ali, I.; Ali, F.; Sharma, S.; Mirza, Z.M.; Kumar, M.; Sangwan, P.L.; Gupta, P.; Thota, N.; Qazi, G.N. Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. J. Antimicrob. Chemother., 2008, 61(6), 1270-1276.
[http://dx.doi.org/10.1093/jac/dkn088] [PMID: 18334493]
[107]
Khameneh, B.; Iranshahy, M.; Ghandadi, M.; Ghoochi Atashbeyk, D.; Fazly Bazzaz, B.S.; Iranshahi, M. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev. Ind. Pharm., 2015, 41(6), 989-994.
[http://dx.doi.org/10.3109/03639045.2014.920025] [PMID: 24842547]
[108]
Phatthalung, P.N.; Chusri, S.; Voravuthikunchai, S.P. Thai ethnomedicinal plants as resistant modifying agents for combating Acinetobacter baumannii infections. BMC Complement. Altern. Med., 2012, 12(1), 56.
[http://dx.doi.org/10.1186/1472-6882-12-56] [PMID: 22536985]
[109]
Siriyong, T.; Chusri, S.; Srimanote, P.; Tipmanee, V.; Voravuthikunchai, S.P. Holarrhena antidysenterica extract and its steroidal alkaloid, conessine, as resistance-modifying agents against extensively drug-resistant acinetobacter baumannii. Microb. Drug Resist., 2016, 22(4), 273-282.
[http://dx.doi.org/10.1089/mdr.2015.0194] [PMID: 26745443]
[110]
Aghayan, S.S.; Kalalian Mogadam, H.; Fazli, M.; Darban-Sarokhalil, D.; Khoramrooz, S.S.; Jabalameli, F.; Yaslianifard, S.; Mirzaii, M. The effects of berberine and palmatine on efflux pumps inhibition with different gene patterns in pseudomonas aeruginosa isolated from burn infections. Avicenna J. Med. Biotechnol., 2017, 9(1), 2-7.
[PMID: 28090273]
[111]
Maurya, A.; Dwivedi, G.R.; Darokar, M.P.; Srivastava, S.K. Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli. Chem. Biol. Drug Des., 2013, 81(4), 484-490.
[http://dx.doi.org/10.1111/cbdd.12103] [PMID: 23290001]
[112]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Singh, V.; Khan, F.; Gupta, M.K.; Singh, M.; Darokar, M.P.; Srivastava, S.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli. J. Biomol. Struct. Dyn., 2019, 37(5), 1307-1325.
[http://dx.doi.org/10.1080/07391102.2018.1458654] [PMID: 29595093]
[113]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. Sci. World J., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[114]
Klančnik, A.; Pogačar, M.; Trošt, K.; Tušek Žnidarič, M.; Vodopivec, B.; Možina, S. Anti- Campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the Cme-ABC efflux pump. J. Appl. Microbiol., 2017, 122(1), 65-77.
[http://dx.doi.org/10.1111/jam.13315] [PMID: 27709726]
[115]
Singkham-in, U.; Higgins, P.G.; Wannigama, D.L.; Hongsing, P.; Chatsuwan, T. Rescued chlorhexidine activity by resveratrol against carbapenem-resistant Acinetobacter baumannii via down-regulation of AdeB efflux pump. PLoS One, 2020, 15(12), e0243082.
[http://dx.doi.org/10.1371/journal.pone.0243082] [PMID: 33264338]
[116]
Santos, M.; Santos, R.; Ferreira, S. Resveratrol, a novel inhibitor of the NorA efflux pump and resistance modulator in Staphylococcus aureus. Med. Sci. Forum, 2022, 12(1), p. 16.
[http://dx.doi.org/10.3390/eca2022-12718]
[117]
Chan, B.C.L.; Ip, M.; Lau, C.B.S.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Litaudon, M.; Reiner, N.E.; Gong, H.; See, R.H.; Fung, K.P.; Leung, P.C. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol., 2011, 137(1), 767-773.
[http://dx.doi.org/10.1016/j.jep.2011.06.039] [PMID: 21782012]
[118]
Randhawa, H.K.; Hundal, K.K.; Ahirrao, P.N.; Jachak, S.M.; Nandanwar, H.S. Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against methicillin-resistant Staphylococcus aureus. Biologia, 2016, 71(5), 484-493.
[http://dx.doi.org/10.1515/biolog-2016-0073]
[119]
Holler, J.G.; Christensen, S.B.; Slotved, H.C.; Rasmussen, H.B.; Gúzman, A.; Olsen, C.E.; Petersen, B.; Mølgaard, P. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees. J. Antimicrob. Chemother., 2012, 67(5), 1138-1144.
[http://dx.doi.org/10.1093/jac/dks005] [PMID: 22311936]
[120]
Egelkamp, R.; Zimmermann, T.; Schneider, D.; Hertel, R.; Daniel, R. Impact of nitriles on bacterial communities. Front. Environ. Sci., 2019, 7, 103.
[http://dx.doi.org/10.3389/fenvs.2019.00103]
[121]
Khanuja, S.P.S.; Arya, J.S.; Tiruppadiripuliyur, R.S.K.; Saikia, D.; Kaur, H.; Singh, M. Nitrile glycoside useful as a bioenhancer of drugs and nutrients, process of its isolation from Moringa oleifera. US Patent 6,858,588, 2005.
[122]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Khan, F.; Gupta, M.K.; Gupta, P.; Darokar, M.P.; Srivastava, S.K. Comparative drug resistance reversal potential of natural glycosides: Potential of synergy niaziridin & niazirin. Curr. Top. Med. Chem., 2019, 19(10), 847-860.
[http://dx.doi.org/10.2174/1568026619666190412120008] [PMID: 30977451]
[123]
Maurya, A.; Gupta, S.; Srivastava, S.K. Preparative isolation of bioactive nitrile glycoside “niazirin” from the fruits of moringa oleifera using fast centrifugal partition chromatography. Sep. Sci. Technol., 2011, 46(7), 1195-1199.
[http://dx.doi.org/10.1080/01496395.2010.550597]
[124]
Maurya, A.; Khan, F.; Bawankule, D.U.; Yadav, D.K.; Srivastava, S.K. QSAR, docking and in vivo studies for immunomodulatory activity of isolated triterpenoids from Eucalyptus tereticornis and Gentiana kurroo. Eur. J. Pharm. Sci., 2012, 47(1), 152-161.
[http://dx.doi.org/10.1016/j.ejps.2012.05.009] [PMID: 22659375]
[125]
Maurya, A.; Srivastava, S.K. Preparative-scale separation of anticancer triterpenes from eucalyptus hybrid by centrifugal partition chromatography. Sep. Sci. Technol., 2011, 46(7), 1189-1194.
[http://dx.doi.org/10.1080/01496395.2010.545793]
[126]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Khan, F.; Darokar, M.P.; Srivastava, S.K. Drug resistance reversal potential of ursolic acid derivatives against nalidixic acid- and multidrug-resistant escherichia coli. Chem. Biol. Drug Des., 2015, 86(3), 272-283.
[http://dx.doi.org/10.1111/cbdd.12491] [PMID: 25476148]
[127]
Kalani, K.; Yadav, D.; Singh, A.; Khan, F.; Godbole, M.M.; Srivastava, S.K. QSAR guided semi-synthesis and in-vitro validation of anti-cancer activity in ursolic acid derivatives. Curr. Top. Med. Chem., 2014, 14(8), 1005-1013.
[http://dx.doi.org/10.2174/1568026614666140324121606] [PMID: 24660684]
[128]
Phatangare, N.; Deshmukh, K.; Murade, V.; Hase, G.; Gaje, T. Isolation and characterization of phytol from Justicia gendarussa burm. f.-An Anti-inflammatory compound. Int. J. Pharmacog. Phytochem. Res., 2017, 9, 10.
[129]
Saha, M.; Bandyopadhyay, P.K. In vivo and in vitro antimicrobial activity of phytol, a diterpene molecule, isolated and characterized from Adhatoda vasica Nees. (Acanthaceae), to control severe bacterial disease of ornamental fish, Carassius auratus, caused by Bacillus licheniformis PKBMS16. Microb. Pathog., 2020, 141, 103977.
[http://dx.doi.org/10.1016/j.micpath.2020.103977] [PMID: 31953226]
[130]
Sheng, K.; Song, Y.; Lei, F.; Zhao, W.; Fan, L.; Wu, L.; Liu, Y.; Wu, S.; Zhang, Y. Research progress in pharmacological activities and structure-activity relationships of tetralone scaffolds as pharmacophore and fluorescent skeleton. Eur. J. Med. Chem., 2022, 227, 113964.
[http://dx.doi.org/10.1016/j.ejmech.2021.113964] [PMID: 34743062]
[131]
Gauni, B.; Mehariya, K.; Shah, A. Duggirala1, S.M.; Tetralone scaffolds and their therapeutic applications. Lett. Drug Des. Discov., 2021, 18, 1-17.
[http://dx.doi.org/10.2174/1570180817999201013165656]
[132]
Upadhyay, H.; Dwivedi, G.; Darokar, M.; Chaturvedi, V.; Srivastava, S. Bioenhancing and antimycobacterial agents from Ammannia multiflora. Planta Med., 2012, 78(1), 79-81.
[http://dx.doi.org/10.1055/s-0031-1280256] [PMID: 21969115]
[133]
Stermitz, F.R.; Lorenz, P.; Tawara, J.N.; Zenewicz, L.A.; Lewis, K. Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci., 2000, 97(4), 1433-1437.
[http://dx.doi.org/10.1073/pnas.030540597] [PMID: 10677479]
[134]
Page, M.G.P.; Heim, J. Prospects for the next anti-Pseudomonas drug. Curr. Opin. Pharmacol., 2009, 9(5), 558-565.
[http://dx.doi.org/10.1016/j.coph.2009.08.006] [PMID: 19748829]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy