Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Recent Developments in the Transformation of 3-amino-2-azetidinones

Author(s): Priyanka Sharma, Rashmi Sharma, Vipan Kumar, Parvesh Singh and Gaurav Bhargava*

Volume 27, Issue 19, 2023

Published on: 25 October, 2023

Page: [1651 - 1676] Pages: 26

DOI: 10.2174/0113852728253450231011052201

Price: $65

Abstract

Functionalized 3-amino-2-azetidinones are important heterocyclic systems which can easily be transformed into functionally decorated heterocycles using β-lactam synthon protocol. The different synthetic methods have been explored for the transformation of functionalized 3-amino-2-azetidiones to various heterocyclic molecules, such as imidazolidin-2-ones, piperazines, hydantoins, 4-oxo-1H-pyrroles, 1,4-benzodiazepin-2-ones, amino pyrrolidine-2- carboxylates etc., and β-lactam- based conjugates having diverse biological activities, such as anti-malarial activity, anti-tuberculosis, anti-trichomonas activity etc. The present review article summarizes the various reports on the synthetic transformation of functionalized 3-amino-2- azetidinones for the synthesis of a variety of heterocyclic systems.

Next »
Graphical Abstract

[1]
Ojima, I. Recent advances in the β-lactam synthon method. Acc. Chem. Res., 1995, 28, 383-389.
[http://dx.doi.org/10.1021/ar00057a004]
[2]
Pitts, C.R.; Lectka, T. Chemical synthesis of β-lactams: Asymmetric catalysis and other recent advances. Chem. Rev., 2014, 114(16), 7930-7953.
[http://dx.doi.org/10.1021/cr4005549] [PMID: 24555548]
[3]
Alcaide, B.; Almendros, P. β-lactams as versatile synthetic intermediates for the preparation of heterocycles of biological interest. Curr. Med. Chem., 2004, 11(14), 1921-1949.
[http://dx.doi.org/10.2174/0929867043364856] [PMID: 15279574]
[4]
Deshmukh, A.R.; Bhawal, B.; Krishnaswamy, D.; Govande, V.; Shinkre, B.; Jayanthi, A. Azetidin-2-ones, synthon for biologically important compounds. Curr. Med. Chem., 2004, 11(14), 1889-1920.
[http://dx.doi.org/10.2174/0929867043364874] [PMID: 15279573]
[5]
Palomo, C.; Aizpurua, J.; Ganboa, I.; Oiarbide, M. Asymmetric synthesis of β-lactams through the Staudinger reaction and their use as building blocks of natural and nonnatural products. Curr. Med. Chem., 2004, 11(14), 1837-1872.
[http://dx.doi.org/10.2174/0929867043364900] [PMID: 15279571]
[6]
Ojima, I.; Delaloge, F. Asymmetric synthesis of building-blocks for peptides and peptidomimetics by means of the β-lactam synthon method. Chem. Soc. Rev., 1997, 26(5), 377-386.
[http://dx.doi.org/10.1039/CS9972600377]
[7]
Testero, S.A.; Fisher, J.F.; Mobashery, S. β-lactam antibiotics in Burger’s medicinal chemistry. In: Drug Discovery and Development; Abraham, D.J.; Rotella, D.P. Wiley: New York, NY, , 2010; 7, pp. 259-404.
[8]
Alcaide, B.; Almendros, P.; Aragoncillo, C. Ring expansions of β-Lactams and β-(thio)lactones.Topics in Heterocyclic Chemistry; Springer Berlin Heidelberg, 2015.
[9]
Luisi, R.; Degennaro, L. Use of azetidine scaffolds in stereoselective transformations. Chem. Heterocycl. Compd., 2018, 54(4), 400-402.
[http://dx.doi.org/10.1007/s10593-018-2283-1]
[10]
Landa, A.; Mielgo, A.; Oiarbide, M.; Palomo, C. Asymmetric synthesis of β‐lactams by the staudinger reaction. In: Organic Reactions; Wiley, 2018; pp. 1-123.
[http://dx.doi.org/10.1002/0471264180.or095.02]
[11]
Sharma, A.K.; Mazumdar, S.N.; Mahajan, M.P. A Convenient Trans diastereoselective synthesis of 3-butadienylazetidinones and their diels−alder cycloaddition reactions. J. Org. Chem., 1996, 61(16), 5506-5509.
[http://dx.doi.org/10.1021/jo952249i]
[12]
Koszelewski, D.; Trzepizur, D.; Zaorska, E.; Madej, A.; Brodzka, A.; Paprocki, D.; Borys, F.; Wilk, M.; Ostaszewski, R. Facile conversion of α‐acyloxy amides into 3‐hydroxy‐lactams. Eur. J. Org. Chem., 2018, 2018(25), 3280-3290.
[http://dx.doi.org/10.1002/ejoc.201800605]
[13]
Basu, S.; Banik, B.K. In beta-lactams: Novel synthetic pathways and applications; Banik, B.K., Ed.; Springer: Cham, Switzerland, 2017, p. 285.
[14]
Alcaide, B.; Almendros, P. Recent advances in the stereocontrolled synthesis of bi- and tricyclic-β-lactams with non-classical structure. Curr. Org. Chem., 2002, 6(3), 245-264.
[http://dx.doi.org/10.2174/1385272024605050]
[15]
Dekeukeleire, S.; D’hooghe, M.; Vanwalleghem, M.; Van Brabandt, W.; De Kimpe, N. Asymmetric synthesis of 4-formyl-1-(ω-haloalkyl)-β-lactams and their transformation to functionalized piperazines and 1,4-diazepanes. Tetrahedron, 2012, 68(52), 10827-10834.
[http://dx.doi.org/10.1016/j.tet.2011.09.136]
[16]
Deketelaere, S.; Nguyen, T.V.; Stevens, C.V.; D’hooghe, M. Synthetic approaches toward monocyclic 3-amino-β-lactams. Chem. Open, 2017, 6, 301-319.
[http://dx.doi.org/10.1002/open.201700051]
[17]
van der Steen, F.H.; van Koten, G. Syntheses of 3-amino-2-azetidinones: A literature survey. Tetrahedron, 1991, 47(36), 7503-7524.
[http://dx.doi.org/10.1016/S0040-4020(01)88276-4]
[18]
Kinugasa, M.; Hashimoto, S. The reactions of copper(I) phenylacetylide with nitrones. J. Chem. Soc. Chem. Commun., 1972, 466-467(8), 466.
[http://dx.doi.org/10.1039/c39720000466]
[19]
Sheehan, J.C.; Ryan, J.J. The synthesis of substituted penicillins and simpler structural analogs. I. alpha amino monocyclic β-lactams. J. Am. Chem. Soc., 1951, 73(3), 1204-1206.
[http://dx.doi.org/10.1021/ja01147a097]
[20]
Gilman, H.; Speeter, M. The reformatsky reaction with Benzalaniline. J. Am. Chem. Soc., 1943, 65(11), 2255-2256.
[http://dx.doi.org/10.1021/ja01251a503]
[21]
Kühlein, K.; Jensen, H. Substitutionsreaktionen an cephamderivaten. Justus Liebigs Ann. Chem., 1974, 1974(3), 369-402.
[http://dx.doi.org/10.1002/jlac.197419740305]
[22]
Singh, P.; Raj, R.; Bhargava, G.; Hendricks, D.T.; Handa, S.; Saughter, L.G.; Kumar, V. Synthesis and in vitro antiplasmodial evaluation of 7-chloroquinoline-chalcone and 7-chloroquinoline-ferrocenylchalcone conjugates. Eur. J. Med. Chem., 2015, 95, 230-239.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.045]
[23]
Alcaide, B.; Almendros, P.; Aragoncillo, C. β-lactams: Versatile building blocks for the stereoselective synthesis of non-β-lactam products. Chem. Rev., 2007, 107(11), 4437-4492.
[http://dx.doi.org/10.1021/cr0307300] [PMID: 17649981]
[24]
Poljak, T.; Molcanov, K.; Margetic, D.; Habus, I. Study on the lewis acid-promoted aza-diels - alder reaction of azetidin-2-one-tethered imines with siloxydienes in the asymmetric synthesis of 2-aryl(alkyl)-2,3-dihydro-4-pyridones. Croat. Chem. Acta, 2008, 4, 539-558.
[25]
Habuš, I.; Radolović, K.; Kralj, B. New thiazolidinone and triazinethione conjugates derived from amino-β-lactams. Heterocycles, 2009, 78(7), 1729-1759.
[http://dx.doi.org/10.3987/COM-09-11668]
[26]
Radolović, K.; Molčanov, K.; Habuš, I. Synthesis and structure determination of methyl (3S)- and (3R)-(trans-(3′R,4′R)-3-amino-1-(4-methoxy-phenyl)-2-oxo-4-phenylazetidin-3-yl)-2,2-dimethyl-3-ferrocenylpropanoate. J. Mol. Struct., 2010, 966(1-3), 8-13.
[http://dx.doi.org/10.1016/j.molstruc.2009.11.056]
[27]
Vazdar, K.; Margetic, D.; Habus, I. Lewis acid promoted diastereoselective Mannich reaction of β-lactam-Tethered aldimines with 1-methoxy-1-trimethylsilyloxy-2, 2-dimethylethene. Heterocycles, 2011, 83(1), 63-90.
[http://dx.doi.org/10.3987/COM-10-12097]
[28]
Bandyopadhyay, D.; Rivera, G.; Salinas, I.; Aguilar, H.; Banik, B.K. Remarkable iodine-catalyzed synthesis of novel pyrrole-bearing N-polyaromatic β-lactams. Molecules, 2010, 15(2), 1082-1088.
[http://dx.doi.org/10.3390/molecules15021082] [PMID: 20335963]
[29]
Bandyopadhyay, D.; Cruz, J.; Yadav, R.N.; Banik, B.K. An expeditious iodine-catalyzed synthesis of 3-pyrrole-substituted 2-azetidinones. Molecules, 2012, 17(10), 11570-11584.
[http://dx.doi.org/10.3390/molecules171011570] [PMID: 23023683]
[30]
Balogh, J.; Foldes, R.S.; Vazdar, K.; Habus, I. Diastereo- and facially selective imino-diels-alder cycloaddition of 2-azeditinone-tethered 1-azadiene: Synthesis of functionalized (2-oxo-4-styrylazetidin-3-yl)-pyridine hybrids. J. Organomet. Chem., 2012, 703, 51-55.
[http://dx.doi.org/10.1016/j.jorganchem.2011.12.033]
[31]
Bhargava, G.; Kumar, Y.; Singh, P. Diastereo- and facially selective imino-diels-alder cycloaddition of 2-azeditinone-tethered 1-azadiene: synthesis of functionalized (2-oxo-4-styrylazetidin-3-yl)-pyridine hybrids. Synlett, 2015, 26(3), 363-366.
[http://dx.doi.org/10.1055/s-0034-1379505]
[32]
Yadav, R.N.; Srivastava, A.K.; Banik, B.K. Microwave-induced bismuth nitrate-catalyzed michael reaction of 3-amino β-lactams with enones. Asian J. Chem., 2020, 32(2), 233-236.
[http://dx.doi.org/10.14233/ajchem.2020.22168]
[33]
Bhalla, J.; Bari, S.S.; Rathee, A.; Kumar, A.; Bhalla, A. Pyrimidine and pyrazole linked azetidin-2-ones: Entry to novel class of β-lactam heterocycles. J. Heterocycl. Chem., 2017, 54(4), 2297-2306.
[http://dx.doi.org/10.1002/jhet.2817]
[34]
Vazdar, K.; Jerić, I. Amino-β-lactams in Ugi reaction: An efficient method for preparation of functionalized peptidomimetics. Tetrahedron, 2018, 74(52), 7495-7506.
[http://dx.doi.org/10.1016/j.tet.2018.11.028]
[35]
Banik, I.; Yadav, R.N.; Bose, A.K.; Banik, B.K. Acetylation of the amino group in β-lactams under aqueous conditions: Effects of ring sizes. J. Indian Chem. Soc., 2019, 96, 1343-1346.
[http://dx.doi.org/10.5281/zenodo.5642660]
[36]
Singh, P.; Singh, P.; Kumar, M.; Gut, J.; Rosenthal, P.J.; Kumar, K.; Kumar, V.; Mahajan, M.P.; Bisetty, K. Synthesis and in vitro anti-tubercular evaluation of 1,2,3-triazole tethered β-lactam-ferrocene and β-lactam-ferrocenyl-chalcone chimeric scaffolds. Bioorg. Med. Chem. Lett., 2012, 22, 57-61.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.082] [PMID: 22172698]
[37]
Singh, P.; Sharma, P.; Anand, A.; Bedi, P.M.S.; Kaur, T.; Saxena, A.K.; Kumar, V. Synthesis and in vitro anti-tubercular evaluation of 1,2,3-triazole tethered β-lactam-ferrocene and β-lactam-ferrocenylchalcone chimeric scaffolds. Eur. J. Med. Chem., 2012, 55, 455-461.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.057] [PMID: 22818042]
[38]
Kumar, K.; Singh, P.; Kremer, L.; Guérardel, Y.; Biot, C.; Kumar, V. Synthesis and in vitro anti-tubercular evaluation of 1,2,3-triazole tethered] β-lactam-ferrocene and β-lactam-ferrocenylchalcone chimeric scaffolds. Dalton Trans., 2012, 41(19), 5778-5781.
[http://dx.doi.org/10.1039/c2dt30514c] [PMID: 22473422]
[39]
Raj, R.; Biot, C.; Carrère-Kremer, S.; Kremer, L.; Guérardel, Y.; Gut, J.; Rosenthal, P.J.; Kumar, V. 4-aminoquinoline-β-lactam conjugates: Synthesis, antimalarial, and antitubercular evaluation. Chem. Biol. Drug Des., 2014, 83(2), 191-197.
[http://dx.doi.org/10.1111/cbdd.12225] [PMID: 24034147]
[40]
Raj, R.; Mehra, V.; Gut, J.; Rosenthal, P.J.; Wicht, K.J.; Egan, T.J.; Hopper, M.; Wrischnik, L.A.; Land, K.M.; Kumar, V. Discovery of highly selective 7-chloroquinoline-thiohydantoins with potent antimalarial activity. Eur. J. Med. Chem., 2014, 84, 425-432.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.048] [PMID: 25038484]
[41]
Raj, R.; Sharma, V.; Hopper, M.J.; Patel, N.; Hall, D.; Wrischnik, L.A.; Land, K.M.; Kumar, V. Synthesis and preliminary in vitro activity of mono- and bis-1H-1,2,3-triazole-tethered β-lactam-isatin conjugates against the human protozoal pathogen Trichomonas vaginalis. Med. Chem. Res., 2014, 23(8), 3671-3680.
[http://dx.doi.org/10.1007/s00044-014-0956-6] [PMID: 32214766]
[42]
Drazic, T.; Molcanov, K.; Sachdev, V.; Malnar, M.; Hecimovic, S.; Patankar, J.V.; Obrowsky, S.; Frank, S.L.; Habus, I.; Kratky, D. Synthesis of new 2-aminoimidazolones with antiproliferative activity via base promoted amino-β-lactam rearrangement. Eur. J. Med. Chem., 2014, 87, 722-734.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.014] [PMID: 25305716]
[43]
Drazic, T.; Sachdev, V.; Leopold, C.; Patankar, J.V.; Malnar, M.; Hecimovic, S.; Frank, S.L.; Habus, I.; Kratky, D. Synthesis of new 2-aminoimidazolones with antiproliferative activity via base promoted amino-β-lactam rearrangement. Bioorg. Med. Chem., 2015, 23, 2353-2359.
[http://dx.doi.org/10.1016/j.bmc.2015.03.067] [PMID: 25882530]
[44]
Dražić, T.; Vazdar, K.; Vazdar, M.; Đaković, M.; Mikecin, A.M.; Kralj, M.; Malnar, M.; Hećimović, S.; Habuš, I. Synthesis of new 2-aminoimidazolones with antiproliferative activity via base promoted amino-β-lactam rearrangement. Tetrahedron, 2015, 71(49), 9202-9215.
[http://dx.doi.org/10.1016/j.tet.2015.10.048]
[45]
Bhargava, G.; Kumar, Y.; Singh, P. Diastereo- and facially selective imino-diels-alder cycloaddition of 2-azeditinone-tethered 1-azadiene: Synthesis of functionalized (2-oxo-4-styrylazetidin-3-yl)-pyridine hybrids. Synlett, 2015, 26(3), 363-366.
[http://dx.doi.org/10.1055/s-0034-1379505]
[46]
Kuila, B.; Kumar, Y.; Mahajan, D.; Kumar, K.; Singh, P.; Bhargava, G. A facile and chemoselective synthesis of 1,4-benzodiazepin-2-ones and dienyl thiazolidin-4-ones. RSC Advances, 2016, 6(62), 57485-57489.
[http://dx.doi.org/10.1039/C6RA10021J]
[47]
Kumar, Y.; Kuila, B.; Mahajan, D.; Singh, P.; Mohapatra, B.; Bhargava, G. Metal-free diastereoselective synthesis of diaza-bicyclo[3.2.0]heptan-7-one and its transformation to functionalized proline esters. Tetrahedron Lett., 2014, 55(17), 2793-2795.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.105]
[48]
Kumar, Y.; Kulia, B.; Singh, P.; Bhargava, G. Highly chemo- and diastereo-selective synthesis of 2,6-diazabicyclo[3.2.0]heptan-7-ones, pyrrolidines and perhydroazirino[2,3-c]pyrroles. Arkivoc, 2016, 2016(6), 23-44.
[http://dx.doi.org/10.24820/ark.5550190.p009.845]
[49]
Kumar, V.; Singh, A.; Kaur, H.; Sharma, P.; Anand, A. β-lactam-synthon-interceded metal/acid-free diastereoselective access to highly functionalized oxazol-5-ones and dihydroimidazoles. Synlett, 2017, 28(19), 2642-2646.
[http://dx.doi.org/10.1055/s-0036-1588531]
[50]
Mehra, V. Neetu; Kumar, V. Diastereoselective synthesis of 2,3-disubstituted 1-arylazetidines via NaBH4-promoted facile reduction of C-3 functionalized azetidin-2-ones. Tetrahedron Lett., 2013, 54(35), 4763-4766.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.126]
[51]
Mehra, V.; Kumar, V. Facile diastereoselective synthesis of functionally enriched hydantoins via base-promoted intramolecular amidolysis of C-3 functionalized azetidin-2-ones. Tetrahedron Lett., 2013, 54(45), 6041-6044.
[http://dx.doi.org/10.1016/j.tetlet.2013.08.101]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy