Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Preparation and Properties of Biocomposite Prepared from Waste Polystyrene and Prospopis africana Biochar

Author(s): Adewale George Adeniyi*, Sulyman A. Abdulkareem, Kingsley O. Iwuozor, Ebuka Chizitere Emenike, Comfort A. Adeyanju, Maryam T. Abdulkareem and Maroof O. Omisore

Volume 16, Issue 5, 2023

Published on: 20 October, 2023

Page: [350 - 361] Pages: 12

DOI: 10.2174/0124055204268107231004044742

Price: $65

Abstract

Introduction: In this study, the pods of Prospopis Africana were thermochemically converted into biochar and combined with polystyrene resin in varying proportions to form composites.

Method: The composites were then characterized to determine their characteristics using Fourier transform infrared spectroscopy (FTIR), a Scanning electron microscope coupled with the energy dispersive X-ray Spectrophotometer (SEM-EDX), and a Differential scanning calorimeter (DSC).

Result: The FTIR analysis confirmed the changing or shifting of several peaks in the polystyrene resin and biochar samples. The hardness test showed that incorporating the Prosopis africana biochar into the solvated polystyrene matrix reduced the latter's hardness and reduced the impact value. SEM analysis showed that the biochar was firmly embedded in the polystyrene matrix, showing good adhesion between the matrix and the filler.

Conclusion: This study has demonstrated that composites produced from Prosopis africana biochar filler and polystyrene resin matrix could be used as adsorbents and in the fabrication of materials requiring good electrical and thermal properties.

Graphical Abstract

[1]
Lotfi A, Li H, Dao DV, Prusty G. Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. J Thermopl Comp Mat 2021; 34(2): 238-84.
[http://dx.doi.org/10.1177/0892705719844546]
[2]
Wang B, Zhong S, Lee TL, Fancey KS, Mi J. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Adv Mech Eng 2020; 12(4)
[http://dx.doi.org/10.1177/1687814020913761]
[3]
Ebere Onyekachi O, Iwuozor KO. Mechanical and water absorption properties of polymeric compounds. Am J Mechan MatEng 2019; 3(2): 36.
[http://dx.doi.org/10.11648/j.ajmme.20190302.12]
[4]
Shaker K, Nawab Y, Jabbar M. Bio-composites: Eco-friendly substitute of glass fiber composites Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer 2020; pp. 1-25.
[5]
Das Lala S, Deoghare AB, Chatterjee S. Effect of reinforcements on polymer matrix bio-composites: An overview. Sci Eng Compos Mater 2018; 25(6): 1039-58.
[http://dx.doi.org/10.1515/secm-2017-0281]
[6]
Adelodun AA, Adeniyi AG, Ighalo JO, Onifade DV, Arowoyele LT. Thermochemical conversion of oil palm Fiber‐LDPE hybrid waste into biochar. Biofuels Bioprod Biorefin 2020; 14(6): 1313-23.
[http://dx.doi.org/10.1002/bbb.2130]
[7]
van de Werken N, Tekinalp H, Khanbolouki P, Ozcan S, Williams A, Tehrani M. Additively manufactured carbon fiber-reinforced composites: State of the art and perspective. Addit Manuf 2020; 31: 100962.
[http://dx.doi.org/10.1016/j.addma.2019.100962]
[8]
Emenike EC, Adeniyi AG, Omuku PE, Okwu KC, Iwuozor KO. Recent advances in nano-adsorbents for the sequestration of copper from water. J Water Process Eng 2022; 47: 102715.
[http://dx.doi.org/10.1016/j.jwpe.2022.102715]
[9]
Senthil Muthu Kumar T, Senthilkumar K, Chandrasekar M, et al. Influence of fillers on the thermal and mechanical properties of biocomposites: An overview Biofibers and Biopolymers for Biocomposites. Springer 2020; pp. 111-33.
[http://dx.doi.org/10.1007/978-3-030-40301-0_5]
[10]
Zhang Q, Yi W, Li Z, Wang L, Cai H. Mechanical properties of rice husk biochar reinforced high density polyethylene composites. Polymer 2018; 10(3): 286.
[http://dx.doi.org/10.3390/polym10030286] [PMID: 30966321]
[11]
Amiandamhen SO, Meincken M, Tyhoda L. Natural fibre modification and its influence on fibre-matrix interfacial properties in biocomposite materials. Fibers Polym 2020; 21(4): 677-89.
[http://dx.doi.org/10.1007/s12221-020-9362-5]
[12]
Holmes M. Biocomposites take natural step forward. Reinf Plast 2019; 63(4): 194-201.
[http://dx.doi.org/10.1016/j.repl.2019.04.069]
[13]
Lykke AM, Gregersen SB, Padonou EA, Bassolé IHN, Dalsgaard TK. Potential of unconventional seed oils and fats from west african trees: A review of fatty acid composition and perspectives. Lipids 2021; 56(4): 357-90.
[http://dx.doi.org/10.1002/lipd.12305] [PMID: 33937993]
[14]
Sharifi-Rad J, Kobarfard F, Ata A, et al. Prosopis plant chemical composition and pharmacological attributes: Targeting clinical studies from preclinical evidence. Biomolecules 2019; 9(12): 777.
[http://dx.doi.org/10.3390/biom9120777] [PMID: 31775378]
[15]
Ancha PU, Chukwu O, Ezeano CI, Udekwe MA, Iheme FC. Effect of growth media on the early performance of Prosopis africana (Guill. and Perr.) Taub. seedlings. Eur J Biol Res 2020; 10: 257-62.
[16]
Onaji A, Ado S, Abdullahi I, Ameh J. Comparative analysis of proximate and mineral contents of raw and fermented prosopis africana seed cotyledons using different cooking methods. Afri J Nat Sci 2021; p. 22.
[17]
Uzodinma E, Mbaeyi-Nwaoha I, Onwurafor E. Suitability of bacterial fermentation and foil packaging of condiment from African mesquite (Prosopis africana) seeds for nutritional retention and commercialization. Afr J Microbiol Res 2020; 14: 340-8.
[18]
Musbau S, Asiru R. Proximate parameters of fermented Prosopis africana seeds. J Acad Ind Res 2020; 8: 163-5.
[19]
Song J, Wang Y, Zhang S, et al. Coupling biochar with anaerobic digestion in a circular economy perspective: A promising way to promote sustainable energy, environment and agriculture development in China. Renew Sustain Energy Rev 2021; 144: 110973.
[http://dx.doi.org/10.1016/j.rser.2021.110973]
[20]
Rawat J, Saxena J, Sanwal P. Biochar: A sustainable approach for improving plant growth and soil properties An Imperative Amendment for Soil and the Environment. Intechopen 2019; pp. 1-17.
[http://dx.doi.org/10.5772/intechopen.82151]
[21]
Gogoi S, Bhuyan N, Sut D, Narzari R, Gogoi L, Kataki R. Agricultural wastes as feedstock for thermo-chemical conversion: Products distribution and characterization Energy Recovery Processes from Wastes. Springer 2020; pp. 115-28.
[22]
Palanivelu K, Ramachandran A, Raghavan V, Sri Shalini S. Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions: A review. Biomass Convers Biorefin 2021; 11(5): 2247-67.
[http://dx.doi.org/10.1007/s13399-020-00604-5]
[23]
Khan TA, Saud AS, Jamari SS, Rahim MHA, Park JW, Kim HJ. Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review. Biomass Bioenergy 2019; 130: 105384.
[http://dx.doi.org/10.1016/j.biombioe.2019.105384]
[24]
Ma J, Kong W, Di W, et al. Synergistic effect of bulking agents and biodegradation on the pyrolysis of biodried products derived from municipal organic wastes: Product distribution and biochar physicochemical characteristics. Energy 2022; 248: 123512.
[http://dx.doi.org/10.1016/j.energy.2022.123512]
[25]
Matykiewicz D. Biochar as an effective filler of carbon fiber reinforced bio-epoxy composites. Processes 2020; 8(6): 724.
[http://dx.doi.org/10.3390/pr8060724]
[26]
Giorcelli M, Savi P, Khan A, Tagliaferro A. Analysis of biochar with different pyrolysis temperatures used as filler in epoxy resin composites. Biomass Bioenergy 2019; 122: 466-71.
[http://dx.doi.org/10.1016/j.biombioe.2019.01.007]
[27]
Giorcelli M, Khan A, Pugno NM, Rosso C, Tagliaferro A. Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties. Biomass Bioenergy 2019; 120: 219-23.
[http://dx.doi.org/10.1016/j.biombioe.2018.11.036]
[28]
Elnour AY, Alghyamah AA, Shaikh HM, et al. Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Appl Sci 2019; 9(6): 1149.
[http://dx.doi.org/10.3390/app9061149]
[29]
Ikram S, Das O, Bhattacharyya D. A parametric study of mechanical and flammability properties of biochar reinforced polypropylene composites. Compos, Part A Appl Sci Manuf 2016; 91: 177-88.
[http://dx.doi.org/10.1016/j.compositesa.2016.10.010]
[30]
Zhang Q, Zhang D, Xu H, et al. Biochar filled high-density polyethylene composites with excellent properties: Towards maximizing the utilization of agricultural wastes. Ind Crops Prod 2020; 146: 112185.
[http://dx.doi.org/10.1016/j.indcrop.2020.112185]
[31]
Zhang Q, Li K, Fang Y, Guo Z, Wei Y, Sheng K. Conversion from bamboo waste derived biochar to cleaner composites: Synergistic effects of aramid fiber and silica. J Clean Prod 2022; 347: 131336.
[http://dx.doi.org/10.1016/j.jclepro.2022.131336]
[32]
Zhang Q, Lei H, Cai H, et al. Improvement on the properties of microcrystalline cellulose/polylactic acid composites by using activated biochar. J Clean Prod 2020; 252: 119898.
[http://dx.doi.org/10.1016/j.jclepro.2019.119898]
[33]
Adeniyi AG, Ighalo JO, Onifade DV. Banana and plantain fiber-reinforced polymer composites. J Polym Eng 2019; 39(7): 597-611.
[http://dx.doi.org/10.1515/polyeng-2019-0085]
[34]
Adeniyi AG, Abdulkareem SA, Adeyanju CA, Ighalo JO. Recycling of delonix regia pods biochar and aluminium filings in the development of thermally conducting hybrid polystyrene composites. J Polym Environ 2022; 30(8): 3150-62.
[http://dx.doi.org/10.1007/s10924-022-02413-5]
[35]
Adeniyi AG, Abdulkareem SA, Ighalo JO, Onifade DV, Adeoye SA, Sampson AE. Morphological and thermal properties of polystyrene composite reinforced with biochar from elephant grass (Pennisetum purpureum). J Thermopl Comp Mat 2020; p. 0892705720939169.
[36]
Onifade D, Ighalo J, Adeniyi A, Hameed K. Morphological and thermal properties of polystyrene composite reinforced with biochar from plantain stalk fibre. Mat Int 2020; 2(2): 150-6.
[http://dx.doi.org/10.33263/Materials22.150156]
[37]
Adeniyi A, Ighalo J, Onifade D, Popoola A. Production of hybrid biochar by retort-heating of elephant grass (Pennisetum Purpureum) and low density polyethylene (LDPE) for waste management and product development. J Mater Environ Sci 2020; 11(12): 1940-52.
[38]
Adeniyi AG, Abdulkareem SA, Ighalo JO, Onifade DV, Sanusi SK. Thermochemical co-conversion of sugarcane bagasse-LDPE hybrid waste into biochar. Arab J Sci Eng 2020.
[39]
Adeniyi AG, Ighalo JO, Onifade DV. Biochar from the thermochemical conversion of orange (Citrus sinensis) peel and albedo: Product quality and potential applications. Chem Afr 2020; (2): 439-48.
[40]
Adeniyi AG, Ighalo JO, Onifade DV. Production of biochar from elephant grass (Pernisetum purpureum) using an updraft biomass gasifier with retort heating. Biofuels 2019.
[41]
Adeniyi AG, Abdulkareem SA, Iwuozor KO, Abdulkareem MT, Adeyanju CA, Emenike EC, et al. Mechanical and microstructural properties of expanded polyethylene powder/mica filled hybrid polystyrene composites. Mech Adv Mater Structures 2022; 1-10.
[42]
Adeniyi AG, Abdulkareem SA, Emenike EC, Abdulkareem MT, Iwuozor KO, Amoloye MA, et al. Development and characterization of microstructural and mechanical properties of hybrid polystyrene composites filled with kaolin and expanded polyethylene powder. Resul Eng 2022; p. 100423.
[http://dx.doi.org/10.1016/j.rineng.2022.100423]
[43]
Adeniyi AG, Abdulkareem SA, Ighalo JO, Oladipo-Emmanuel FM, Adeyanju CA. Microstructural and mechanical properties of the plantain fiber/local clay filled hybrid polystyrene composites. Mech Adv Mater Structures 2021; 1-11.
[44]
Wallace CA, Afzal MT, Saha GC. Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar. Bioresour Bioprocess 2019; 6(1): 33.
[http://dx.doi.org/10.1186/s40643-019-0268-2]
[45]
Subramani M, Sepperumal U. FTIR analysis of bacterial mediated chemical changes in Polystyrene foam. Ann Biol Res 2016; 7: 55-61.
[46]
Abdulkareem S, Ighalo J, Adeniyi A. Evaluation of the electrical characteristics of recycled iron reinforced polystyrene composites. Iranian (Iranica). J Ene Environ 2021; 12: 125-30.
[47]
Adeniyi AG, Abdulkareem SA, Adeoye SA, Ighalo JO. Preparation and properties of wood dust (Isoberlinia doka) reinforced polystyrene composites. Polym Bull 2021; 1-19.
[48]
Hossain T. Fabrication and characterization of rice husk pyrolyzed biochar reinforced polypropylene composite Thesis for: Master of Science in Materials Science 2020.
[49]
Emenike EC, Iwuozor KO, Anidiobi SU. Heavy metal pollution in aquaculture: Sources, impacts and mitigation techniques. Biol Trace Elem Res 2021; 1-17.
[PMID: 34813030]
[50]
Das O, Kim NK, Hedenqvist MS, Lin RJT, Sarmah AK, Bhattacharyya D. An attempt to find a suitable biomass for biochar-based polypropylene biocomposites. Environ Manage 2018; 62(2): 403-13.
[http://dx.doi.org/10.1007/s00267-018-1033-6] [PMID: 29594380]
[51]
Abdulkareem SA, Abdulkareem MT, Ighalo JO, Adeniyi AG, Amosa MK. Microstructural, functional groups and textural analysis of expanded polyethylene reinforced polystyrene composites with recycled aluminium as ternary component. Int Polym Process 2022; 37(2): 191-9.
[http://dx.doi.org/10.1515/ipp-2022-4068]
[52]
Panaitescu DM, Vuluga DM, Paven H, Iorga MD, Ghiurea M, Matasaru I, et al. Properties of polymer composites with cellulose microfibrils. Molecul Crys Liq Crys 2008; 484(1): 86/[452].
[http://dx.doi.org/10.1080/15421400801903502]
[53]
Li S, Huang A, Chen YJ, Li D, Turng LS. Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding. Compos, Part B Eng 2018; 153: 277-84.
[http://dx.doi.org/10.1016/j.compositesb.2018.07.049]
[54]
Abdulkareem S, Adeniyi A, Amosa M, Raji S. Development of plastic composite using waste sawdust, rice husk and bamboo in the polystyrene-based resin (PBR) matrix at ambient conditions valorization of biomass to value-added commodities. Springer 2020; pp. 423-38.
[55]
Abdulkareem SA, Raji SA, Adeniyi AG. Development of particleboard from waste styrofoam and sawdust. Nigerian J Technol Develop 2017; 14(1): 18-22.
[http://dx.doi.org/10.4314/njtd.v14i1.3]
[56]
Adeniyi AG, Ighalo JO, Al Abdulkareem SA. Fe and Cu waste metallic particles in conductive polystyrene composites. Int J Sustain Eng 2020; 1-6.
[57]
Abdulkareem SA, Amosa MK, Adeniyi AG, Adeoye SA, Ajayi AK. Development of natural fibre reinforced polystyrene (NFRP) composites: Impact resistance study. IOP Conf Series Mater Sci Eng 2019; 640(1): 012059.
[http://dx.doi.org/10.1088/1757-899X/640/1/012059]
[58]
Odetoye TE, Adeoye VA. Biocomposite production from waste low-density polyethylene sachets and Prosopis africana pods biomass residue. FUOYE J EngTechnol 2022; 7(2)
[http://dx.doi.org/10.46792/fuoyejet.v7i2.761]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy