Abstract
Background: It has been reported that activation of glutamate kainate receptor subunit 2 (GluK2) subunit-containing glutamate receptors and the following Fas ligand(FasL) up-regulation, caspase-3 activation, result in delayed apoptosis-like neuronal death in hippocampus CA1 subfield after cerebral ischemia and reperfusion. Nitric oxide-mediated S-nitrosylation might inhibit the procaspase activation, whereas denitrosylation might contribute to cleavage and activation of procaspases.
Objectives: The study aimed to elucidate the molecular mechanisms underlying procaspase-3 denitrosylation and activation following kainic acid (KA)-induced excitotoxicity in rat hippocampus.
Methods: S-nitrosylation of procaspase-3 was detected by biotin-switch method. Activation of procaspase-3 was shown as cleavage of procaspase-3 detected by immunoblotting. FasL expression was detected by immunoblotting. Cresyl violets and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining were used to detect apoptosis-like neuronal death in rat hippocampal CA1 and CA3 subfields.
Results: KA led to the activation of procaspase-3 in a dose- and time-dependent manner, and the activation was inhibited by KA receptor antagonist NS102. Procaspase-3 was denitrosylated at 3 h after kainic acid administration, and the denitrosylation was reversed by SNP and GSNO. FasL ASODNs inhibited the procaspase-3 denitrosylation and activation. Moreover, thioredoxin reductase (TrxR) inhibitor auranofin prevented the denitrosylation and activation of procaspase-3 in rat hippocampal CA1 and CA3 subfields. NS102, FasL AS-ODNs, and auranofin reversed the KAinduced apoptosis and cell death in hippocampal CA1 and CA3 subfields.
Conclusions: KA led to denitrosylation and activation of procaspase-3 via FasL and TrxR. Inhibition of procaspase-3 denitrosylation by auranofin, SNP, and GSNO played protective effects against KA-induced apoptosis-like neuronal death in rat hippocampal CA1 and CA3 subfields. These investigations revealed that the procaspase-3 undergoes an initial denitrosylation process before becoming activated, providing valuable insights into the underlying mechanisms and possible treatment of excitotoxicity.
Graphical Abstract
[http://dx.doi.org/10.1113/JP283880] [PMID: 36321247]
[http://dx.doi.org/10.1007/s11011-021-00830-4] [PMID: 34463942]
[http://dx.doi.org/10.1016/j.eplepsyres.2022.106945] [PMID: 35636277]
[http://dx.doi.org/10.1186/s13024-023-00636-1] [PMID: 37400870]
[http://dx.doi.org/10.1111/febs.16081] [PMID: 34143566]
[http://dx.doi.org/10.1007/978-3-031-00793-4_10] [PMID: 36151381]
[http://dx.doi.org/10.1111/jnc.14266] [PMID: 29193067]
[http://dx.doi.org/10.1016/j.tox.2021.152887] [PMID: 34352349]
[http://dx.doi.org/10.1038/33408] [PMID: 9580260]
[http://dx.doi.org/10.1038/cddis.2013.299] [PMID: 23949220]
[http://dx.doi.org/10.1074/jbc.M513490200] [PMID: 16624817]
[http://dx.doi.org/10.1007/s10495-016-1247-0] [PMID: 27142195]
[http://dx.doi.org/10.1016/j.nbd.2021.105451] [PMID: 34298088]
[http://dx.doi.org/10.1111/j.1528-1167.2009.02270.x] [PMID: 19694794]
[http://dx.doi.org/10.1080/15384101.2022.2121358] [PMID: 36548024]
[http://dx.doi.org/10.1016/j.abb.2021.108869] [PMID: 33819447]
[http://dx.doi.org/10.1111/j.1524-475X.2009.00459.x] [PMID: 19320891]
[http://dx.doi.org/10.3390/antiox8090404] [PMID: 31533268]
[http://dx.doi.org/10.1126/science.1158265] [PMID: 18497292]
[http://dx.doi.org/10.1083/jcb.200104008] [PMID: 11551979]
[http://dx.doi.org/10.1126/science.284.5414.651] [PMID: 10213689]
[http://dx.doi.org/10.1038/nchembio720] [PMID: 16408020]
[http://dx.doi.org/10.3390/ijms22189794] [PMID: 34575960]
[http://dx.doi.org/10.1038/nrm2764] [PMID: 19738628]
[http://dx.doi.org/10.1016/j.drudis.2022.02.010] [PMID: 35192926]
[http://dx.doi.org/10.3390/antiox11050971] [PMID: 35624835]
[http://dx.doi.org/10.1017/S0317167100012476] [PMID: 22030427]
[http://dx.doi.org/10.3390/ijms24054505] [PMID: 36901935]
[http://dx.doi.org/10.1101/cshperspect.a008656] [PMID: 23545416]
[http://dx.doi.org/10.2174/0929866528666211022152556] [PMID: 34719360]
[http://dx.doi.org/10.1002/jev2.12240] [PMID: 36856683]
[http://dx.doi.org/10.1016/j.intimp.2017.12.004] [PMID: 29223855]
[http://dx.doi.org/10.26355/eurrev_202302_31411] [PMID: 36876702]
[http://dx.doi.org/10.1038/s41418-017-0052-9] [PMID: 29352269]
[http://dx.doi.org/10.1016/j.bbrc.2017.09.116] [PMID: 28943433]
[http://dx.doi.org/10.1074/jbc.M412449200] [PMID: 15716280]
[http://dx.doi.org/10.1089/ars.2021.0081] [PMID: 33957758]
[http://dx.doi.org/10.7717/peerj.7348] [PMID: 31392096]
[http://dx.doi.org/10.1007/978-1-4939-7695-9_22] [PMID: 29600467]
[http://dx.doi.org/10.1016/j.plantsci.2018.05.001] [PMID: 30709489]
[http://dx.doi.org/10.1016/j.bbagen.2015.09.010] [PMID: 26388496]
[http://dx.doi.org/10.1016/j.neuint.2017.06.004] [PMID: 28603024]
[http://dx.doi.org/10.1016/j.expneurol.2020.113262] [PMID: 32119935]
[http://dx.doi.org/10.3390/antiox12030667] [PMID: 36978917]
[http://dx.doi.org/10.1021/acs.chemrev.2c00649] [PMID: 37071737]