Generic placeholder image

Recent Advances in Inflammation & Allergy Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-2708
ISSN (Online): 2772-2716

Review Article

From Traditional Medicine to Advanced Therapeutics: The Renaissance of Phyto-nano Interventions in Psoriasis

Author(s): Rajneesh Semele, Sonam Grewal, Manish Kumar Jeengar, Thakur Gurjeet Singh* and Rajan Swami*

Volume 18, Issue 1, 2024

Published on: 25 October, 2023

Page: [27 - 42] Pages: 16

DOI: 10.2174/0127722708265612231012080047

Price: $65

Abstract

Psoriasis is an autoimmune systemic chronic inflammatory disease that exhibits characteristic detrimental effects on the skin, often leading to infections or comorbid conditions. The multifaceted nature of psoriasis has made it very challenging to treat, especially with current chemotherapy options. Therefore, it is essential to consider phytoconstituents as novel alternatives. However, despite demonstrating higher anti-inflammatory, anti-psoriasis, and immunomodulatory potential, their clinical usage is hindered due to their poor physicochemical properties. To address these drawbacks, nanoparticulate drug delivery systems have been developed, helping to achieve better permeation of phytoconstituents through topical administration. This has breathed new life into traditional systems of medicine, particularly in the context of treating psoriasis. In this current review, we present a detailed, comprehensive, and up-to-date analysis of the literature, which will contribute to affirming the clinical role of phyto-nano interventions against psoriasis.

Graphical Abstract

[1]
Arora R, Katiyar SS, Kushwah V, Jain S. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: A comparative study. Expert Opin Drug Deliv 2017; 14(2): 165-77.
[http://dx.doi.org/10.1080/17425247.2017.1264386] [PMID: 27882780]
[2]
Smith CH, Barker JNWN. Psoriasis and its management. BMJ 2006; 333(7564): 380-4.
[http://dx.doi.org/10.1136/bmj.333.7564.380] [PMID: 16916825]
[3]
Szepietowski JC, Hrehorów E, Salomon J. Matusiak, Reich A. Patients with psoriasis feel stigmatized. Acta Derm Venereol 2012; 92(1): 67-72.
[http://dx.doi.org/10.2340/00015555-1193] [PMID: 21879243]
[4]
Ference EH, Ference EH, Alikhan A, Hession MT, Armstrong AW. Combination treatments for psoriasis: A systematic review and meta-analysis. Arch Dermatol 2012; 148(4): 511-22.
[http://dx.doi.org/10.1001/archdermatol.2011.1916] [PMID: 22184718]
[5]
Lin Y-K, Huang Z-R, Zhuo R-Z, Fang J-Y. Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery. Int J Nanomedicine 2010; 5: 117-28.
[PMID: 20309398]
[6]
Bora DJ, Dasgupta R. Numerical simulation of iontophoresis for in silico prediction of transdermal drugs in the dermal layers using skin impedance values. Comput Methods Programs Biomed 2022; 214: 106551.
[http://dx.doi.org/10.1016/j.cmpb.2021.106551] [PMID: 34864336]
[7]
Xiao S, Yan Y, Zhao J, Zhang Y, Feng N. Increased microneedle mediated transdermal delivery of tetramethylpyrazine to the brain, combined with borneol and iontophoresis, for MCAO prevention. Int J Pharm 2020; 575: 118962.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118962] [PMID: 31857187]
[8]
Ronnander JP, Simon L, Koch A. Transdermal delivery of sumatriptan succinate using iontophoresis and dissolving microneedles. J Pharm Sci 2019; 108(11): 3649-56.
[http://dx.doi.org/10.1016/j.xphs.2019.07.020] [PMID: 31374318]
[9]
Li Y, Yang J, Zheng Y, et al. Iontophoresis-driven porous microneedle array patch for active transdermal drug delivery. Acta Biomater 2021; 121: 349-58.
[http://dx.doi.org/10.1016/j.actbio.2020.12.023] [PMID: 33340733]
[10]
Kale M, Kipping T, Banga AK. Modulated delivery of donepezil using a combination of skin microporation and iontophoresis. Int J Pharm 2020; 589: 119853.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119853] [PMID: 32898633]
[11]
Panchagnula R, Pillai O, Nair VB, Ramarao P. Transdermal iontophoresis revisited. Curr Opin Chem Biol 2000; 4(4): 468-73.
[http://dx.doi.org/10.1016/S1367-5931(00)00111-3] [PMID: 10959777]
[12]
Pikal MJ. The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev 2001; 46(1-3): 281-305.
[http://dx.doi.org/10.1016/S0169-409X(00)00138-1] [PMID: 11259844]
[13]
Wong TW. Electrical, magnetic, photomechanical and cavitational waves to overcome skin barrier for transdermal drug delivery. J Control Release 2014; 193: 257-69.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.045] [PMID: 24801250]
[14]
Trommer H, Neubert RHH. Overcoming the stratum corneum: The modulation of skin penetration. A review. Skin Pharmacol Physiol 2006; 19(2): 106-21.
[http://dx.doi.org/10.1159/000091978] [PMID: 16685150]
[15]
Barry BW. Mode of action of penetration enhancers in human skin. J Control Release 1987; 6(1): 85-97.
[http://dx.doi.org/10.1016/0168-3659(87)90066-6]
[16]
Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. J Pharm Sci 2008; 97(9): 3518-90.
[http://dx.doi.org/10.1002/jps.21270] [PMID: 18200527]
[17]
Lademann J, Knorr F, Richter H, et al. Hair follicles–an efficient storage and penetration pathway for topically applied substances. Skin Pharmacol Physiol 2008; 21(3): 150-5.
[http://dx.doi.org/10.1159/000131079] [PMID: 18523412]
[18]
Niemiec SM, Ramachandran C, Weiner N. Influence of nonionic liposomal composition on topical delivery of peptide drugs into pilosebaceous units: An in vivo study using the hamster ear model. Pharm Res 1995; 12(8): 1184-8.
[http://dx.doi.org/10.1023/A:1016268027854] [PMID: 7494832]
[19]
Gabros S, Nessel TA, Zito PM. Topical corticosteroids. Treasure Island, FL: StatPearls Publishing 2018.
[20]
Coondoo A, Phiske M, Verma S, Lahiri K. Side-effects of topical steroids: A long overdue revisit. Indian Dermatol Online J 2014; 5(4): 416-25.
[http://dx.doi.org/10.4103/2229-5178.142483] [PMID: 25396122]
[21]
Kim GK. The rationale behind topical vitamin d analogs in the treatment of psoriasis: Where does topical calcitriol fit in? J Clin Aesthet Dermatol 2010; 3(8): 46-53.
[PMID: 20877542]
[22]
Trémezaygues L, Reichrath J. Vitamin D analogs in the treatment of psoriasis. Dermatoendocrinol 2011; 3(3): 180-6.
[http://dx.doi.org/10.4161/derm.17534] [PMID: 22110777]
[23]
Asif A, Farooq N. Vitamin D toxicity. StatPearls Publishing 2022.
[24]
Ayala-Fontánez N, Soler DC, McCormick TS. Current knowledge on psoriasis and autoimmune diseases. Psoriasis 2016; 6: 7-32.
[25]
Peters BP, Weissman FG, Gill MA. Pathophysiology and treatment of psoriasis. Am J Health Syst Pharm 2000; 57(7): 645-59.
[http://dx.doi.org/10.1093/ajhp/57.7.645] [PMID: 10768819]
[26]
Torsekar R, Gautam M. Topical therapies in psoriasis. Indian Dermatol Online J 2017; 8(4): 235-45.
[http://dx.doi.org/10.4103/2229-5178.209622] [PMID: 28761838]
[27]
Singh RK, Lee KM, Ucmak D, et al. Erythrodermic psoriasis: Pathophysiology and current treatment perspectives. Psoriasis: Targets and Therapy 2016; 93-104.
[28]
Weindl G, Roeder A, Schäfer-Korting M, Schaller M, Korting HC. Receptor-selective retinoids for psoriasis: Focus on tazarotene. Am J Clin Dermatol 2006; 7(2): 85-97.
[http://dx.doi.org/10.2165/00128071-200607020-00002] [PMID: 16605289]
[29]
Dutta S, Chawla S, Kumar S. Psoriasis: A review of existing therapies and recent advances in treatment. J Rational Pharmacother Res 2018; 2(10)
[30]
Olson JM, Ameer MA, Goyal A. Vitamin A toxicity. StatPearls Publishing 2021.
[31]
Kang EJ, Kavanaugh A. Psoriatic arthritis: Latest treatments and their place in therapy. Ther Adv Chronic Dis 2015; 6(4): 194-203.
[http://dx.doi.org/10.1177/2040622315582354] [PMID: 26137209]
[32]
Chong BF, Wong HK. Immunobiologics in the treatment of psoriasis. Clin Immunol 2007; 123(2): 129-38.
[http://dx.doi.org/10.1016/j.clim.2007.01.006] [PMID: 17317321]
[33]
Bedoui Y, Guillot X, Sélambarom J, et al. Methotrexate an old drug with new tricks. Int J Mol Sci 2019; 20(20): 5023.
[http://dx.doi.org/10.3390/ijms20205023] [PMID: 31658782]
[34]
Parving HH, Tarnow L, Nielsen FS, et al. Cyclosporine nephrotoxicity in type 1 diabetic patients. A 7-year follow-up study. Diabetes Care 1999; 22(3): 478-83.
[http://dx.doi.org/10.2337/diacare.22.3.478] [PMID: 10097932]
[35]
Shah P, Goodyear B, Dholaria N, Puri V, Michniak-Kohn B. Nanostructured non-ionic surfactant carrier-based gel for topical delivery of desoximetasone. Int J Mol Sci 2021; 22(4): 1535.
[http://dx.doi.org/10.3390/ijms22041535] [PMID: 33546426]
[36]
Koppa Raghu P, Bansal KK, Thakor P, et al. Evolution of nanotechnology in delivering drugs to eyes, skin and wounds via topical route. Pharmaceuticals 2020; 13(8): 167.
[http://dx.doi.org/10.3390/ph13080167] [PMID: 32726897]
[37]
Chaturvedi SP, Kumar V. A review on disease management and drug delivery aspects in psoriasis. Curr Trends Technol Sci 2012; 1: 122-5.
[38]
Li N, Qin Y, Dai D, et al. Transdermal delivery of therapeutic compounds with nanotechnological approaches in psoriasis. Front Bioeng Biotechnol 2022; 9: 804415.
[http://dx.doi.org/10.3389/fbioe.2021.804415] [PMID: 35141215]
[39]
Yadav K, Soni A, Singh D, Singh MR. Polymers in topical delivery of anti-psoriatic medications and other topical agents in overcoming the barriers of conventional treatment strategies. Prog Biomater 2021; 10(1): 1-17.
[http://dx.doi.org/10.1007/s40204-021-00154-7] [PMID: 33738750]
[40]
Raza K, Kumar M, Kumar P, et al. Topical delivery of aceclofenac: Challenges and promises of novel drug delivery systems. Biomed Res Int 2014 2014.
[http://dx.doi.org/10.1155/2014/406731]
[41]
Nowak-Perlak M, Szpadel K, Jabłońska I, Pizon M, Woźniak M. Promising strategies in plant-derived treatments of psoriasis-update of in vitro, in vivo, and clinical trials studies. Molecules 2022; 27(3): 591.
[http://dx.doi.org/10.3390/molecules27030591] [PMID: 35163855]
[42]
Wadhwa K, Kadian V, Puri V, et al. New insights into quercetin nanoformulations for topical delivery. Phytomed Plus 2022; 2: 100257.
[43]
Fereig SA, El-Zaafarany GM, Arafa MG, Abdel-Mottaleb MMA. Tackling the various classes of nano-therapeutics employed in topical therapy of psoriasis. Drug Deliv 2020; 27(1): 662-80.
[http://dx.doi.org/10.1080/10717544.2020.1754527] [PMID: 32393082]
[44]
Saleem S, Iqubal MK, Garg S, Ali J, Baboota S. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: An enticing approach to offset psoriasis. Expert Opin Drug Deliv 2020; 17(6): 817-38.
[http://dx.doi.org/10.1080/17425247.2020.1758665] [PMID: 32315216]
[45]
Feldman SR, Goffe B, Rice G, et al. The challenge of managing psoriasis: Unmet medical needs and stakeholder perspectives. Am Health Drug Benefits 2016; 9(9): 504-13.
[PMID: 28465778]
[46]
Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 2009; 1(4): 197-206.
[http://dx.doi.org/10.4161/derm.1.4.9501] [PMID: 20592791]
[47]
de Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[48]
Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 2019; 4(1): 33.
[http://dx.doi.org/10.1038/s41392-019-0068-3] [PMID: 31637012]
[49]
Mohd Nordin UU, Ahmad N, Salim N, Mohd Yusof NS. Lipid-based nanoparticles for psoriasis treatment: A review on conventional treatments, recent works, and future prospects. RSC Advances 2021; 11(46): 29080-101.
[http://dx.doi.org/10.1039/D1RA06087B] [PMID: 35478537]
[50]
Nemati H, Ghahramani MH, Faridi-Majidi R, et al. Using siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation in psoriasis. J Control Release 2017; 268: 259-68.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.034] [PMID: 29074408]
[51]
Schön MP, Manzke V, Erpenbeck L. Animal models of psoriasis highlights and drawbacks. J Allergy Clin Immunol 2021; 147(2): 439-55.
[http://dx.doi.org/10.1016/j.jaci.2020.04.034] [PMID: 32560971]
[52]
Sun S, Zhang X, Xu M, et al. Berberine downregulates CDC6 and inhibits proliferation via targeting JAK-STAT3 signaling in keratinocytes. Cell Death Dis 2019; 10(4): 274.
[http://dx.doi.org/10.1038/s41419-019-1510-8] [PMID: 30894513]
[53]
Wang L, Deng L, Lin N, et al. Berberine inhibits proliferation and apoptosis of vascular smooth muscle cells induced by mechanical stretch via the PDI/ERS and MAPK pathways. Life Sci 2020; 259: 118253.
[http://dx.doi.org/10.1016/j.lfs.2020.118253] [PMID: 32795536]
[54]
Nguyen LTH, Ahn SH, Nguyen UT, Yang IJ. Dang-Gui-Liu-Huang Tang a traditional herbal formula, ameliorates imiquimod-induced psoriasis-like skin inflammation in mice by inhibiting IL-22 production. Phytomedicine 2018; 47: 48-57.
[http://dx.doi.org/10.1016/j.phymed.2018.04.051] [PMID: 30166108]
[55]
Ghorbani Birgani A, Abedi P, Zare K, Assadpoor S. The effect of berberine on patients with psoriasis. J Arak Univ Med Sci 2013; 15(8): 61-7.
[56]
Ryabinina E, Zotova E, Nikitina T. Prospects for using vegetable raw materials containing berberine in the treatment of psoriasis. Applied Information Aspects of Medicine 2021; 24(3): 52-7.
[57]
Rathod K, Ahmed H, Gomte SS, et al. Exploring the potential of anti-inflammatory activity of berberine chloride-loaded mesoporous silica nanoparticles in carrageenan-induced rat paw edema model. J Solid State Chem 2023; 317: 123639.
[http://dx.doi.org/10.1016/j.jssc.2022.123639]
[58]
Sondhi S, Singh N, Goyal K, Jindal S. Development of topical herbal gel of berberine hydrochloride for the treatment of psoriasis. Res J Pharm Dos Forms Technol 2021; 13(1): 12-8.
[59]
Kar M, Chourasiya Y, Maheshwari R, Tekade RK. Current developments in excipient science: Implication of quantitative selection of each excipient in product development. In: Basic fundamentals of drug delivery. Elsevier 2019; pp. 29-83.
[http://dx.doi.org/10.1016/B978-0-12-817909-3.00002-9]
[60]
Qureshi M, Qadir A, Aqil M, et al. Berberine loaded dermal quality by design adapted chemically engineered lipid nano-constructs-gel formulation for the treatment of skin acne. J Drug Deliv Sci Technol 2021; 66: 102805.
[http://dx.doi.org/10.1016/j.jddst.2021.102805]
[61]
Vanti G, Wang M, Bergonzi MC, Zhidong L, Bilia AR. Hydroxypropyl methylcellulose hydrogel of berberine chloride-loaded escinosomes: Dermal absorption and biocompatibility. Int J Biol Macromol 2020; 164: 232-41.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.129] [PMID: 32682035]
[62]
Freag MS, Torky AS, Nasra MMA, Abdelmonsif DA, Abdallah OY. Liquid crystalline nanoreservoir releasing a highly skin-penetrating berberine oleate complex for psoriasis management. Nanomedicine 2019; 14(8): 931-54.
[http://dx.doi.org/10.2217/nnm-2018-0345] [PMID: 30925102]
[63]
Kang D, Li B, Luo L, et al. Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie 2016; 123: 73-80.
[http://dx.doi.org/10.1016/j.biochi.2016.01.013] [PMID: 26826458]
[64]
Antiga E, Bonciolini V, Volpi W, Del Bianco E, Caproni M. Oral curcumin (Meriva) is effective as an adjuvant treatment and is able to reduce IL-22 serum levels in patients with psoriasis vulgaris. Biomed Res Int 2015 2015.
[65]
Varma SR, Sivaprakasam TO, Mishra A, Prabhu S. M R, P R. Imiquimod-induced psoriasis-like inflammation in differentiated Human keratinocytes: Its evaluation using curcumin. Eur J Pharmacol 2017; 813: 33-41.
[http://dx.doi.org/10.1016/j.ejphar.2017.07.040] [PMID: 28736282]
[66]
Paolino D, Vero A, Cosco D, et al. Improvement of oral bioavailability of curcumin upon microencapsulation with methacrylic copolymers. Front Pharmacol 2016; 7: 485.
[http://dx.doi.org/10.3389/fphar.2016.00485] [PMID: 28066239]
[67]
Kang NW, Kim MH, Sohn SY, et al. Curcumin-loaded lipid-hybridized cellulose nanofiber film ameliorates imiquimod-induced psoriasis-like dermatitis in mice. Biomaterials 2018; 182: 245-58.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.030] [PMID: 30142524]
[68]
Iriventi P, Gupta NV, Osmani RAM, Balamuralidhara V. Design & development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis. Daru 2020; 28(2): 489-506.
[http://dx.doi.org/10.1007/s40199-020-00352-x] [PMID: 32472531]
[69]
Sabir F, Qindeel M, Rehman A, et al. An efficient approach for development and optimisation of curcumin-loaded solid lipid nanoparticles’ patch for transdermal delivery. J Microencapsul 2021; 38(4): 233-48.
[http://dx.doi.org/10.1080/02652048.2021.1899321] [PMID: 33689550]
[70]
Jain A, Doppalapudi S, Domb AJ, Khan W. Tacrolimus and curcumin co-loaded liposphere gel: Synergistic combination towards management of psoriasis. J Control Release 2016; 243: 132-45.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.004] [PMID: 27725194]
[71]
Sun L, Liu Z, Wang L, et al. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J Control Release 2017; 254: 44-54.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.385] [PMID: 28344018]
[72]
Algahtani MS, Ahmad MZ, Ahmad J. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in psoriasis. J Drug Deliv Sci Technol 2020; 59: 101847.
[http://dx.doi.org/10.1016/j.jddst.2020.101847]
[73]
Saini K, Modgill N, Singh K, Kakkar V. Tetrahydrocurcumin lipid nanoparticle based gel promotes penetration into deeper skin layers and alleviates atopic dermatitis in 2, 4-dinitrochlorobenzene (DNCB) mouse model. Nanomaterials 2022; 12(4): 636.
[http://dx.doi.org/10.3390/nano12040636] [PMID: 35214966]
[74]
Hegde M, Girisa S. BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin formulations for better bioavailability: What we learned from clinical trials thus far? ACS Omega 2023; 8(12): 10713-46.
[http://dx.doi.org/10.1021/acsomega.2c07326] [PMID: 37008131]
[75]
Chan TC, Lee MS, Huang WC, Chang WY, Krueger JG, Tsai TF. Capsaicin attenuates imiquimod-induced epidermal hyperplasia and cutaneous inflammation in a murine model of psoriasis. Biomed Pharmacother 2021; 141: 111950.
[http://dx.doi.org/10.1016/j.biopha.2021.111950] [PMID: 34328106]
[76]
Bernstein JE, Parish LC, Rapaport M, Rosenbaum MM, Roenigk HH Jr. Effects of topically applied capsaicin on moderate and severe psoriasis vulgaris. J Am Acad Dermatol 1986; 15(3): 504-7.
[http://dx.doi.org/10.1016/S0190-9622(86)70201-6] [PMID: 3760276]
[77]
Ellis CN, Berberian B, Sulica VI, et al. A double-blind evaluation of topical capsaicin in pruritic psoriasis. J Am Acad Dermatol 1993; 29(3): 438-42.
[http://dx.doi.org/10.1016/0190-9622(93)70208-B] [PMID: 7688774]
[78]
Agrawal U, Gupta M, Vyas SP. Capsaicin delivery into the skin with lipidic nanoparticles for the treatment of psoriasis. Artif Cells Nanomed Biotechnol 2015; 43(1): 33-9.
[http://dx.doi.org/10.3109/21691401.2013.832683] [PMID: 24040836]
[79]
Gupta R, Gupta M, Mangal S, Agrawal U, Vyas SP. Capsaicin-loaded vesicular systems designed for enhancing localized delivery for psoriasis therapy. Artif Cells Nanomed Biotechnol 2016; 44(3): 825-34.
[PMID: 25465045]
[80]
Desai PR, Marepally S, Patel AR, Voshavar C, Chaudhuri A, Singh M. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J Control Release 2013; 170(1): 51-63.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.021] [PMID: 23643662]
[81]
Bonesi M, Loizzo MR, Menichini F, Tundis R. Flavonoids in treating psoriasis.In: Immunity and inflammation in health and disease. Elsevier 2018; pp. 281-94.
[http://dx.doi.org/10.1016/B978-0-12-805417-8.00023-8]
[82]
Chen H, Lu C, Liu H, et al. Quercetin ameliorates imiquimod-induced psoriasis-like skin inflammation in mice via the NF-κB pathway. Int Immunopharmacol 2017; 48: 110-7.
[http://dx.doi.org/10.1016/j.intimp.2017.04.022] [PMID: 28499194]
[83]
Desale JP, Swami R, Kushwah V, Katiyar SS, Jain S. Chemosensitizer and docetaxel-loaded albumin nanoparticle: Overcoming drug resistance and improving therapeutic efficacy. Nanomedicine 2018; 13(21): 2759-76.
[http://dx.doi.org/10.2217/nnm-2018-0206] [PMID: 30398388]
[84]
Ali AU, Khallaf ISA, Kamel AA, et al. Impact of quercetin spanlastics on livin and caspase-9 expression in the treatment of psoriasis vulgaris. J Drug Deliv Sci Technol 2022; 76: 103809.
[http://dx.doi.org/10.1016/j.jddst.2022.103809]
[85]
Mestry M, Rane M, Bajaj A. Commiphora mukul and quercetin loaded liposphere gel: Potential treatment for psoriasis. Indian J Pharm Educ Res 2020; 54(3): 654-67.
[http://dx.doi.org/10.5530/ijper.54.3.115]
[86]
Pivetta TP, Silva LB, Kawakami CM, et al. Topical formulation of quercetin encapsulated in natural lipid nanocarriers: Evaluation of biological properties and phototoxic effect. J Drug Deliv Sci Technol 2019; 53: 101148.
[http://dx.doi.org/10.1016/j.jddst.2019.101148]
[87]
Hatahet T, Morille M, Hommoss A, Devoisselle JM, Müller RH, Bégu S. Liposomes, lipid nanocapsules and smartCrystals®: A comparative study for an effective quercetin delivery to the skin. Int J Pharm 2018; 542(1-2): 176-85.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.019] [PMID: 29549014]
[88]
Jain H, Geetanjali D, Dalvi H, Bhat A, Godugu C, Srivastava S. Liposome mediated topical delivery of Ibrutinib and Curcumin as a synergistic approach to combat imiquimod induced psoriasis. J Drug Deliv Sci Technol 2022; 68: 103103.
[http://dx.doi.org/10.1016/j.jddst.2022.103103]
[89]
Wang W, Sun C, Mao L, et al. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci Technol 2016; 56: 21-38.
[http://dx.doi.org/10.1016/j.tifs.2016.07.004]
[90]
Archier E, Devaux S, Castela E, et al. Efficacy of Psoralen UV-A therapy vs. Narrowband UV-B therapy in chronic plaque psoriasis: A systematic literature review. J Eur Acad Dermatol Venereol 2012; 26 (Suppl. 3): 11-21.
[http://dx.doi.org/10.1111/j.1468-3083.2012.04519.x] [PMID: 22512676]
[91]
Nijsten TEC, Stern RS. Oral retinoid use reduces cutaneous squamous cell carcinoma risk in patients with psoriasis treated with psoralen-UVA: A nested cohort study. J Am Acad Dermatol 2003; 49(4): 644-50.
[http://dx.doi.org/10.1067/S0190-9622(03)01587-1] [PMID: 14512910]
[92]
Fang JY, Fang CL, Liu CH, Su YH. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 2008; 70(2): 633-40.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.008] [PMID: 18577447]
[93]
Doppalapudi S, Jain A, Chopra DK, Khan W. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur J Pharm Sci 2017; 96: 515-29.
[http://dx.doi.org/10.1016/j.ejps.2016.10.025] [PMID: 27777066]
[94]
Alam A, Alqarni MH, Foudah AI, Raish M, Salkini MA. Babchi oil-based nanoemulsion hydrogel for the management of psoriasis: A novel energy economic approach employing biosurfactants. Gels 2022; 8(12): 761.
[http://dx.doi.org/10.3390/gels8120761] [PMID: 36547285]
[95]
Guo R, Zhou FM, Su CJ, et al. Epigallocatechin-3-gallate attenuates acute and chronic psoriatic itch in mice: Involvement of antioxidant, anti-inflammatory effects and suppression of ERK and Akt signaling pathways. Biochem Biophys Res Commun 2018; 496(4): 1062-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.122] [PMID: 29402411]
[96]
Zhang S, Liu X, Mei L, Wang H, Fang F. Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complement Altern Med 2016; 16(1): 334.
[http://dx.doi.org/10.1186/s12906-016-1325-4] [PMID: 27581210]
[97]
Winiarska-Mieczan A, Mieczan T, Wójcik G. Importance of redox equilibrium in the pathogenesis of psoriasis—Impact of antioxidant-rich diet. Nutrients 2020; 12(6): 1841.
[http://dx.doi.org/10.3390/nu12061841] [PMID: 32575706]
[98]
Katsimbri P, Korakas E, Kountouri A, et al. The effect of antioxidant and anti-inflammatory capacity of diet on psoriasis and psoriatic arthritis phenotype: nutrition as therapeutic tool? Antioxidants 2021; 10(2): 157.
[http://dx.doi.org/10.3390/antiox10020157] [PMID: 33499118]
[99]
Pandit AP, Joshi SR, Dalal PS, Patole VC. Curcumin as a permeability enhancer enhanced the antihyperlipidemic activity of dietary green tea extract. BMC Complement Altern Med 2019; 19(1): 129.
[http://dx.doi.org/10.1186/s12906-019-2545-1] [PMID: 31196040]
[100]
Chamcheu JC, Siddiqui IA, Adhami VM, et al. Chitosan-based nanoformulated (–)-epigallocatechin-3-gallate (EGCG) modulates human keratinocyte-induced responses and alleviates imiquimod-induced murine psoriasiform dermatitis. Int J Nanomedicine 2018; 13: 4189-206.
[http://dx.doi.org/10.2147/IJN.S165966] [PMID: 30057446]
[101]
Khan MA, Younus H. Thymoquinone shows the diverse therapeutic actions by modulating multiple cell signaling pathways: Single drug for multiple targets. Curr Pharm Biotechnol 2019; 19(12): 934-45.
[http://dx.doi.org/10.2174/1389201019666181113122009] [PMID: 30421672]
[102]
Ali A, Ali S, Aqil M, Imam SS, Ahad A, Qadir A. Thymoquinone loaded dermal lipid nano particles: Box Behnken design optimization to preclinical psoriasis assessment. J Drug Deliv Sci Technol 2019; 52: 713-21.
[http://dx.doi.org/10.1016/j.jddst.2019.05.041]
[103]
Jain A, Pooladanda V, Bulbake U, et al. Liposphere mediated topical delivery of thymoquinone in the treatment of psoriasis. Nanomedicine 2017; 13(7): 2251-62.
[http://dx.doi.org/10.1016/j.nano.2017.06.009] [PMID: 28647592]
[104]
Khatoon K, Ali A, Ahmad FJ, et al. Novel nanoemulsion gel containing triple natural bio-actives combination of curcumin, thymoquinone, and resveratrol improves psoriasis therapy: in vitro and in vivo studies. Drug Deliv Transl Res 2021; 11(3): 1245-60.
[http://dx.doi.org/10.1007/s13346-020-00852-y] [PMID: 32965640]
[105]
Raza K, Singh B, Lohan S, et al. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int J Pharm 2013; 456(1): 65-72.
[http://dx.doi.org/10.1016/j.ijpharm.2013.08.019] [PMID: 23973754]
[106]
Li HJ, Wu NL, Pu CM, Hsiao CY, Chang DC, Hung CF. Chrysin alleviates imiquimod-induced psoriasis-like skin inflammation and reduces the release of CCL20 and antimicrobial peptides. Sci Rep 2020; 10(1): 2932.
[http://dx.doi.org/10.1038/s41598-020-60050-1] [PMID: 32076123]
[107]
Jabeen M, Boisgard AS, Danoy A, et al. Advanced characterization of imiquimod-induced psoriasis-like mouse model. Pharmaceutics 2020; 12(9): 789.
[http://dx.doi.org/10.3390/pharmaceutics12090789] [PMID: 32825447]
[108]
Patil TS, Gujarathi NA, Aher AA, et al. Recent advancements in topical anti-psoriatic nanostructured lipid carrier-based drug delivery. Int J Mol Sci 2023; 24(3): 2978.
[http://dx.doi.org/10.3390/ijms24032978] [PMID: 36769305]
[109]
Sun J, Zhao Y, Hu J. Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PLoS One 2013; 8(6): e67078.
[http://dx.doi.org/10.1371/journal.pone.0067078] [PMID: 23825622]
[110]
Saini K, Verma S, Kakkar V. Anti-psoriatic effects of tetrahydrocurcumin lipidic nanoparticles in IMQ induced psoriatic plaque: A research report. J Drug Deliv Sci Technol 2022; 71: 103301.
[http://dx.doi.org/10.1016/j.jddst.2022.103301]
[111]
Alam M, Rizwanullah M, Mir SR, Amin S. Promising prospects of lipid-based topical nanocarriers for the treatment of psoriasis. OpenNano 2023; 10: 100123.
[http://dx.doi.org/10.1016/j.onano.2023.100123]
[112]
Xie J, Huang S, Huang H, et al. Advances in the application of natural products and the novel drug delivery systems for psoriasis. Front Pharmacol 2021; 12: 644952.
[http://dx.doi.org/10.3389/fphar.2021.644952] [PMID: 33967781]
[113]
Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci 2019; 20(6): 1475.
[http://dx.doi.org/10.3390/ijms20061475] [PMID: 30909615]
[114]
He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules 2015; 20(5): 9183-213.
[http://dx.doi.org/10.3390/molecules20059183] [PMID: 26007179]
[115]
Chang CH, Chang YS, Hsieh YL. Transient receptor potential vanilloid subtype 1 depletion mediates mechanical allodynia through cellular signal alterations in small-fiber neuropathy. Pain Rep 2021; 6(1): e922.
[http://dx.doi.org/10.1097/PR9.0000000000000922] [PMID: 34585035]
[116]
Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 2019; 24(6): 1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[117]
Ahmed Asim S, Ahmed S, Us-Sehar N. Psoralen-ultraviolet A treatment with Psoralen-ultraviolet B therapy in the treatment of psoriasis. Pak J Med Sci 2013; 29(3): 758-61.
[PMID: 24353623]
[118]
Hsu S, Yamamoto T, Borke J, et al. Green tea polyphenol induced epidermal keratinocyte differentiation is associated with coordinated expression of p57/KIP2 and caspase 14. J Pharmacol Exp Ther 2005; 312(3): 884-90.
[http://dx.doi.org/10.1124/jpet.104.076075] [PMID: 15537824]
[119]
Badary OA, Taha RA, Gamal El-Din AM, Abdel-Wahab MH. Thymoquinone is a potent superoxide anion scavenger. Drug Chem Toxicol 2003; 26(2): 87-98.
[http://dx.doi.org/10.1081/DCT-120020404] [PMID: 12816394]
[120]
Rivera-Yañez CR, Ruiz-Hurtado PA, Mendoza-Ramos MI, et al. Flavonoids present in propolis in the battle against photoaging and psoriasis. Antioxidants 2021; 10(12): 2014.
[http://dx.doi.org/10.3390/antiox10122014] [PMID: 34943117]
[121]
Mukherjee S, Date A, Patravale V, Korting HC, Roeder A, Weindl G. Retinoids in the treatment of skin aging: An overview of clinical efficacy and safety. Clin Interv Aging 2006; 1(4): 327-48.
[http://dx.doi.org/10.2147/ciia.2006.1.4.327] [PMID: 18046911]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy