Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

A Concise Review on Analytical Methods for Determination of Nilotinib

Author(s): Ritika Khivansara, Sandhya Jadhav, Maheshkumar Borkar and Atul Sherje*

Volume 19, Issue 7, 2023

Published on: 23 October, 2023

Page: [513 - 530] Pages: 18

DOI: 10.2174/0115734110270070231012123849

Price: $65

Abstract

Nilotinib hydrochloride is a tyrosine kinase inhibitor licensed to treat chronic myelogenous leukemia in patients with the Philadelphia Chromosome (Ph+). Researchers at Novartis Pharmaceuticals discovered novel inhibitors that are effective against imatinib-resistant BCR-ABL mutations. As a consequence, Nilotinib was discovered. Several analytical approaches were employed to address the quantitative as well as qualitative assessment of Nilotinib from diverse biological and pharmaceutical matrices during the development of Nilotinib. The literature search was conducted by evaluating publications reporting on nilotinib analytical methodologies from 2006 to 2022. This review briefly summarizes the drug profile, viz. stereochemistry, mechanism of action, resistance, pharmacokinetics, pharmacodynamics, side effects, and several analytical techniques used to assess Nilotinib in dosage form, bulk, and biological fluids. The determination of Nilotinib using analytical methods is important for therapeutic drug monitoring, optimizing dosage, ensuring safety and efficacy, and conducting comparative studies. A variety of techniques are gathered and examined, including spectroscopy, electrophoresis, voltammetry, Raman spectroscopy, differential scanning calorimetry, X-ray diffraction, chromatography, and hybrid techniques. They are also useful for studying the pharmacokinetics of the drug. These methods play a crucial role in the effective and personalized treatment of patients with chronic myeloid leukemia and other conditions where Nilotinib is used.

Graphical Abstract

[1]
Plosker, G.L.; Robinson, D.M. Nilotinib. Drugs, 2008, 68(4), 449-459.
[http://dx.doi.org/10.2165/00003495-200868040-00005] [PMID: 18318563]
[2]
Weisberg, E.; Manley, P.; Mestan, J.; Cowan-Jacob, S.; Ray, A.; Griffin, J.D. AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br. J. Cancer, 2006, 94(12), 1765-1769.
[http://dx.doi.org/10.1038/sj.bjc.6603170] [PMID: 16721371]
[3]
Jabbour, E.; Cortes, J.; Giles, F.; O’Brien, S.; Kantarijan, H. Drugevaluation: Nilotinib - a novel Bcr-Abl tyrosine kinase inhibitor for thetreatment of chronic myelocytic leukemia and beyond. IDrugs, 2007, 10(7), 468-479.
[4]
DeRemer, D.L.; Ustun, C.; Natarajan, K. Nilotinib: A second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Clin. Ther., 2008, 30(11), 1956-1975.
[http://dx.doi.org/10.1016/j.clinthera.2008.11.014] [PMID: 19108785]
[6]
Nakahara, R.; Sumimoto, T.; Ogata, M.; Sato, Y.; Itoh, H. Successful determination of nilotinib dosage by therapeutic drug monitoring in a patient with chronic myeloid leukemia developing hepatic dysfunction: A case report. Clin. Case Rep., 2019, 7(7), 1419-1421.
[http://dx.doi.org/10.1002/ccr3.2191] [PMID: 31360502]
[7]
Escudero-Ortiz, V.; Rodríguez-Lucena, F.J.; Estan-Cerezo, G.; Mancheño-Maciá, E.; Conesa-García, V.; García-Monsalve, A.; Soriano-Irigaray, L.; Navarro-Ruiz, A. Therapeutic drug monitoring in oncohematological patients: a fast and accurate hplc-uv method for the quantification of nilotinib in human plasma and its clinical application. Biomedicines, 2023, 11(3), 947.
[http://dx.doi.org/10.3390/biomedicines11030947] [PMID: 36979926]
[8]
Xia, B.; Heimbach, T.; He, H.; Lin, T. Nilotinib preclinical pharmacokinetics and practical application toward clinical projections of oral absorption and systemic availability. Biopharm. Drug Dispos., 2012, 33(9), 536-549.
[http://dx.doi.org/10.1002/bdd.1821] [PMID: 23097199]
[9]
Blay, J.Y.; Von Mehren, M. Nilotinib: A novel, selective tyrosine kinase inhibitor. Semin. Oncol., 2011, 38(Suppl. 1), S3-S9.
[http://dx.doi.org/10.1053/j.seminoncol.2011.01.016]
[10]
Chaitanya, G.; Pawar, A.K.M. Development and validation of UV spectrophotometric method for the determination of pazopanib hydrochloride in bulk and tablet formulation. AKM JOCPR., 2015, 7(12), 219-225.
[11]
Changes, M. Highlights of prescribing information-nilotinib; Interact, 1998, pp. 1-25.
[12]
National Center for Biotechnology Information 2022. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Nilotinib (Accessed on: November 28 2022).
[13]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, Z. ic leukemia and beyond. N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson,A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A majorupdate to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136] [PMCID: PMC5753335]
[14]
Herbrink, M.; Schellens, J.H.M.; Beijnen, J.H.; Nuijen, B. Improving the solubility of nilotinib through novel spray-dried solid dispersions. Int. J. Pharm., 2017, 529(1-2), 294-302.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.010] [PMID: 28689964]
[15]
Di Gion, P.; Kanefendt, F.; Lindauer, A.; Scheffler, M.; Doroshyenko, O.; Fuhr, U.; Wolf, J.; Jaehde, U. Clinical pharmacokinetics of tyrosine kinase inhibitors: focus on pyrimidines, pyridines and pyrroles. Clin. Pharmacokinet., 2011, 50(9), 551-603.
[http://dx.doi.org/10.2165/11593320-000000000-00000] [PMID: 21827214]
[16]
Weisberg, E.; Manley, P.W.; Breitenstein, W.; Brüggen, J.; Cowan-Jacob, S.W.; Ray, A.; Huntly, B.; Fabbro, D.; Fendrich, G.; Hall-Meyers, E.; Kung, A.L.; Mestan, J.; Daley, G.Q.; Callahan, L.; Catley, L.; Cavazza, C.; Mohammed, A.; Neuberg, D.; Wright, R.D.; Gilliland, D.G.; Griffin, J.D. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 2005, 7(2), 129-141.
[http://dx.doi.org/10.1016/j.ccr.2005.01.007] [PMID: 15710326]
[17]
Golemovic, M.; Verstovsek, S.; Giles, F.; Cortes, J.; Manshouri, T.; Manley, P.W.; Mestan, J.; Dugan, M.; Alland, L.; Griffin, J.D.; Arlinghaus, R.B.; Sun, T.; Kantarjian, H.; Beran, M. AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, has in vitro activity against imatinib-resistant chronic myeloid leukemia. Clin. Cancer Res., 2005, 11(13), 4941-4947.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2601] [PMID: 16000593]
[18]
Stover, E.H.; Chen, J.; Lee, B.H.; Cools, J.; McDowell, E.; Adelsperger, J.; Cullen, D.; Coburn, A.; Moore, S.A.; Okabe, R.; Fabbro, D.; Manley, P.W.; Griffin, J.D.; Gilliland, D.G. The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFR and FIP1L1-PDGFR in vitro and in vivo. Blood, 2005, 106(9), 3206-3213.
[http://dx.doi.org/10.1182/blood-2005-05-1932] [PMID: 16030188]
[19]
von Bubnoff, N.; Manley, P.W.; Mestan, J.; Sanger, J.; Peschel, C.; Duyster, J. Bcr-Abl resistance screening predicts a limited spectrum of point mutations to be associated with clinical resistance to the Abl kinase inhibitor nilotinib (AMN107). Blood, 2006, 108(4), 1328-1333.
[http://dx.doi.org/10.1182/blood-2005-12-010132] [PMID: 16614241]
[20]
Gleixner, K.V.; Mayerhofer, M.; Aichberger, K.J.; Derdak, S.; Sonneck, K.; Böhm, A.; Gruze, A.; Samorapoompichit, P.; Manley, P.W.; Fabbro, D.; Pickl, W.F.; Sillaber, C.; Valent, P. PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects. Blood, 2006, 107(2), 752-759.
[http://dx.doi.org/10.1182/blood-2005-07-3022] [PMID: 16189265]
[21]
Hazarika, M.; Jiang, X.; Liu, Q.; Lee, S.L.; Ramchandani, R.; Garnett, C.; Orr, M.S.; Sridhara, R.; Booth, B.; Leighton, J.K.; Timmer, W.; Harapanhalli, R.; Dagher, R.; Justice, R.; Pazdur, R. Tasigna for chronic and accelerated phase Philadelphia chromosome--positive chronic myelogenous leukemia resistant to or intolerant of imatinib. Clin. Cancer Res., 2008, 14(17), 5325-5331.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0308] [PMID: 18765523]
[22]
Mahon, F.X.; Hayette, S.; Lagarde, V.; Belloc, F.; Turcq, B.; Nicolini, F.; Belanger, C.; Manley, P.W.; Leroy, C.; Etienne, G.; Roche, S.; Pasquet, J.M. Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res., 2008, 68(23), 9809-9816.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1008] [PMID: 19047160]
[23]
Kagan, M.; Tran, P.; Fischer, V.; Savage, P.; Smith, T.; Tanaka, C.; Schran, H.; Narurkar, M.; Alland, L. Safety, pharmacokinetics (PK), metabolism, and mass balance of [14C]-AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl tyrosine kinase, in healthy subjects. Blood, 2005, 106(11), 4887-4887.
[http://dx.doi.org/10.1182/blood.V106.11.4887.4887]
[24]
Ahmad, A. Potential pharmacokinetic interactions between antiretrovirals and medicinal plants used as complementary and African traditional medicines. Biopharm. Drug Dispos., 2007, 28(3), 135-143.
[http://dx.doi.org/10.1002/bdd.540] [PMID: 17295411]
[25]
Singh, V.K.; Coumar, M. Chronic myeloid leukemia: Existing therapeutic options and strategies to overcome drug resistance. Mini Rev. Med. Chem., 2019, 19(4), 333-345.
[26]
American Society of Health System Pharmacists; AHFS Drug Information 2010. Available from: https://www.ashp.org/Products-and-Services/AHFS-DI
[27]
Tanaka, C.; Yin, O.Q.P.; Smith, T.; Sethuraman, V.; Grouss, K.; Galitz, L.; Harrell, R.; Schran, H. Effects of rifampin and ketoconazole on the pharmacokinetics of nilotinib in healthy participants. J. Clin. Pharmacol., 2011, 51(1), 75-83.
[http://dx.doi.org/10.1177/0091270010367428] [PMID: 20702754]
[28]
Nilotinib Capsule - Uses, side effects, and more Available from: https://www.webmd.com/drugs/2/drug-149533/nilotinib-oral/details
[29]
Wang, Z.; Jiang, L.; Yan, H.; Xu, Z.; Luo, P. Adverse events associated with nilotinib in chronic myeloid leukemia: mechanisms and management strategies. Expert Rev. Clin. Pharmacol., 2021, 14(4), 445-456.
[http://dx.doi.org/10.1080/17512433.2021.1894129] [PMID: 33618586]
[30]
Nilotinib In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, (MD), 2012.
[31]
Li, S.; He, J.; Zhang, X.; Cai, Y.; Liu, J.; Nie, X.; Shi, L. Cardiovascular adverse events in chronic myeloid leukemia patients treated with nilotinib or imatinib: A systematic review, meta-analysis and integrative bioinformatics analysis. Front. Cardiovasc. Med., 2022, 9, 966182.
[http://dx.doi.org/10.3389/fcvm.2022.966182] [PMID: 36426222]
[32]
Moore, D.C.; Muslimani, A.; Sinclair, P. Nilotinib-induced ocular toxicity: A case report. Am. J. Ther., 2018, 25(5), e570-e571.
[http://dx.doi.org/10.1097/MJT.0000000000000650] [PMID: 28806182]
[33]
Sener, C.E.; Dogan Topal, B.; Ozkan, S.A. Effect of monomer structure of anionic surfactant on voltammetric signals of an anticancer drug: rapid, simple, and sensitive electroanalysis of nilotinib in biological samples. Anal. Bioanal. Chem., 2020, 412(29), 8073-8081.
[http://dx.doi.org/10.1007/s00216-020-02934-9] [PMID: 32978655]
[34]
Chevalier, F. Gel-based electrophoresis. Anal. Methods, 2011, 185-192.
[35]
Wang, W.; Lv, F-F.; Du, Y.; Li, N.; Chen, Y.L.; Chen, L. The effect of nilotinib plus arsenic trioxide on the proliferation and differentiation of primary leukemic cells from patients with chronic myoloid leukemia in blast crisis. Cancer Cell Int., 2015, 15, 10.
[36]
Contreras, O.; Villarreal, M.; Brandan, E. Nilotinib impairs skeletal myogenesis by increasing myoblast proliferation. Skelet. Muscle, 2018, 8(1), 5.
[http://dx.doi.org/10.1186/s13395-018-0150-5] [PMID: 29463296]
[37]
Hussain, T.; Zhao, D.; Shah, S.Z.A.; Sabir, N.; Wang, J.; Liao, Y.; Song, Y.; Dong, H.; Hussain Mangi, M.; Ni, J.; Yang, L.; Zhou, X. Nilotinib: A tyrosine kinase inhibitor mediates resistance to intracellular mycobacterium via regulating autophagy. Cells, 2019, 8(5), 506.
[http://dx.doi.org/10.3390/cells8050506] [PMID: 31130711]
[38]
Steehler, J.K. Ewing’s analytical instrumentation handbook 3rd Edition (Cazes, Jack) In: J. Chem. Educ; , 2005; 82, p. (9)1315.
[http://dx.doi.org/10.1021/ed082p1315]
[39]
Patel, S.; Raulji, A.; Patel, D.; Panchal, D.; Dalwadi, M.; Upadhyay, U. A Review on “Uv Visible Spectroscopy.”. Int J Pharm Res Appl, 2022, 7(5), 1144-1151.
[40]
Colombo, S.; Brisander, M.; Haglöf, J.; Sjövall, P.; Andersson, P.; Østergaard, J.; Malmsten, M. Matrix effects in nilotinib formulations with pH-responsive polymer produced by carbon dioxide-mediated precipitation. Int. J. Pharm., 2015, 494(1), 205-217.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.031] [PMID: 26276256]
[41]
Herbrink, M.; Vromans, H.; Schellens, J.; Beijnen, J.; Nuijen, B. Thermal stability study of crystalline and novel spray-dried amorphous nilotinib hydrochloride. J. Pharm. Biomed. Anal., 2018, 148, 182-188.
[http://dx.doi.org/10.1016/j.jpba.2017.10.001] [PMID: 29040935]
[42]
Zhalechin, M.; Dehaghi, S.M.; Najafi, M.; Moghimi, A. Magnetic polymeric core-shell as a carrier for gradual release in vitro test drug delivery. Heliyon, 2021, 7(5), e06652.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06652] [PMID: 34027143]
[43]
El Fels, L.; Zamama, M.; Hafidi, M. Advantages and limitations of using FTIR spectroscopy for assessing the maturity of sewage sludge and olive oil waste co-composts. In: Biodegrad Bioremediation Polluted Syst; New Adv Technol, 2015; pp. 127-144.
[http://dx.doi.org/10.5772/60943]
[44]
Johnson, C.S., Jr Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog. Nucl. Magn. Reson. Spectrosc., 1999, 34(3-4), 203-256.
[http://dx.doi.org/10.1016/S0079-6565(99)00003-5]
[45]
Vajpai, N. Structural characterization of the leukemia drug target ABL kinase and unfolded polypeptides by novel solution NMR techniques 2018. Available from: http://edoc.unibas.ch/diss/DissB_9003
[46]
Wen, M.; Shen, C.; Wang, L.; Zhang, P.; Jin, J. An efficient D -glucosamine-based copper catalyst for C–X couplings and its application in the synthesis of nilotinib intermediate. RSC Advances, 2015, 5(2), 1522-1528.
[http://dx.doi.org/10.1039/C4RA11183D]
[47]
Yan, J.; Wu, D.; Sun, P.; Ma, X.; Wang, L.; Li, S.; Xu, K.; Li, H. Binding mechanism of the tyrosine-kinase inhibitor nilotinib to human serum albumin determined by 1 H STD NMR, 19 F NMR, and molecular modeling. J. Pharm. Biomed. Anal., 2016, 124, 1-9.
[http://dx.doi.org/10.1016/j.jpba.2016.02.024] [PMID: 26922576]
[48]
Gilbert, A.; Silvestre, V.; Robins, R.J.; Remaud, G.S.; Tcherkez, G. Biochemical and physiological determinants of intramolecular isotope patterns in sucrose from C3, C4 and CAM plants accessed by isotopic 13C NMR spectrometry: a viewpoint. Nat. Prod. Rep., 2012, 29(4), 476-486.
[http://dx.doi.org/10.1039/c2np00089j] [PMID: 22337171]
[49]
Singamsetti, J.C.M.K.N.N.M.; Korupolu, R.B.; Gandham, H.; Geereddi, M.K.R.; Kaliyaperumal, M.; Rumalla, C.S.; Mutha, V.S.R.N.A.K.; Ivaturi, R. Forced degradation studies of nilotinib hydrochloride: isolation, identification & characterization of impurities. Int. J. Pharm. Sci. Drug Res., 2020, 12(5), 537-543.
[http://dx.doi.org/10.25004/IJPSDR.2020.120516]
[50]
Bloom, A.N.; Tian, H.; Schoen, C.; Winograd, N. Label-free visualization of nilotinib-functionalized gold nanoparticles within single mammalian cells by C60- SIMS imaging. Anal. Bioanal. Chem., 2017, 409(12), 3067-3076.
[http://dx.doi.org/10.1007/s00216-017-0262-5] [PMID: 28283715]
[51]
Marín-Rubio, J.L.; Peltier-Heap, R.E.; Dueñas, M.E.; Heunis, T.; Dannoura, A.; Inns, J.; Scott, J.; Simpson, A.J.; Blair, H.J.; Heidenreich, O.; Allan, J.M.; Watt, J.E.; Martin, M.P.; Saxty, B.; Trost, M. A matrix-assisted laser desorption/ionization time-of-flight assay identifies nilotinib as an inhibitor of inflammation in acute myeloid leukemia. J. Med. Chem., 2022, 65(18), 12014-12030.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00671] [PMID: 36094045]
[52]
Urban, P.L. Quantitative mass spectrometry: An overview. Philos Trans R Soc A Math Phys. Eng. Sci., 2016, 374(2079), 20150382.
[53]
Polini, A.; Yang, F. Physicochemical characterization of nanofiber composites. Nanofiber Compos. Biomed. Appl., 2017, 97-115.
[http://dx.doi.org/10.1016/B978-0-08-100173-8.00005-3]
[54]
Mukesh Kumar Singh, A.S. Thermal characterization of materials using differential scanning calorimeter; Charact Polym Fibres, 2022, pp. 201-222.
[55]
Synetos, A.; Tousoulis, D. Invasive Imaging Techniques.Coronary Artery Disease; Elsevier, 2018, pp. 359-376.
[http://dx.doi.org/10.1016/B978-0-12-811908-2.00018-0]
[56]
Siddique, M.R.; Rutter, A.V.; Wehbe, K.; Cinque, G.; Bellisola, G.; Sulé-Suso, J. Effects of nilotinib on leukaemia cells using vibrational microspectroscopy and cell cloning. Analyst (Lond.), 2017, 142(8), 1299-1307.
[http://dx.doi.org/10.1039/C6AN01914E] [PMID: 27942623]
[57]
Gaba, F.; Tipping, W.J.; Salji, M.; Faulds, K.; Graham, D.; Leung, H.Y. Raman spectroscopy in prostate cancer: Techniques, applications and advancements. Cancers (Basel), 2022, 14(6), 1535.
[http://dx.doi.org/10.3390/cancers14061535] [PMID: 35326686]
[58]
Shukla, S.; Skoumbourdis, A.P.; Walsh, M.J.; Hartz, A.M.S.; Fung, K.L.; Wu, C.P.; Gottesman, M.M.; Bauer, B.; Thomas, C.J.; Ambudkar, S.V. Synthesis and characterization of a BODIPY conjugate of the BCR-ABL kinase inhibitor Tasigna (nilotinib): evidence for transport of Tasigna and its fluorescent derivative by ABC drug transporters. Mol. Pharm., 2011, 8(4), 1292-1302.
[http://dx.doi.org/10.1021/mp2001022] [PMID: 21630681]
[59]
Pirdadeh-Beiranvand, M.; Afkhami, A.; Madrakian, T. Magnetic molecularly imprinted electrospun nanofibers for selective extraction of nilotinib from human serum. Anal. Bioanal. Chem., 2020, 412(7), 1629-1637.
[http://dx.doi.org/10.1007/s00216-020-02393-2] [PMID: 31965245]
[60]
Salem, H.; Abo Elsoud, F.A.; Heshmat, D.; Magdy, A. Resonance Rayleigh scattering technique-using erythrosine B, as novel spectrofluorimetric method for determination of anticancer agent nilotinib: Application for capsules and human plasma In: Spectrochim. Acta Part A. Mol. Biomol. Spectros; , 2021; 251, p. 119428.
[61]
Gonzales, W.V.; Mobashsher, A.T.; Abbosh, A. The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors; Sensors: Switzerland, 2019, p. 19.
[62]
Pursche, S.; Ottmann, O.G.; Ehninger, G.; Schleyer, E. High-performance liquid chromatography method with ultraviolet detection for the quantification of the BCR-ABL inhibitor nilotinib (AMN107) in plasma, urine, culture medium and cell preparations. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 852(1-2), 208-216.
[http://dx.doi.org/10.1016/j.jchromb.2007.01.019] [PMID: 17291840]
[63]
Miura, M.; Takahashi, N.; Sawada, K. High-performance liquid chromatography with solid-phase extraction for the quantitative determination of nilotinib in human plasma. Biomed. Chromatogr., 2010, 24(7), 789-793.
[http://dx.doi.org/10.1002/bmc.1364] [PMID: 19904720]
[64]
Davies, A.; Hayes, A.K.; Knight, K.; Watmough, S.J.; Pirmohamed, M.; Clark, R.E. Simultaneous determination of nilotinib, imatinib and its main metabolite (CGP-74588) in human plasma by ultra-violet high performance liquid chromatography. Leuk. Res., 2010, 34(6), 702-707.
[http://dx.doi.org/10.1016/j.leukres.2009.11.009] [PMID: 20004471]
[65]
De Francia, S.; Massano, D.; Piccione, F.M.; Pirro, E.; Racca, S.; Di Carlo, F.; Piga, A. A new HPLC UV validated method for therapeutic monitoring of deferasirox in thalassaemic patients. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 893-894, 127-133.
[http://dx.doi.org/10.1016/j.jchromb.2012.02.047] [PMID: 22436824]
[66]
Naidu, S.V.; Satyanarayana, L.; Naidu, S.V.; Rao, M.N.; Latha, R. The estimation of nilotinib in capsule dosage form by RP-HPLC. Asian J Pharm Ana., 2011, 1(4), 100-2.
[67]
Yuki, M.; Yamakawa, Y.; Uchida, T.; Nambu, T.; Kawaguchi, T.; Hamada, A.; Saito, H. High-performance liquid chromatographic assay for the determination of nilotinib in human plasma. Biol. Pharm. Bull., 2011, 34(7), 1126-1128.
[http://dx.doi.org/10.1248/bpb.34.1126] [PMID: 21720025]
[68]
Harika, M.; Kumar, G.S. Development and validation of method for the determination of Nilotinib by RP-HPLC in bulk and pharmaceutical dosage forms. Int. Res. J. Pharm., 2012, 3(12), 161-4.
[69]
Dziadosz, M.; Wagner, M.C.; Lipka, D.B.; Fischer, T.; Bartels, H. High-performance liquid chromatography with ultraviolet detection and protein precipitation as a way of quantitative determination of nilotinib with and without internal standard. J. Liq. Chromatogr. Relat. Technol., 2012, 35(17), 2503-2510.
[http://dx.doi.org/10.1080/10826076.2011.636469]
[70]
Fouad, M.A.; Elkady, E.F. Forced degradation study and validated stability-indicating RP-LC method for determination of nilotinib in bulk and capsules. Acta Chromatogr., 2014, 26(4), 637-647.
[http://dx.doi.org/10.1556/AChrom.26.2014.4.6]
[71]
Yilmaz, E.M. Aydoğmuş Z.; Aboul-Enein, H.Y. Determination of nilotinib in spiked plasma, urine, and capsules by high-performance liquid chromatography with fluorimetric detection. Acta Chromatogr., 2016, 28(3), 313-331.
[http://dx.doi.org/10.1556/1326.2016.28.3.3]
[72]
Nakahara, R.; Satho, Y.; Itoh, H. High-performance liquid chromatographic ultraviolet detection of nilotinib in human plasma from patients with chronic myelogenous leukemia, and comparison with liquid chromatography-tandem mass spectrometry. J. Clin. Lab. Anal., 2016, 30(6), 1028-1030.
[http://dx.doi.org/10.1002/jcla.21975] [PMID: 27194024]
[73]
Yılmaz, E.; Aydoğmuş Z.; Aslan, S.S.; Üner, M.; taş Z.; Rade, A. RP-HPLC method for the simultaneous determination of carbamazepine and nilotinib: Application solubility studies. Pharm. Chem. J., 2016, 3(4), 1-10.
[74]
Rade, A.; Patil, K.; Thorat, T.; Patil, P.; Shinde, D. Rp-Hplc method development and validation for the estimation of nilotinib in bulk and tablet dosages form. World J. Pharm. Res., 2019, 8(11), 1286-1294.
[75]
Koehl, N.J.; Holm, R.; Kuentz, M.; Griffin, B.T. New Insights into Using Lipid Based Suspensions for ‘Brick Dust’. Molecules: Case Study of Nilotinib. Pharm. Res., 2019, 36(4), 56.
[http://dx.doi.org/10.1007/s11095-019-2590-y] [PMID: 30796596]
[76]
Ivaturi, R.; Sastry, T.M.; Satyaveni, S. Development and validation of a stability indicating HPLC method for the determination of nilotinib hydrochloride in bulk and pharmaceutical dosage form. Int. J. Pharm. Pharm. Sci., 2016, 8(9), 41.
[http://dx.doi.org/10.22159/ijpps.2016v8i9.11637]
[77]
Gopireddy, R.R.; Maruthapillai, A.; Mahapatra, S. A Stability indicating method development and validation for separation of process related impurities and characterization of unknown impurities of tyrosine kinase inhibitor ibrutinib using QbD approach by RP-HPLC, NMR spectroscopy and ESI-MS. J. Chromatogr. Sci., 2021, 59(9), 830-846.
[http://dx.doi.org/10.1093/chromsci/bmaa124] [PMID: 33420506]
[78]
Yokoyama, Y.; Nozawa, E.; Morita, M.; Ishikawa, E.; Mori, T.; Sakurai, M.; Kikuchi, T.; Matsuki, E.; Yamazaki, R.; Kataoka, K.; Jibiki, A.; Kawazoe, H.; Suzuki, S.; Nakamura, T. Simultaneous quantification of dasatinib, nilotinib, bosutinib, and ponatinib using high‐performance liquid chromatography–Photodiode array detection. J. Clin. Lab. Anal., 2022, 36(8), e24598.
[http://dx.doi.org/10.1002/jcla.24598] [PMID: 35819095]
[79]
Narenderan, S.T.; Babu, B.; Srikanth, J.; Meyyanathan, S.N. A systematic approach for stability-indicating HPLC method optimization for Nilotinib bulk through design of experiments: Application towards characterization of base degradation products by mass spectrometry. Ann. Pharm. Fr., 2021, 79(4), 387-394.
[http://dx.doi.org/10.1016/j.pharma.2020.11.003] [PMID: 33242483]
[80]
Lin, H.L.; Chen, L.C.; Cheng, W.T.; Cheng, W.J.; Ho, H.O.; Sheu, M.T. Preparation and characterization of a novel Swellable and Floating Gastroretentive Drug Delivery System (sfGRDDS) for enhanced oral bioavailability of nilotinib. Pharmaceutics, 2020, 12(2), 137.
[http://dx.doi.org/10.3390/pharmaceutics12020137] [PMID: 32041184]
[81]
Selamat, J.; Rozani, N.A.A.; Murugesu, S. Application of the metabolomics approach in food authentication. Molecules, 2021, 26(24), 7565.
[http://dx.doi.org/10.3390/molecules26247565] [PMID: 34946647]
[82]
Kondra, S.B.; Madireddy, V.; Chilukuri, M.; Papadasu, N.; Jonnalagadda, L. A validated stability-indicative UPLC method for nilotinib hydrochloride for the determination of process-related and degradation impurities. J. Chromatogr. Sci., 2014, 52(8), 880-885.
[http://dx.doi.org/10.1093/chromsci/bmt134] [PMID: 24029617]
[83]
Naveen, P.V.; Ganapaty, S. A new stability indicating ultra-fast liquid chromatographic (RP-UFLC) method for the quantification of Nilotinib – A drug for blood cancer. Res. J. Pharm. Technol., 2021, 14(5), 2581-6.
[http://dx.doi.org/10.52711/0974-360X.2021.00454]
[84]
Parise, R.A.; Egorin, M.J.; Christner, S.M.; Shah, D.D.; Zhou, W.; Beumer, J.H. A high-performance liquid chromatography–mass spectrometry assay for quantitation of the tyrosine kinase inhibitor nilotinib in human plasma and serum. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(20-21), 1894-1900.
[http://dx.doi.org/10.1016/j.jchromb.2009.05.034] [PMID: 19493708]
[85]
D’Avolio, A.; Simiele, M.; De Francia, S.; Ariaudo, A.; Baietto, L.; Cusato, J.; Fava, C.; Saglio, G.; Di Carlo, F.; Di Perri, G. HPLC–MS method for the simultaneous quantification of the antileukemia drugs imatinib, dasatinib and nilotinib in human peripheral blood mononuclear cell (PBMC). J. Pharm. Biomed. Anal., 2012, 59, 109-116.
[http://dx.doi.org/10.1016/j.jpba.2011.10.003] [PMID: 22036594]
[86]
Hsieh, Y.; Galviz, G.; Zhou, Q.; Duncan, C. Hydrophilic interaction liquid chromatography/tandem mass spectrometry for the simultaneous determination of dasatinib, imatinib and nilotinib in mouse plasma. Rapid Commun. Mass Spectrom., 2009, 23(9), 1364-1370.
[http://dx.doi.org/10.1002/rcm.4010] [PMID: 19337981]
[87]
Haouala, A.; Zanolari, B.; Rochat, B.; Montemurro, M.; Zaman, K.; Duchosal, M.A.; Ris, H.B.; Leyvraz, S.; Widmer, N.; Decosterd, L.A. Therapeutic Drug Monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(22), 1982-1996.
[http://dx.doi.org/10.1016/j.jchromb.2009.04.045] [PMID: 19505856]
[88]
Yin, O.Q.P.; Gallagher, N.; Li, A.; Zhou, W.; Harrell, R.; Schran, H. Effect of grapefruit juice on the pharmacokinetics of nilotinib in healthy participants. J. Clin. Pharmacol., 2010, 50(2), 188-194.
[http://dx.doi.org/10.1177/0091270009336137] [PMID: 19948946]
[89]
Kralj, E.; Trontelj, J.; Paji, T.; Kristl, A. Simultaneous measurement of imatinib, nilotinib and dasatinib in dried blood spot by ultra high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 903, 150-156.
[http://dx.doi.org/10.1016/j.jchromb.2012.07.011] [PMID: 22857863]
[90]
Veeraraghavan, S.; Thappali, S.; Viswanadha, S.; Chennupati, S.; Nalla, S.; Golla, M.; Vakkalanka, S.; Rangasamy, M. Simultaneous quantification of ruxolitinib and nilotinib in rat plasma by LC–MS/MS: Application to a pharmacokinetic study. J. Pharm. Biomed. Anal., 2014, 94, 125-131.
[http://dx.doi.org/10.1016/j.jpba.2014.01.040] [PMID: 24561338]
[91]
Wojnicz, A.; Colom-Fernández, B.; Steegmann, J.L.; Muñoz-Calleja, C.; Abad-Santos, F.; Ruiz-Nuño, A. Simultaneous determination of imatinib, dasatinib, and nilotinib by liquid chromatography-tandem mass spectrometry and its application to therapeutic drug monitoring. Ther. Drug Monit., 2017, 39(3), 252-262.
[http://dx.doi.org/10.1097/FTD.0000000000000406] [PMID: 28490048]
[92]
Hirasawa, T.; Kikuchi, M.; Shigeta, K.; Takasaki, S.; Sato, Y.; Sato, T.; Ogura, J.; Onodera, K.; Fukuhara, N.; Onishi, Y.; Maekawa, M.; Mano, N. High‐throughput liquid chromatography/electrospray ionization–tandem mass spectrometry method using in‐source collision‐induced dissociation for simultaneous quantification of imatinib, dasatinib, bosutinib, nilotinib, and ibrutinib in human plasma. Biomed. Chromatogr., 2021, 35(8), e5124.
[http://dx.doi.org/10.1002/bmc.5124] [PMID: 33772839]
[93]
van Erp, N.P.; de Wit, D.; Guchelaar, H.J.; Gelderblom, H.; Hessing, T.J.; Hartigh, J. A validated assay for the simultaneous quantification of six tyrosine kinase inhibitors and two active metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 937, 33-43.
[http://dx.doi.org/10.1016/j.jchromb.2013.08.013] [PMID: 24013127]
[94]
Zeng, J. A validated UPLC–MS/MS method for simultaneous determination of imatinib, dasatinib and nilotinib in human plasma. J. Pharm. Anal., 2017, 7(6), 374-80.
[http://dx.doi.org/10.1016/j.jpha.2017.07.009]
[95]
4 - Main mechanisms to control the drug release In: Strategies to Modify the Drug Release from Pharmaceutical Systems; , 2015; pp. 37-62.
[http://dx.doi.org/10.1016/B978-0-08-100092-2.00004-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy