Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

NaProGraph: Network Analyzer for Interactions between Nucleic Acids and Proteins

Author(s): Sajjad Nematzadeh*, Nizamettin Aydin, Zeyneb Kurt and Mahsa Torkamanian-Afshar

Volume 19, Issue 4, 2024

Published on: 20 October, 2023

Page: [385 - 397] Pages: 13

DOI: 10.2174/0115748936266189231004110412

Price: $65

Abstract

Background: Interactions of RNA and DNA with proteins are crucial for elucidating intracellular processes in living organisms, diagnosing disorders, designing aptamer drugs, and other applications. Therefore, investigating the relationships between these macromolecules is essential to life science research.

Methods: This study proposes an online network provider tool (NaProGraph) that offers an intuitive and user-friendly interface for studying interactions between nucleic acids (NA) and proteins. NaPro- Graph utilizes a comprehensive and curated dataset encompassing nearly all interacting macromolecules in the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB).

Results: Researchers can employ this online tool to focus on a specific portion of the PDB, investigate its associated relationships, and visualize and extract pertinent information. This tool provides insights into the frequency of atoms and residues between proteins and nucleic acids (NAs) and the similarity of the macromolecules' primary structures.

Conclusion: Furthermore, the functional similarity of proteins can be inferred using protein families and clans from Pfam.

Graphical Abstract

[1]
Alberts B, Heald R, Johnson A, et al. Molecular Biology of the Cell. 7th. W. W. Norton & Company 2022.
[2]
Kaplon H, Chenoweth A, Crescioli S, Reichert JM. Antibodies to watch in 2022. MAbs 2022; 14(1): 2014296.
[http://dx.doi.org/10.1080/19420862.2021.2014296] [PMID: 35030985]
[3]
Davies DR, Metzger H. Structural basis of antibody function. Annu Rev Immunol 2003; 1: 87-117.
[http://dx.doi.org/10.1146/ANNUREV.IY.01.040183.000511]
[4]
Davies DR, Metzger H. Three-dimensional structure of immunoglobulins. Annu Rev Biochem 1979; 48: 961-697. 2003
[5]
Wilson IA, Stanfield RL. Antibody-antigen interactions: New structures and new conformational changes. Curr Opin Struct Biol 1994; 4(6): 857-67.
[http://dx.doi.org/10.1016/0959-440X(94)90267-4] [PMID: 7536111]
[6]
Gilliland GL, Luo J, Vafa O, Almagro JC. Leveraging SBDD in protein therapeutic development: Antibody engineering. Methods Mol Biol 2012; 841: 321-49.
[http://dx.doi.org/10.1007/978-1-61779-520-6_14] [PMID: 22222459]
[7]
Abdelhaleem M. Helicases. Methods Mol Biol 2010; 587: 1-12.
[http://dx.doi.org/10.1007/978-1-60327-355-8] [PMID: 20225138]
[8]
Wang SP, Deng L, Ho CK, Shuman S. Phylogeny of mRNA capping enzymes. Proc Natl Acad Sci 1997; 94(18): 9573-8.
[http://dx.doi.org/10.1073/pnas.94.18.9573] [PMID: 9275164]
[9]
Shuman S. Capping enzyme in eukaryotic mRNA synthesis. Prog Nucleic Acid Res Mol Biol 1995; 50: 101-29.
[http://dx.doi.org/10.1016/S0079-6603(08)60812-0] [PMID: 7754031]
[10]
Cho EJ, Takagi T, Moore CR, Buratowski S. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 1997; 11(24): 3319-26.
[http://dx.doi.org/10.1101/gad.11.24.3319] [PMID: 9407025]
[11]
Song B, Shiromoto Y, Minakuchi M, Nishikura K. The role of RNA editing enzyme ADAR1 in human disease. Wiley Interdiscip Rev RNA 2022; 13(1): e1665.
[http://dx.doi.org/10.1002/wrna.1665] [PMID: 34105255]
[12]
Berman HM, Westbrook J, Feng Z, et al. The Protein data bank. Nucleic Acids Res 2000; 28(1): 235-42.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[13]
Chakrabarty B, Parekh N. NAPS: Network analysis of protein structures. Nucleic Acids Res 2016; 44(W1): W375-82.
[http://dx.doi.org/10.1093/nar/gkw383] [PMID: 27151201]
[14]
Lanjanian H, Nematzadeh S, Hosseini S, et al. High-throughput analysis of the interactions between viral proteins and host cell RNAs. Comput Biol Med 2021; 135: 104611.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104611] [PMID: 34246161]
[15]
Torkamanian-Afshar M, Nematzadeh S, Tabarzad M, Najafi A, Lanjanian H, Masoudi-Nejad A. In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm. Mol Divers 2021; 25(3): 1395-407.
[http://dx.doi.org/10.1007/s11030-021-10192-9] [PMID: 33554306]
[16]
Teng X, Chen X, Xue H, et al. NPInter v4.0: An integrated database of ncRNA interactions. Nucleic Acids Res 2019; 48(D1): gkz969.
[http://dx.doi.org/10.1093/nar/gkz969] [PMID: 31670377]
[17]
Chojnowski G. Waleń T, Bujnicki JM. RNA Bricks: A database of RNA 3D motifs and their interactions. Nucleic Acids Res 2014; 42(D1): D123-31.
[http://dx.doi.org/10.1093/nar/gkt1084] [PMID: 24220091]
[18]
Bergeron D, Paraqindes H, Fafard-Couture E, et al. snoDB 2.0: An enhanced interactive database, specializing in human snoRNAs. Nucleic Acids Res 2022; 51(D1): D291-6.
[http://dx.doi.org/10.1093/nar/gkac835] [PMID: 36165892]
[19]
Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, et al. DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res 2018; 46(D1): D239-45.
[http://dx.doi.org/10.1093/nar/gkx1141] [PMID: 29156006]
[20]
Kang J, Tang Q, He J, et al. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res 2022; 50(D1): D326-32.
[http://dx.doi.org/10.1093/nar/gkab997] [PMID: 34718726]
[21]
Zhao W, Zhang S, Zhu Y, et al. POSTAR3: An updated platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. Nucleic Acids Res 2022; 50(D1): D287-94.
[http://dx.doi.org/10.1093/nar/gkab702] [PMID: 34403477]
[22]
Blin K, Dieterich C, Wurmus R, Rajewsky N, Landthaler M, Akalin A. DoRiNA 2.0: Upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 2015; 43(D1): D160-7.
[http://dx.doi.org/10.1093/nar/gku1180] [PMID: 25416797]
[23]
Lewis BA, Walia RR, Terribilini M, et al. PRIDB: A protein-RNA interface database. Nucleic Acids Res 2011; 39(Database): D277-82.
[http://dx.doi.org/10.1093/nar/gkq1108] [PMID: 21071426]
[24]
Cook KB, Kazan H, Zuberi K, Morris Q, Hughes TR. RBPDB: A database of RNA-binding specificities. Nucleic Acids Res 2011; 39(Database): D301-8.
[http://dx.doi.org/10.1093/nar/gkq1069] [PMID: 21036867]
[25]
Torkamanian-Afshar M, Lanjanian H, Nematzadeh S, et al. RPINBASE: An online toolbox to extract features for predicting RNA-protein interactions. Genomics 2020; 112(3): 2623-32.
[http://dx.doi.org/10.1016/j.ygeno.2020.02.013] [PMID: 32092438]
[26]
Wodak SJ, Vlasblom J, Turinsky AL, Pu S. Protein–protein interaction networks: The puzzling riches. Curr Opin Struct Biol 2013; 23(6): 941-53.
[http://dx.doi.org/10.1016/j.sbi.2013.08.002] [PMID: 24007795]
[27]
Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49(D1): D605-12.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[28]
Berman HM, Olson WK, Beveridge DL, et al. The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J 1992; 63(3): 751-9.
[http://dx.doi.org/10.1016/S0006-3495(92)81649-1] [PMID: 1384741]
[29]
Coimbatore Narayanan B, Westbrook J, Ghosh S, et al. The nucleic acid database: New features and capabilities. Nucleic Acids Res 2014; 42(D1): D114-22.
[http://dx.doi.org/10.1093/nar/gkt980] [PMID: 24185695]
[30]
Sagendorf JM, Berman HM, Rohs R. DNAproDB: An interactive tool for structural analysis of DNA–protein complexes. Nucleic Acids Res 2017; 45(W1): W89-97.
[http://dx.doi.org/10.1093/nar/gkx272] [PMID: 28431131]
[31]
El-Gebali S, Mistry J, Bateman A, et al. The Pfam protein families database in 2019. Nucleic Acids Res 2019; 47(D1): D427-32.
[http://dx.doi.org/10.1093/nar/gky995] [PMID: 30357350]
[32]
NCBI FASTA Format for Nucleotide Sequences. Available from: https://www.ncbi.nlm.nih.gov/genbank/fastaformat/ (Accessed 20 Feb 2023).
[33]
Mahmudov KT, Kopylovich MN, Guedes da Silva MFC, Pombeiro AJL. Non-covalent interactions in the synthesis of coordination compounds: Recent advances. Coord Chem Rev 2017; 345: 54-72.
[http://dx.doi.org/10.1016/j.ccr.2016.09.002]
[34]
Bijina PV, Suresh CH. Molecular electrostatic potential analysis of non-covalent complexes. J Chem Sci 2016; 128(10): 1677-86.
[http://dx.doi.org/10.1007/s12039-016-1162-5]
[35]
Howard JAK, Hoy VJ, O’Hagan D, Smith GT. How good is fluorine as a hydrogen bond acceptor? Tetrahedron 1996; 52(38): 12613-22.
[http://dx.doi.org/10.1016/0040-4020(96)00749-1]
[36]
Cock PJA, Antao T, Chang JT, et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009; 25(11): 1422-3.
[http://dx.doi.org/10.1093/bioinformatics/btp163] [PMID: 19304878]
[37]
Kunzmann P, Hamacher K. Biotite: A unifying open source computational biology framework in Python. BMC Bioinformatics 2018; 19(1): 346.
[http://dx.doi.org/10.1186/s12859-018-2367-z] [PMID: 30285630]
[38]
Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function using NetworkX. Proceedings of the 7th Python in Science Conference (SciPy 2008). 11-6.
[39]
Perrone G, Unpingco J, Lu H. Network visualizations with Pyvis and VisJS. Proceedings of the 19th Python in Science Conference 58. 62: 58-62.
[http://dx.doi.org/10.25080/Majora-342d178e-008]
[40]
Freeman LC. Centrality in social networks conceptual clarification. Soc Networks 1978; 1(3): 215-39.
[http://dx.doi.org/10.1016/0378-8733(78)90021-7]
[41]
Wasserman S, Faust K. Social Network Analysis: Methods and Applications. Cambridge University Press 1994.
[http://dx.doi.org/10.1017/CBO9780511815478]
[42]
Brandes U. A faster algorithm for betweenness centrality. J MathemSoc 2010; 25(2): 163-77.
[43]
Freeman LC. A set of measures of centrality based on betweenness. Sociometry 1977; 40(1): 35.
[http://dx.doi.org/10.2307/3033543]
[44]
Newman M. Networks: An Introduction 1st. Oxford University Press 2010.
[http://dx.doi.org/10.1093/acprof:oso/9780199206650.001.0001]
[45]
Bonacich P. Power and centrality: A family of measures. Am J Sociol 1987; 92(5): 1170-82.
[http://dx.doi.org/10.1086/228631]
[46]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy