Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Advances in Synthesis of Indazole Variants: A Comprehensive Review of Transition Metal, Acid/Base and Green Chemistry-based Catalytic Approaches

Author(s): Mithlesh Yadav and Archana Kapoor*

Volume 11, Issue 2, 2024

Published on: 20 October, 2023

Page: [116 - 153] Pages: 38

DOI: 10.2174/0122133372264656231004032920

Price: $65

Abstract

Background: Indazole is a heterocyclic motif widely used in medicinal chemistry due to its positive photophysical properties. The development of new methods for synthesizing the indazole scaffold is of great importance in drug discovery.

Methods: This study presents a detailed review of current advances in indazole synthesis, focusing on catalyst-based and green chemistry approaches. The analysis is classified based on acid-base and transition-metal catalysts and green chemistry methods. Catalyst-based advances have given a new impetus to the synthesis of this effective pharmacophore.

Results: The extensive literature on indazole synthesis demonstrates the notable progress achieved through catalyst-based approaches. These methods have enabled researchers to create a wide range of indazole derivatives and analogs, facilitating their application in pharmaceutical products and organic molecules. The use of acid-base and transition-metal catalysts has been particularly effective in enhancing the efficiency and selectivity of indazole synthesis.

Conclusion: Indazoles and their variants are widely used in pharmaceutical products and organic molecules. The recent literature indicates that catalyst-based approaches have resulted in significant advancements in indazole synthesis. This review may be useful for researchers in medicinal chemistry, content chemistry, and agrochemistry.

Next »
Graphical Abstract

[1]
Büchel, G.E.; Stepanenko, I.N.; Hejl, M.; Jakupec, M.A.; Keppler, B.K.; Heffeter, P.; Berger, W.; Arion, V.B. Osmium(IV) complexes with 1H- and 2H-indazoles: Tautomer identity versus spectroscopic properties and antiproliferative activity. J. Inorg. Biochem., 2012, 113, 47-54.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.04.001] [PMID: 22687494]
[2]
Schmidt, A. Heterocyclic mesomeric betaines and analogs in natural product chemistry. betainic alkaloids and nucleobases. Adv. Heterocycl. Chem., 2003, 85, 67-171.
[http://dx.doi.org/10.1016/S0065-2725(03)85002-X]
[3]
Jennings, A.; Tennant, M. Selection of molecules based on shape and electrostatic similarity: Proof of concept of “electroforms”. J. Chem. Inf. Model., 2007, 47(5), 1829-1838.
[http://dx.doi.org/10.1021/ci600549q] [PMID: 17824684]
[4]
Halim, M.H.R.; Hufton, R.; Morton, C.J.; Jahangiri, S.; Pool, B.R.; Jeynes, T.P.; Draffan, A.G.; Lilly, M.J.; Fre, B. PCT.Int. Appl., , WO2012051659-120120426.2012
[5]
Benson, K.B.G.M.; Feng, S.; Grether, U.; Kuhn, B.; Martin, R.E.; Plancher, J.M.; Richter, H.; Rudolph, M.; Taylor, S. Global mercury emissions to the atmosphere from anthropogenic and natural sources. , WO2010034657.2010
[6]
Song, P.; Chen, M.; Ma, X.; Xu, L.; Liu, T.; Zhou, Y.; Hu, Y. Identification of novel inhibitors of Aurora A with a 3-(pyrrolopyridin-2-yl)indazole scaffold. Bioorg. Med. Chem., 2015, 23(8), 1858-1868.
[http://dx.doi.org/10.1016/j.bmc.2015.02.004] [PMID: 25771484]
[7]
Govek, S.P.; Nagasawa, J.Y.; Douglas, K.L.; Lai, A.G.; Kahraman, M.; Bonnefous, C.; Aparicio, A.M.; Darimont, B.D.; Grillot, K.L.; Joseph, J.D.; Kaufman, J.A.; Lee, K.J.; Lu, N.; Moon, M.J.; Prudente, R.Y.; Sensintaffar, J.; Rix, P.J.; Hager, J.H.; Smith, N.D. Optimization of an indazole series of selective estrogen receptor degraders: Tumor regression in a tamoxifen-resistant breast cancer xenograft. Bioorg. Med. Chem. Lett., 2015, 25(22), 5163-5167.
[http://dx.doi.org/10.1016/j.bmcl.2015.09.074] [PMID: 26463130]
[8]
Moore, S.M.; Khalaj, A.J.; Kumar, S.; Winchester, Z.; Yoon, J.; Yoo, T.; Martinez-Torres, L.; Yasui, N.; Katzenellenbogen, J.A.; Tiwari-Woodruff, S.K. Multiple functional therapeutic effects of the estrogen receptor β agonist indazole-Cl in a mouse model of multiple sclerosis. Proc. Natl. Acad. Sci., 2014, 111(50), 18061-18066.
[http://dx.doi.org/10.1073/pnas.1411294111] [PMID: 25453074]
[9]
May, J.A.; Sharif, N.A.; McLaughlin, M.A.; Chen, H.H.; Severns, B.S.; Kelly, C.R.; Holt, W.F.; Young, R.; Glennon, R.A.; Hellberg, M.R.; Dean, T.R. Ocular hypotensive response in nonhuman primates of (8 r)-1-[(2 s)-2-aminopropyl]-8,9-dihydro-7 h -pyrano[2,3- g]indazol-8-ol a selective 5-ht2 receptor agonist. J. Med. Chem., 2015, 58(22), 8818-8833.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00857] [PMID: 26551970]
[10]
Katz, A.; Udata, C.; Ott, E.; Hickey, L.; Burczynski, M.E.; Burghart, P.; Vesterqvist, O.; Meng, X. Safety, pharmacokinetics, and pharmacodynamics of single doses of LXR-623, a novel liver X-receptor agonist, in healthy participants. J. Clin. Pharmacol., 2009, 49(6), 643-649.
[http://dx.doi.org/10.1177/0091270009335768] [PMID: 19398602]
[11]
Aman, W.; Lee, J.; Kim, M.; Yang, S.; Jung, H.; Hah, J.M. Discovery of highly selective CRAF inhibitors, 3-carboxamido-2H-indazole-6-arylamide: In silico FBLD design, synthesis and evaluation. Bioorg. Med. Chem. Lett., 2016, 26(4), 1188-1192.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.037] [PMID: 26810260]
[12]
Lu, Y.Y.; Wang, J.J.; Zhang, X.K.; Li, W.B.; Guo, X.L. 1118-20, an indazole diarylurea compound, inhibits hepatocellular carcinoma HepG2 proliferation and tumour angiogenesis involving Wnt/β-catenin pathway and receptor tyrosine kinases. J. Pharm. Pharmacol., 2015, 67(10), 1393-1405.
[http://dx.doi.org/10.1111/jphp.12440] [PMID: 26076716]
[13]
Liu, J.; Peng, X.; Dai, Y.; Zhang, W.; Ren, S.; Ai, J.; Geng, M.; Li, Y. Design, synthesis and biological evaluation of novel FGFR inhibitors bearing an indazole scaffold. Org. Biomol. Chem., 2015, 13(28), 7643-7654.
[http://dx.doi.org/10.1039/C5OB00778J] [PMID: 26080733]
[14]
Dugar, S.; Hollinger, F.P.; Mahajan, D.; Sen, S.; Kuila, B.; Arora, R.; Pawar, Y.; Shinde, V.; Rahinj, M.; Kapoor, K.K.; Bhumkar, R.; Rai, S.; Kulkarni, R. Discovery of novel and orally bioavailable inhibitors of pi3 kinase based on indazole substituted morpholino-triazines. ACS Med. Chem. Lett., 2015, 6(12), 1190-1194.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00322] [PMID: 26713102]
[15]
Furlotti, G.; Alisi, M.A.; Cazzolla, N.; Dragone, P.; Durando, L.; Magarò, G.; Mancini, F.; Mangano, G.; Ombrato, R.; Vitiello, M.; Armirotti, A.; Capurro, V.; Lanfranco, M.; Ottonello, G.; Summa, M.; Reggiani, A. Hit optimization of 5-substituted- n -(piperidin-4-ylmethyl)-1 h -indazole-3-carboxamides: Potent glycogen synthase kinase-3 (gsk-3) inhibitors with in vivo activity in model of mood disorders. J. Med. Chem., 2015, 58(22), 8920-8937.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01208]
[16]
Shan, Y.; Dong, J.; Pan, X.; Zhang, L.; Zhang, J.; Dong, Y.; Wang, M. Expanding the structural diversity of Bcr-Abl inhibitors: Dibenzoylpiperazin incorporated with 1H-indazol-3-amine. Eur. J. Med. Chem., 2015, 104, 139-147.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.034] [PMID: 26451772]
[17]
Tomassi, S.; Lategahn, J.; Engel, J.; Keul, M.; Tumbrink, H.L.; Ketzer, J.; Mühlenberg, T.; Baumann, M.; Schultz-Fademrecht, C.; Bauer, S.; Rauh, D. Indazole-based covalent inhibitors to target drug-resistant epidermal growth factor receptor. J. Med. Chem., 2017, 60(6), 2361-2372.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01626] [PMID: 28225269]
[18]
Pérez-Villanueva, J.; Yépez-Mulia, L.; González-Sánchez, I.; Palacios-Espinosa, J.; Soria-Arteche, O.; Sainz-Espuñes, T.; Cerbón, M.; Rodríguez-Villar, K.; Rodríguez-Vicente, A.; Cortés-Gines, M.; Custodio-Galván, Z.; Estrada-Castro, D. Synthesis and biological evaluation of 2h-indazole derivatives: Towards antimicrobial and anti-inflammatory dual agents. Molecules, 2017, 22(11), 1864.
[http://dx.doi.org/10.3390/molecules22111864] [PMID: 29088121]
[19]
Li, X.; Chu, S.; Feher, V.A.; Khalili, M.; Nie, Z.; Margosiak, S.; Nikulin, V.; Levin, J.; Sprankle, K.G.; Tedder, M.E.; Almassy, R.; Appelt, K.; Yager, K.M. Structure-based design, synthesis, and antimicrobial activity of indazole-derived SAH/MTA nucleosidase inhibitors. J. Med. Chem., 2003, 46(26), 5663-5673.
[http://dx.doi.org/10.1021/jm0302039] [PMID: 14667220]
[20]
Kim, S.H.; Markovitz, B.; Trovato, R.; Murphy, B.R.; Austin, H.; Willardsen, A.J.; Baichwal, V.; Morham, S.; Bajji, A. Discovery of a new HIV-1 inhibitor scaffold and synthesis of potential prodrugs of indazoles. Bioorg. Med. Chem. Lett., 2013, 23(10), 2888-2892.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.075] [PMID: 23566519]
[21]
Sa̧czewski, F.; Kornicka, A.; Rybczyńska, A.; Hudson, A.L.; Miao, S.S.; Gdaniec, M.; Boblewski, K.; Lehmann, A. 1-[(Imidazolidin-2-yl)imino]indazole. Highly alpha 2/I1 selective agonist: synthesis, X-ray structure, and biological activity. J. Med. Chem., 2008, 51(12), 3599-3608.
[http://dx.doi.org/10.1021/jm800112s] [PMID: 18517187]
[22]
Sun, Y.; Shan, Y.; Li, C.; Si, R.; Pan, X.; Wang, B.; Zhang, J. Discovery of novel anti-angiogenesis agents. Part 8: Diaryl thiourea bearing 1 H -indazole-3-amine as multi-target RTKs inhibitors. Eur. J. Med. Chem., 2017, 141, 373-385.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.008] [PMID: 29032031]
[23]
Chu, Y.; Cheng, H.; Tian, Z.; Zhao, J.; Li, G.; Chu, Y.; Sun, C.; Li, W. Rational drug design of indazole-based diarylurea derivatives as anticancer agents. Chem. Biol. Drug Des., 2017, 90(4), 609-617.
[http://dx.doi.org/10.1111/cbdd.12984] [PMID: 28338292]
[24]
Zhao, C.; Wang, R.; Li, G.; Xue, X.; Sun, C.; Qu, X.; Li, W. Synthesis of indazole based diarylurea derivatives and their antiproliferative activity against tumor cell lines. Bioorg. Med. Chem. Lett., 2013, 23(7), 1989-1992.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.034] [PMID: 23454017]
[25]
Scott, L.J. Niraparib: First global approval. Drugs, 2017, 77(9), 1029-1034.
[http://dx.doi.org/10.1007/s40265-017-0752-y] [PMID: 28474297]
[26]
Baddam, S.R.; Uday Kumar, N.; Panasa Reddy, A.; Bandichhor, R. Regioselective methylation of indazoles using methyl 2,2,2-trichloromethylacetimidate. Tetrahedron Lett., 2013, 54(13), 1661-1663.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.030]
[27]
Al-Bogami, A.S. Mechanochemical synthesis of cyclohexenones and indazoles as potential antimicrobial agents. Res. Chem. Intermed., 2016, 42(6), 5457-5477.
[http://dx.doi.org/10.1007/s11164-015-2379-5]
[28]
Wang, Y.; Ramage, A.G.; Jordan, D. Mediation by 5-HT3 receptors of an excitatory effect of 5-HT on dorsal vagal preganglionic neurones in anaesthetized rats: An ionophoretic study. Br. J. Pharmacol., 1996, 118(7), 1697-1704.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15594.x] [PMID: 8842434]
[29]
Fozard, J.R. The Development of 5-HT3 receptor antagonists. Br. J. Pharmacol., 1987, 91, 335.
[30]
Cervantes, M.; Romero, D.Y.; Duenas-Gonzalez, A. Reviving lonidamine and 6-diazo-5-oxo-l-norleucine to be used in combination for metabolic cancer therapy. BioMed Res. Int., 2015, 690-492.
[31]
Bhutia, Y.D.; Babu, E.; Ganapathy, V. Re-programming tumour cell metabolism to treat cancer: No lone target for lonidamine. Biochem. J., 2016, 473(11), 1503-1506.
[http://dx.doi.org/10.1042/BCJ20160068] [PMID: 27234586]
[32]
Gross-Goupil, M.; Françlois, L.; Quivy, A.; Ravaud, A. Axitinib: A review of its safety and efficacy in the treatment of adults with advanced renal cell carcinoma. Clin. Med. Insights Oncol., 2013, 7, CMO.S10594.
[http://dx.doi.org/10.4137/CMO.S10594]
[33]
van Geel, R.M.J.M.; Beijnen, J.H.; Schellens, J.H.M. Concise drug review: Pazopanib and axitinib. Oncologist, 2012, 17(8), 1081-1089.
[http://dx.doi.org/10.1634/theoncologist.2012-0055] [PMID: 22733795]
[34]
Chieh-, His.; Wu., C.H.P.; Ming-Jyh, Sheu. Therapeutic applications and mechanisms of YC-1: A soluble guanylate cyclase stimulator; Intech Open., 2019, 84572.
[http://dx.doi.org/10.5772/intechopen]
[35]
Yeo, E.J.; Chun, Y.S.; Cho, Y.S.; Kim, J.; Lee, J.C.; Kim, M.S.; Park, J.W. YC-1: A potential anticancer drug targeting hypoxia-inducible factor 1. J. Natl. Cancer Inst., 2003, 95(7), 516-525.
[http://dx.doi.org/10.1093/jnci/95.7.516] [PMID: 12671019]
[36]
(a) Trondlin, F.; Werner, R.; Ruchardt, C. Substituted benzimidazole and indazole derivatives, processes for their preparation and their use as herbicides. Chem. Ber., 1978, 111, 367.;
(b) Bartsch, R.A.; Yang, I.W. Phase transfer catalyzed synthesis of indazoles from o -alkylbenzenediazonium tetrafluoroborates. J. Heterocycl. Chem., 1984, 21(4), 1063-1064.
[http://dx.doi.org/10.1002/jhet.5570210428];
c) Sun, J.H.; Teleha, C.A.; Yan, J.S.; Rodgers, J.D.; Nugiel, D.A. Efficient synthesis of 5-(bromomethyl)- and 5-(aminomethyl)-1-THP indazole. J. Org. Chem., 1997, 62(16), 5627-5629.
[http://dx.doi.org/10.1021/jo970375b];
d) Souers, A.J.; Gao, J.; Brune, M.; Bush, E.; Wodka, D.; Vasudevan, A.; Judd, A.S.; Mulhern, M.; Brodjian, S.; Dayton, B.; Shapiro, R.; Hernandez, L.E.; Marsh, K.C.; Sham, H.L.; Collins, C.A.; Kym, P.R. Identification of 2-(4-benzyloxyphenyl)-N- [1-(2-pyrrolidin-1-yl ethyl)-1H-indazol-6-yl]acetamide, an orally efficacious melanin-concentrating hormone receptor 1 antagonist for the treatment of obesity. J. Med. Chem., 2005, 48(5), 1318-1321.
[http://dx.doi.org/10.1021/jm0490890] [PMID: 15743174]
[37]
(a) Starosotnikov, A.M.; Kachala, V.V.; Lobach, A.V.; Vinogradov, V.M.; Shevelev, S.A. Synthesis of 3-substituted 1-aryl-4,6-dinitro-1H-indazoles based on picrylacetaldehyde and their behavior in nucleophilic substitution reactions. Russ. Chem. Bull., 2003, 52(8), 1782-1790. [For base mediated condensation reactions, see]
[http://dx.doi.org/10.1023/A:1026008821698];
b) Lokhande, P.D.; Raheem, A.; Sabale, S.T.; Chabukswar, A.R.; Jagdale, S.C. An efficient synthesis of 1-H indazoles. Tetrahedron Lett., 2007, 48(39), 6890-6892.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.162];
c) Counceller, C.M.; Eichman, C.C.; Wray, B.C.; Stambuli, J.P. A practical, metal-free synthesis of 1H-indazoles. Org. Lett., 2008, 10(5), 1021-1023.
[http://dx.doi.org/10.1021/ol800053f] [PMID: 18229936]
[38]
a) Jin, T.; Yamamoto, Y. An efficient, facile, and general synthesis of 1h-indazoles by 1,3-dipolar cycloaddition of arynes with diazomethane derivatives. Angew. Chem. Int. Ed., 2007, 46(18), 3323-3325.
[http://dx.doi.org/10.1002/anie.200700101] [PMID: 17385767];
b) Liu, Z.; Shi, F.; Martinez, P.D.G.; Raminelli, C.; Larock, R.C. Synthesis of indazoles by the [3+2] cycloaddition of diazo compounds with arynes and subsequent acyl migration. J. Org. Chem., 2008, 73(1), 219-226.
[http://dx.doi.org/10.1021/jo702062n] [PMID: 18067316];
c) Spiteri, C.; Keeling, S.; Moses, J.E. New synthesis of 1-substituted-1H-indazoles via 1,3-dipolar cycloaddition of in situ generated nitrile imines and benzyne. Org. Lett., 2010, 12(15), 3368-3371.
[http://dx.doi.org/10.1021/ol101150t] [PMID: 20608661];
d) Wu, C.; Fang, Y.; Larock, R.C.; Shi, F. Synthesis of 2H-indazoles by the [3 + 2] cycloaddition of arynes and sydnones. Org. Lett., 2010, 12(10), 2234-2237.
[http://dx.doi.org/10.1021/ol100586r] [PMID: 20394430];
e) Li, P.; Zhao, J.; Wu, C.; Larock, R.C.; Shi, F. Synthesis of 3-substituted indazoles from arynes and N-tosylhydrazones. Org. Lett., 2011, 13(13), 3340-3343.
[http://dx.doi.org/10.1021/ol201086g] [PMID: 21630698];
f) Chen, G.; Hu, M.; Peng, Y. Switchable synthesis of 3-Substituted 1 H -indazoles and 3,3-disubstituted 3 H -indazole-3-phosphonates tuned by phosphoryl groups. J. Org. Chem., 2018, 83(3), 1591-1597.
[http://dx.doi.org/10.1021/acs.joc.7b02857] [PMID: 29283256]
[39]
Cho, S.H.; Kim, J.Y.; Kwak, J.; Chang, S. Recent advances in the transition metal-catalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem. Soc. Rev., 2011, 40(10), 5068-5083.
[http://dx.doi.org/10.1039/c1cs15082k] [PMID: 21643614]
[40]
Janardhanan, J.C.; Bhaskaran, R.P.; Praveen, V.K.; Manoj, N.; Babu, B.P. Transition‐metal‐catalyzed syntheses of indazoles. Asian J. Org. Chem., 2020, 9(10), 1410-1431.
[http://dx.doi.org/10.1002/ajoc.202000300]
[41]
Kurowska-Susdorf, A.; Zwierżdżyński, M.; Bevanda, A.M.; Talić, S.; Ivanković, A.; Płotka-Wasylka, J. Green analytical chemistry: Social dimension and teaching. Trends Analyt. Chem., 2019, 111, 185-196.
[http://dx.doi.org/10.1016/j.trac.2018.10.022]
[42]
de Marco, B.A.; Rechelo, B.S.; Tótoli, E.G.; Kogawa, A.C.; Salgado, H.R.N. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J., 2019, 27(1), 1-8.
[http://dx.doi.org/10.1016/j.jsps.2018.07.011] [PMID: 30627046]
[43]
Surati, M.A.; Jauhari, S.; Desai, K.R. A brief review: Microwave assisted organic reaction. Arch. Appl. Sci. Res., 2012, 4, 645-661. Available from: http://scholarsresearchlibrary.com/archive.html
[44]
Viña, D.; del Olmo, E.; López-Pérez, J.L.; San Feliciano, A. Regioselective synthesis of 1-alkyl- or 1-aryl-1H-indazoles via copper-catalyzed cyclizations of 2-haloarylcarbonylic compounds. Org. Lett., 2007, 9(3), 525-528.
[http://dx.doi.org/10.1021/ol062890e] [PMID: 17249803]
[45]
Bae, Y.K.; Cho, C.S. Copper(I) salt/PEG-400 catalysis in one-pot direct synthesis of 1-aryl-1 H -indazoles from 2-bromobenzaldehydes and arylhydrazines. Appl. Organomet. Chem., 2013, 27(4), 224-227.
[http://dx.doi.org/10.1002/aoc.2956]
[46]
Lee, H.K.; Cho, C.S. Copper powder–catalyzed C-N bond formation of arylhydrazones of 2-bromobenzaldehydes leading to 1-aryl-1H-indazoles. Synth. Commun., 2013, 43(6), 915-921.
[http://dx.doi.org/10.1080/00397911.2011.614714]
[47]
Annor-Gyamfi, J.; Gnanasekaran, K.; Bunce, R. Synthesis of 1-aryl-5-nitro-1H-indazoles and a general one-pot route to 1-aryl-1H-indazoles. Molecules, 2018, 23(3), 674-686.
[http://dx.doi.org/10.3390/molecules23030674] [PMID: 29547568]
[48]
Xiong, X.; Jiang, Y.; Ma, D. Assembly of N,N-disubstituted hydrazines and 1-aryl-1H-indazoles via copper-catalyzed coupling reactions. Org. Lett., 2012, 14(10), 2552-2555.
[http://dx.doi.org/10.1021/ol300847v] [PMID: 22545771]
[49]
Tanimori, S.; Kobayashi, Y.; Iesaki, Y.; Ozaki, Y.; Kirihata, M. Copper-catalyzed synthesis of substituted indazoles from 2-chloroarenes at low catalyst-loading. Org. Biomol. Chem., 2012, 10(7), 1381-1387.
[http://dx.doi.org/10.1039/C1OB05875D] [PMID: 22183249]
[50]
Pabba, C.; Wang, H.J.; Mulligan, S.R.; Chen, Z.J.; Stark, T.M.; Gregg, B.T. Microwave-assisted synthesis of 1-aryl-1H-indazoles via one-pot two-step Cu-catalyzed intramolecular N-arylation of arylhydrazones. Tetrahedron Lett., 2005, 46(44), 7553-7557.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.143]
[51]
Antilla, J.C.; Baskin, J.M.; Barder, T.E.; Buchwald, S.L. Copper-diamine-catalyzed N-arylation of pyrroles, pyrazoles, indazoles, imidazoles, and triazoles. J. Org. Chem., 2004, 69(17), 5578-5587.
[http://dx.doi.org/10.1021/jo049658b] [PMID: 15307726]
[52]
Chen, C.Y.; Tang, G.; He, F.; Wan, Z.; Jing, H.; Faessler, R. A synthesis of 1H-Indazoles via a Cu(OAc)2-catalyzed N−N bond formation. Org. Lett., 2016, 18, 1690-1693.
[http://dx.doi.org/10.1021/acs.orglett.6b00611] [PMID: 26990834]
[53]
Chen, C.; He, F.; Tang, G.; Ding, H.; Wang, Z.; Li, D.; Deng, L.; Faessler, R. A copper-catalyzed tandem C-H ortho -hydroxylation and n-n bond-formation transformation: Expedited synthesis of 1-(ortho -Hydroxyaryl)-1 H -indazoles. Eur. J. Org. Chem., 2017, 2017(45), 6604-6608.
[http://dx.doi.org/10.1002/ejoc.201701149]
[54]
Tang, X.; Gao, H.; Yang, J.; Wu, W.; Jiang, H. Efficient access to 1H indazoles via copper-catalyzed cross-coupling/cyclization of 2-bromoaryl oxime acetates and amines. Org. Chem. Front., 2014, 1(11), 1295-1298.
[http://dx.doi.org/10.1039/C4QO00244J]
[55]
Leroy, V.; Lee, G.E.; Lin, J.; Herman, S.H.; Lee, T.B. Facile preparation of 3-(1-piperazinyl)-1H-indazoles. Org. Process Res. Dev., 2001, 5, 179-183.85.
[56]
Yao, B.; Miao, T.; Li, P.; Wang, L. Direct synthesis of benzo[ f]indazoles from sulfonyl hydrazines and 1,3-enynes by copper-catalyzed annulation. Org. Lett., 2019, 21(1), 124-128.
[http://dx.doi.org/10.1021/acs.orglett.8b03564] [PMID: 30576157]
[57]
Tang, M.; Kong, Y.; Chu, B.; Feng, D. Copper(I) oxide-mediated cyclization of o -haloaryl n -tosylhydrazones: Efficient synthesis of indazoles. Adv. Synth. Catal., 2016, 358(6), 926-939.
[http://dx.doi.org/10.1002/adsc.201500953]
[58]
Khatun, N.; Gogoi, A.; Basu, P.; Das, P.; Patel, B.K. CuO nanoparticle catalysed synthesis of 2H-indazoles under ligand free conditions. RSC Advances, 2014, 4(8), 4080-4084.
[http://dx.doi.org/10.1039/C3RA45298K]
[59]
Kumar, M.R.; Park, A.; Park, N.; Lee, S. Consecutive condensation, C-N and N-N bond formations: A copper- catalyzed one-pot three-component synthesis of 2H-indazole. Org. Lett., 2011, 13(13), 3542-3545.
[http://dx.doi.org/10.1021/ol201409j] [PMID: 21644532]
[60]
Sharghi, H.; Aberi, M. Ligand-free copper(i) oxide nanoparticle catalyzed three-component synthesis of 2h-indazole derivatives from 2-halobenzaldehydes, amines and sodium azide in polyethylene glycol as a green solvent. Synlett, 2014, 25(8), 1111-1115.
[http://dx.doi.org/10.1055/s-0033-1340979]
[61]
Khalifeh, R.; Karimzadeh, F. Copper nanoparticles supported on charcoal mediated one-pot three-component synthesis of N-substituted-2 H -indazoles via consecutive condensation C–N and N–N bond formation. Can. J. Chem., 2019, 97(4), 303-309.
[http://dx.doi.org/10.1139/cjc-2018-0428]
[62]
Prasad, A.N.; Srinivas, R.; Reddy, B.M. Cu II –hydrotalcite catalyzed one-pot three component synthesis of 2H-indazoles by consecutive condensation, C–N and N–N bond formations. Catal. Sci. Technol., 2013, 3(3), 654-658.
[http://dx.doi.org/10.1039/C2CY20590D]
[63]
Hu, J.; Cheng, Y.; Yang, Y.; Rao, Y. A general and efficient approach to 2H-indazoles and 1H-pyrazoles through copper-catalyzed intramolecular N–N bond formation under mild conditions. Chem. Commun., 2011, 47(36), 10133-10135.
[http://dx.doi.org/10.1039/c1cc13908h] [PMID: 21826369]
[64]
Wei, W.; Li, X.; Gu, M.; Yao, H.; Lin, A. Cu/Pd cooperatively catalyzed tandem C–N and C–P bond formation: Access to phosphorated 2H-indazoles. Org. Biomol. Chem., 2017, 15(39), 8458-8462.
[http://dx.doi.org/10.1039/C7OB02323E] [PMID: 28953279]
[65]
Dar, B.A.; Safvi, S.W.; Rizvi, M.A. Microwave assisted expeditious and green Cu(ii)-clay catalyzed domino one-pot three component synthesis of 2H-indazoles. Bull. Chem. React. Eng. Catal., 2018, 13(1), 82-88.
[http://dx.doi.org/10.9767/bcrec.13.1.963.82-88]
[66]
Chen, J.; Chen, P.; Song, C.; Zhu, J. Rhodium(III)-catalyzed N-nitroso-directed C-H addition to ethyl 2-oxoacetate for cycloaddition/fragmentation synthesis of indazoles. Chemistry, 2014, 20(44), 14245-14249.
[http://dx.doi.org/10.1002/chem.201404506] [PMID: 25224915]
[67]
Yu, D.G.; Suri, M.; Glorius, F. Rh(III)/Cu(II)-cocatalyzed synthesis of 1H-indazoles through C-H amidation and N-N bond formation. J. Am. Chem. Soc., 2013, 135(24), 8802-8805.
[http://dx.doi.org/10.1021/ja4033555] [PMID: 23711098]
[68]
Yu, S.; Tang, G.; Li, Y.; Zhou, X.; Lan, Y.; Li, X. Anthranil: An aminating reagent leading to bifunctionality for both C(sp 3 )−H and C(sp 2)2 )−H under Rhodium(III) catalysis. Angew. Chem. Int. Ed., 2016, 55(30), 8696-8700.
[http://dx.doi.org/10.1002/anie.201602224] [PMID: 27121133]
[69]
Han, S.; Shin, Y.; Sharma, S.; Mishra, N.K.; Park, J.; Kim, M.; Kim, M.; Jang, J.; Kim, I.S. Rh(III)-catalyzed oxidative coupling of 1,2-disubstituted arylhydrazines and olefins: A new strategy for 2,3-dihydro-1H-indazoles. Org. Lett., 2014, 16(9), 2494-2497.
[http://dx.doi.org/10.1021/ol500865j] [PMID: 24754303]
[70]
Wang, Q.; Li, X. Synthesis of 1 H -indazoles from imidates and nitrosobenzenes via synergistic rhodium/copper catalysis. Org. Lett., 2016, 18(9), 2102-2105.
[http://dx.doi.org/10.1021/acs.orglett.6b00727] [PMID: 27082502]
[71]
Lian, Y.; Bergman, R.G.; Lavis, L.D.; Ellman, J.A. Rhodium(III)-catalyzed indazole synthesis by C-H bond functionalization and cyclative capture. J. Am. Chem. Soc., 2013, 135(19), 7122-7125.
[http://dx.doi.org/10.1021/ja402761p] [PMID: 23642256]
[72]
Cai, S.; Lin, S.; Yi, X.; Xi, C. Substrate-controlled transformation of azobenzenes to indazoles and indoles via Rh(III)-catalysis. J. Org. Chem., 2017, 82(1), 512-520.
[http://dx.doi.org/10.1021/acs.joc.6b02548] [PMID: 27936695]
[73]
(a) Long, Z.; Wang, Z.; Zhou, D.; Wan, D.; You, J. Rh(III)-Catalyzed regio- and chemoselective [4+1]- annulation of azoxy compounds with diazoesters for the synthesis of 2H-indazoles: Roles of the azoxy oxygen atom. Org. Lett., 2017, 19(11), 2777-2780.
[http://dx.doi.org/10.1021/acs.orglett.7b00631] [PMID: 28514173];
(b) Long, Z.; Yang, Y.; You, J. Rh (III)-Catalyzed [4 + 1]-annulation of azoxy compounds with alkynes: A regioselective approach to 2H-indazoles. Org. Lett., 2017, 19(11), 2781-2784.
[http://dx.doi.org/10.1021/acs.orglett.7b00982] [PMID: 28514177]
[74]
Oh, H.; Han, S.; Pandey, A.K.; Han, S.H.; Mishra, N.K.; Kim, S.; Chun, R.; Kim, H.S.; Park, J.; Kim, I.S. Synthesis of (2H)-indazoles through Rh(III)-catalyzed annulation reaction of azobenzenes with sulfoxonium yildes. J. Org. Chem., 2018, 83(7), 4070-4077.
[http://dx.doi.org/10.1021/acs.joc.8b00501] [PMID: 29547287]
[75]
Jeong, T.; Han, S.H.; Han, S.; Sharma, S.; Park, J.; Lee, J.S.; Kwak, J.H.; Jung, Y.H.; Kim, I.S. Access to 3-acyl-(2H)-indazoles via Rh(III)-catalyzed C–H addition and cyclization of azobenzenes with α-keto aldehydes. Org. Lett., 2016, 18(2), 232-235.
[http://dx.doi.org/10.1021/acs.orglett.5b03368] [PMID: 26741169]
[76]
Wang, N.; Liu, L.; Xu, W.; Zhang, M.; Huang, Z.; Shi, D.; Zhao, Y. Rhodium(III)-catalyzed oxidative annulation of ketoximes with sulfonamide: A direct approach to indazoles. Org. Lett., 2019, 21(2), 365-368.
[http://dx.doi.org/10.1021/acs.orglett.8b03488] [PMID: 30618258]
[77]
Xu, P.; Wang, G.; Wu, Z.; li, S.; Zhu, C. Rh(III)-catalyzed double C–H activation of aldehyde hydrazones: A route for functionalized 1H indazole synthesis. Chem. Sci., 2017, 8(2), 1303-1308.
[http://dx.doi.org/10.1039/C6SC03888C] [PMID: 28616139]
[78]
Dong, C.; Xie, L.; Mou, X.; Zhong, Y.; Su, W. Facile synthesis of 1,3,4-benzotriazepines and 1-arylamide-1H-indazoles via palladium catalyzed cyclization of aryl isocyanates and aryl hydrazones under microwave irradiation. Org. Biomol. Chem., 2010, 8(21), 4827-4830.
[http://dx.doi.org/10.1039/c0ob00021c] [PMID: 20835450]
[79]
Cho, C.S.; Lim, D.K.; Heo, N.H.; Kim, T.J.; Shim, S.C. Facile palladium-catalysed synthesis of 1-aryl-1H-indazoles from 2-bromobenzaldehydes and arylhydrazines. Chem. Commun., 2004, 104(1), 104-105.
[http://dx.doi.org/10.1039/b312154m] [PMID: 14737353]
[80]
Kim, O.S.; Jang, J.H.; Kim, H.T.; Han, S.J.; Tsui, G.C.; Joo, J.M. Synthesis of fluorescent indazoles by palladium-catalyzed benzannulation of pyrazoles with alkynes. Org. Lett., 2017, 19(6), 1450-1453.
[http://dx.doi.org/10.1021/acs.orglett.7b00410] [PMID: 28271896]
[81]
Cyr, P.; Régnier, S.; Bechara, W.S.; Charette, A.B. Rapid access to 3-aminoindazoles from tertiary amides. Org. Lett., 2015, 17(14), 3386-3389.
[http://dx.doi.org/10.1021/acs.orglett.5b00765] [PMID: 26154712]
[82]
Lebedev, A.Y.; Khartulyari, A.S.; Voskoboynikov, A.Z. Synthesis of 1-aryl-1H-indazoles via palladium-catalyzed intramolecular amination of aryl halides. J. Org. Chem., 2005, 70(2), 596-602.
[http://dx.doi.org/10.1021/jo048671t] [PMID: 15651807]
[83]
Halland, N.; Nazaré, M.; R’kyek, O.; Alonso, J.; Urmann, M.; Lindenschmidt, A. A general and mild palladium-catalyzed domino reaction for the synthesis of 2H-indazoles. Angew. Chem. Int. Ed., 2009, 48(37), 6879-6882.
[http://dx.doi.org/10.1002/anie.200902323] [PMID: 19681082]
[84]
Laleu, B.; Lautens, M. Synthesis of annulated 2H-indazoles and 1,2,3- and 1,2,4-triazoles via a one-pot palladium-catalyzed alkylation/direct arylation reaction. J. Org. Chem., 2008, 73(22), 9164-9167.
[http://dx.doi.org/10.1021/jo8017236] [PMID: 18947186]
[85]
Naas, M.; El Kazzouli, S.; Essassi, E.M.; Bousmina, M.; Guillaumet, G. Palladium-catalyzed oxidative direct c3- and c7-alkenylations of indazoles: Application to the synthesis of gamendazole. Org. Lett., 2015, 17(17), 4320-4323.
[http://dx.doi.org/10.1021/acs.orglett.5b02136] [PMID: 26308587]
[86]
Song, J.J.; Yee, N.K. A novel synthesis of 2-aryl-2H-indazoles via a palladium-catalyzed intramolecular amination reaction. Org. Lett., 2000, 2(4), 519-521.
[http://dx.doi.org/10.1021/ol990409x] [PMID: 10814366]
[87]
Akazome, M.; Kondo, T.; Watanabe, Y. Palladium complex-catalyzed reductive n-heterocyclization of nitroarenes: Novel synthesis of indole and 2H-indazole derivatives. J. Org. Chem., 1994, 59(12), 3375-3380.
[http://dx.doi.org/10.1021/jo00091a026]
[88]
Ohnmacht, S.A.; Culshaw, A.J.; Greaney, M.F. Direct arylations of 2H-indazoles on water. Org. Lett., 2010, 12(2), 224-226.
[http://dx.doi.org/10.1021/ol902537d] [PMID: 20014781]
[89]
Zheng, Q.Z.; Feng, P.; Liang, Y.F.; Jiao, N. Pd-catalyzed tandem C-H azidation and N-N bond formation of arylpyridines: A direct approach to pyrido[1,2-b]indazoles. Org. Lett., 2013, 15(16), 4262-4265.
[http://dx.doi.org/10.1021/ol402060q] [PMID: 23915282]
[90]
Lefebvre, V.; Cailly, T.; Fabis, F.; Rault, S. Two-step synthesis of substituted 3-aminoindazoles from 2-bromobenzonitriles. J. Org. Chem., 2010, 75(8), 2730-2732.
[http://dx.doi.org/10.1021/jo100243c] [PMID: 20232925]
[91]
Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T. Palladium-catalyzed cc−h activation/ intramolecular amination reaction: A new route to 3-aryl/alkylindazoles. Org Lett., 2007, 9, 2931-2934.
[http://dx.doi.org/10.1021/ol0711117]
[92]
Kazzouli, S.E.; Bouissane, L.; Khouili, M.; Guillaumet, G. Synthesis of 4-substituted and 3,4-disubstituted indazole derivatives by palladium-mediated cross-coupling reactions. Tetrahedron Lett., 2005, 46(36), 6163-6167.
[http://dx.doi.org/10.1016/j.tetlet.2005.06.080]
[93]
Zhang, T.S.; Wang, R.; Cai, P.J.; Hao, W.J.; Tu, S.J.; Jiang, B. Silver catalyzed nitration/annulation of 2-alkynylanilines for a tunable synthesis of nitrated indoles and indazole-2-oxides. Org. Chem. Front., 2019, 6(16), 2968-2973.
[http://dx.doi.org/10.1039/C9QO00715F]
[94]
Bogonda, G.; Kim, H.Y.; Oh, K. Direct acyl radical addition to 2 H -indazoles using ag-catalyzed decarboxylative cross-coupling of α-keto acids. Org. Lett., 2018, 20(9), 2711-2715.
[http://dx.doi.org/10.1021/acs.orglett.8b00920] [PMID: 29672060]
[95]
Balwe, S.G.; Shinde, V.V.; Rokade, A.A.; Park, S.S.; Jeong, Y.T. Green synthesis and characterization of silver nanoparticles (Ag NPs) from extract of plant Radix Puerariae: An efficient and recyclable catalyst for the construction of pyrimido[1,2-b]indazole derivatives under solvent-free conditions. Catal. Commun., 2017, 99, 121-126.
[http://dx.doi.org/10.1016/j.catcom.2017.06.006]
[96]
Hunnel, J.R.; Ellaman, J.A. Cobalt (III)-catalyzed synthesis of indazoles and furans by C–H bond functionalization/addition/cyclization cascades. J. Am. Chem. Soc., 2015, 137, 490-498.
[http://dx.doi.org/10.1021/ja5116452]
[97]
Wiethan, C.; Lavoie, C.M.; Borzenko, A.; Clark, J.S.K.; Bonacorso, H.G.; Stradiotto, M. Ni and cu-catalyzed one pot synthesis of unsymmetrical 1,3-di(hetero)aryl-1h-indazoles from hydrazine, o-chloro (hetero)benzophenones, and (hetero)aryl bromides. Org. Biomol. Chem., 2017, 15(23), 5062-5069.
[http://dx.doi.org/10.1039/C7OB00841D] [PMID: 28567460]
[98]
Liu, Y.L.; Pan, Y.L.; Li, G.J.; Xu, H.F.; Chen, J.Z. The nickel-catalyzed C 3-acylation of 2 H -indazoles with aldehydes. Org. Biomol. Chem., 2019, 17(38), 8749-8755.
[http://dx.doi.org/10.1039/C9OB01749F] [PMID: 31549131]
[99]
Shi, D.Q.; Dou, G.L.; Ni, S.N.; Shi, J-W.; Li, X-Y.; Wang, X-S.; Wu, H.; Ji, S-J. A novel and efficient synthesis of 2-aryl-2 H -indazoles via SnCl2 -mediated cyclization of 2-nitrobenzylamines. Synlett, 2007, 2007(16), 2509-2512.
[http://dx.doi.org/10.1055/s-2007-986665]
[100]
Sudhapriya, N.; Nandakumar, A.; Perumal, P.T. Facile synthesis of 2-substituted quinolines and 3-alkynyl-2-aryl-2H-Indazole via SnCl 2 -mediated reductive cyclization. RSC Advances, 2014, 4(102), 58476-58480.
[http://dx.doi.org/10.1039/C4RA09153A]
[101]
Sudhapriya, N.; Balachandran, C.; Awale, S.; Perumal, P.T. Sn(II)-Mediated facile approach for the synthesis of 2-aryl-2H-indazole-3-phosphonates and their anticancer activities. New J. Chem., 2017, 41(13), 5582-5594.
[http://dx.doi.org/10.1039/C7NJ00843K]
[102]
Stokes, B.J.; Vogel, C.V.; Urnezis, L.K.; Pan, M.; Driver, T.G. Intramolecular Fe(II)-catalyzed N-O or N-N bond formation from aryl azides. Org. Lett., 2010, 12(12), 2884-2887.
[http://dx.doi.org/10.1021/ol101040p] [PMID: 20507088]
[103]
Zhang, T.; Bao, W. Synthesis of 1H-indazoles and 1H-pyrazoles via FeBr3/O2 mediated intramolecular C-H amination. J. Org. Chem., 2013, 78(3), 1317-1322.
[http://dx.doi.org/10.1021/jo3026862] [PMID: 23297649]
[104]
Gao, P.; Cheng, Y.B.; Yang, F.; Guo, L.N.; Duan, X.H. Iron(II)-catalyzed direct C H cyanoalkylation of 2H-indazoles and coumarins via radical C C bond cleavage. Tetrahedron Lett., 2019, 60(35), 150967.
[http://dx.doi.org/10.1016/j.tetlet.2019.150967]
[105]
Geng, X.; Wang, C. Rhenium-Catalyzed [4 + 1] annulation of azobenzenes and aldehydes via isolable cyclic Rhenium(i) complexes. Org. Lett., 2015, 17(10), 2434-2437.
[http://dx.doi.org/10.1021/acs.orglett.5b00938] [PMID: 25945598]
[106]
Gholamhosseyni, M.; Kianmehr, E. A ruthenium-catalyzed alkenylation–annulation approach for the synthesis of indazole derivatives via C–H bond activation. Org. Biomol. Chem., 2018, 16(33), 5973-5978.
[http://dx.doi.org/10.1039/C8OB00999F] [PMID: 30074039]
[107]
Rosati, O.; Curini, M.; Marcotullio, M.C.; Macchiarulo, A.; Perfumi, M.; Mattioli, L.; Rismondo, F.; Cravotto, G. Synthesis, docking studies and anti-inflammatory activity of 4,5,6,7-tetrahydro-2H-indazole derivatives. Bioorg. Med. Chem., 2007, 15(10), 3463-3473.
[http://dx.doi.org/10.1016/j.bmc.2007.03.006] [PMID: 17382550]
[108]
Sun, F.; Feng, X.; Zhao, X.; Huang, Z.B.; Shi, D.Q. An efficient synthesis of 2H-indazoles via reductive cyclization of 2-nitrobenzylamines induced by low-valent titanium reagent. Tetrahedron, 2012, 68(20), 3851-3855.
[http://dx.doi.org/10.1016/j.tet.2012.03.043]
[109]
Wu, T.Y.; Dhole, S.; Selvaraju, M.; Sun, C.M. Regioselective synthesis of pyranone-fused indazoles via reductive cyclization and alkyne insertion. ACS Comb. Sci., 2018, 20(3), 156-163.
[http://dx.doi.org/10.1021/acscombsci.7b00170] [PMID: 29381854]
[110]
Thomé, I.; Besson, C.; Kleine, T.; Bolm, C. Base-catalyzed synthesis of substituted indazoles under mild, transition-metal-free conditions. Angew. Chem. Int. Ed., 2013, 52(29), 7509-7513.
[http://dx.doi.org/10.1002/anie.201300917] [PMID: 23740864]
[111]
Shindea, S.S.; Deshmukha, S.U.; Pawara, R.P.; Maratheb, N.R.; Gaikwadc, D.D. Silica sulfuric acid: An efficient catalyst for the synthesis of substituted indazoles. J. Iran. Chem. Res., 2010, 2010(3), 191-194.
[112]
Avila, B.; El-Dakdouki, M.H.; Nazer, M.Z.; Harrison, J.G.; Tantillo, D.J.; Haddadin, M.J.; Kurth, M.J. Acid and base catalyzed Davis–Beirut reaction: experimental and theoretical mechanistic studies and synthesis of novel 3-amino-2H-indazoles. Tetrahedron Lett., 2012, 53(48), 6475-6478.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.026] [PMID: 23139435]
[113]
Rahmatzadeh, S.S.; Karami, B.; Khodabakhshi, S. A modified and practical synthetic route to indazoles and pyrazoles using tungstate sulfuric acid. J. Chin. Chem. Soc., 2015, 62(1), 17-20.
[http://dx.doi.org/10.1002/jccs.201400251]
[114]
Hamidian, H.; Fozooni, S.; Hassankhani, A.; Mohammadi, S.Z. One-pot and efficient synthesis of triazolo[1,2-a]indazole-triones via reaction of arylaldehydes with urazole and dimedone catalyzed by silica nanoparticles prepared from rice husk. Molecules, 2011, 16(11), 9041-9048.
[http://dx.doi.org/10.3390/molecules16119041] [PMID: 22031067]
[115]
Kidwai, M.; Chauhan, R. Sulfamic acid: an efficient, cost-effective and recyclable catalyst for the synthesis of triazole[1,2-a]indazole-trione derivatives. RSC Advances, 2012, 2(20), 7660-7665.
[http://dx.doi.org/10.1039/c2ra20662e]
[116]
Pudelová, N.; Krchňák, V. Efficient traceless solid-phase synthesis of 3,4-dihydropyrazino[1,2-b]indazoles and their 6-oxides. J. Comb. Chem., 2009, 11(3), 370-374.
[http://dx.doi.org/10.1021/cc800181y] [PMID: 19245249]
[117]
Díaz-Ortiz, A.; de la Hoz, A.; Langa, F. Microwave irradiation in solvent-free conditions: An eco-friendly methodology to prepare indazoles, pyrazolopyridines and bipyrazoles by cycloaddition reactions. Green Chem., 2000, 2(4), 165-172.
[http://dx.doi.org/10.1039/b003752o]
[118]
Rao, N.S.; Bajia, B.; Srivastava, Y.K.; Kumar, R. Microwave induced synthesis and anti bacterial activity of some 6-(2-hyroxy phenyl)-4-(substituted phenyl) -3-oxo-2, 3, 4, 5- tetrahydro-1H-indazoles. E-J. Chem., 2008, 5(1), 39-42.
[http://dx.doi.org/10.1155/2008/739732]
[119]
Creencia, E.C.; Kosaka, M.; Muramatsu, T.; Kobayashi, M.; Iizuka, T.; Horaguchi, T. Microwave-assisted cadogan reaction for the synthesis of 2-aryl-2 H -indazoles, 2-aryl-1 H -benzimidazoles, 2-carbonylindoles, carbazole, and phenazine. J. Heterocycl. Chem., 2009, 46(6), 1309-1317.
[http://dx.doi.org/10.1002/jhet.267]
[120]
Ge, D.L.; Zhang, X.Z.; Chen, S.Y.; Pu, L.; Yu, X.Q. Microwave-assisted synthesis of 2-pyridinylethyl indazoles. Tetrahedron Lett., 2015, 56(33), 4811-4814.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.065]
[121]
Mondal, D.; Palit, S.; Bera, S.; Singh, M. Synthesis of novel indazole derived ionic liquids. Synthesis, 2015, 47(21), 3371-3384.
[http://dx.doi.org/10.1055/s-0034-1381135]
[122]
Sarhandi, S.; Fekri, L.Z.; Vessally, E. Ultrasound assisted chromatography-free synthesis of triazolo [1,2-a]indazole-triones in the presence of 1,4-diazabicyclo[2.2.2] octanium diacetate as an environmentally friendly green media. Polycycl. Aromat. Compd., 2019, 1-9.
[http://dx.doi.org/10.1080/10406638.2019.1632908]
[123]
Selvam, K.; Krishnakumar, B.; Velmurugan, R.; Swaminathan, M. A simple one pot nano titania mediated green synthesis of 2-alkylbenzimidazoles and indazole from aromatic azides under UV and solar light. Catal. Commun., 2009, 11(4), 280-284.
[http://dx.doi.org/10.1016/j.catcom.2009.10.015]
[124]
Varughese, D.J.; Manhas, M.S.; Bose, A.K. Microwave enhanced greener synthesis of indazoles via nitrenes. Tetrahedron Lett., 2006, 47(38), 6795-6797.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.062]
[125]
Reddy G, T.; Mv, V.; Mohan, R.B.; Nc, G.R. Citric acid mediated one-pot regioselective synthesis of n-alkylated indazoles: An efficient green strategy. Trends in Green Chem., 2018, 4(1), 1-7.
[http://dx.doi.org/10.21767/2471-9889.100021]
[126]
de la Figuera, N.; Fiol, S.; Fernández, J-C.; Forns, P.; Eastwood, P.; Albericio, F. Solid phase preparation of 1,3-disubstituted indazole derivatives. QSAR Comb. Sci., 2008, 27(11-12), 1267-1273.
[http://dx.doi.org/10.1002/qsar.200860005]
[127]
Akbari, M.; Javid, A.; Moeinpour, F. One-pot synthesis of triazolo[1,2-a] indazole-triones catalyzed by a novel magnetically and reusable green catalyst of Preyssler. J. Chem. React. Synth, 2017, 7, 1-70.
[128]
Mills, A.D.; Maloney, P.; Hassanein, E.; Haddadin, M.J.; Kurth, M.J. Synthesis of a library of 2-Alkyl-3-alkyloxy-2 H -indazole-6-carboxamides. J. Comb. Chem., 2007, 9(1), 171-177.
[http://dx.doi.org/10.1021/cc060109o] [PMID: 17206845]
[129]
Polo, E.; Trilleras, J.; Ramos, J.; Galdámez, A.; Quiroga, J.; Gutierrez, M. Efficient mw-assisted synthesis, spectroscopic characterization, x-ray and antioxidant properties of indazole derivatives. Molecules, 2016, 21(7), 903.
[http://dx.doi.org/10.3390/molecules21070903] [PMID: 27409599]
[130]
Zahedi, N.; Javid, A.; Mohammadi, M.K.; Tavakkoli, H. Microwave promoted solvent free one-pot synthesis of triazolo[1,2-a] indazole triones catalyzed by silica-supported La0.5Ca0.5Cro3 nanoparticles as a new and reusable perovskitetype oxide. Bull. Chem. Soc. Ethiop., 2018, 2, 239-248.
[http://dx.doi.org/10.4314/bcse.v32i2.5]
[131]
Yan, B.; Gstach, H. An indazole synthesis on solid support monitored by single bead FTIR microspectroscopy. Tetrahedron Lett., 1996, 37(46), 8325-8328.
[http://dx.doi.org/10.1016/0040-4039(96)01903-X]
[132]
Vidyacharan, S.; Sagar, A.; Chaitra, N.C.; Sharada, D.S. A facile synthesis of 2H-indazoles under neat conditions and further transformation into aza-γ-carboline alkaloid analogues in a tandem one-pot fashion. RSC Advances, 2014, 4(65), 34232.
[http://dx.doi.org/10.1039/C4RA06838F]
[133]
Ghodke, S.S.; Khandare, P.M.; Salve, S.N.; Kendrekar, P.S.; Rajani, D.; Pawar, R.P. Synthesis of 1H-indazoles using lemon peel powder as a natural, green and efficient catalyst under ultrasound irradiation. Eur. Chem. Bull., 2019, 8(12), 405-408.
[http://dx.doi.org/10.17628/ecb.2019.8.405-408]
[134]
Shekouhy, M.; Sarvestani, A.M.; Khajeh, S.; Khalafi-Nezhad, A. Glycerol: A more benign and biodegradable promoting medium for catalyst-free one-pot multi-component synthesis of triazolo[1,2-a]indazole-triones. RSC Advances, 2015, 5(78), 63705-63710.
[http://dx.doi.org/10.1039/C5RA13805A]
[135]
Adharvana Chari, M.; Karthikeyan, G.; Pandurangan, A.; Siddulu Naidu, T.; Sathyaseelan, B.; Javaid Zaidi, S.M.; Vinu, A. Synthesis of triazolo indazolones using 3D mesoporous aluminosilicate catalyst with nanocage structure. Tetrahedron Lett., 2010, 51(19), 2629-2632.
[http://dx.doi.org/10.1016/j.tetlet.2010.03.021]
[136]
Gaikwad, D.D.; Abed, S.; Pawar, R.P. Molecular Iodine as an efficient catalyst for the synthesis of indazole. Int. J. Chemtech Res., 2009, 1, 442-445.
[137]
Yi, X.; Xi, C. Iodine-catalyzed aerobic oxidation of o-alkylazoarenes to 2H-indazoles. Tetrahedron, 2017, 73(10), 1311-1316.
[http://dx.doi.org/10.1016/j.tet.2017.01.035]
[138]
Taher, A.; Ladwa, S.; Thirumalai Rajan, S.; Weaver, G.W. Synthesis of 2-aryl-2H-indazoles by base catalysed reaction of 2-nitrobenzyl triphenylphosphonium bromide and aryl isocyanates. Tetrahedron Lett., 2000, 41(50), 9893-9897.
[http://dx.doi.org/10.1016/S0040-4039(00)01757-3]
[139]
Amirmahani, N.; Mahmoodi, N.O.; Malakootian, M.; Pardakhty, A. Introducing new and effective catalysts for the synthesis of pyridazino[1,2-a]indazole, indazolo[2,1-b]phthalazine and pyrazolo[1,2-b]phthalazine derivatives. MethodsX, 2020, 7(7), 100823.
[http://dx.doi.org/10.1016/j.mex.2020.100823] [PMID: 32195140]
[140]
Hasaninejad, A.; Zare, A.; Shekouhy, M. Highly efficient synthesis of triazolo[1,2-a]indazole-triones and novel spiro triazolo[1,2-a]indazole-tetraones under solvent-free conditions. Tetrahedron, 2011, 67(2), 390-400.
[http://dx.doi.org/10.1016/j.tet.2010.11.029]
[141]
Singsardar, M.; Dey, A.; Sarkar, R.; Hajra, A. Visible-light-induced organophotoredox-catalyzed phosphonylation of 2 h -indazoles with diphenylphosphine oxide. J. Org. Chem., 2018, 83(20), 12694-12701.
[http://dx.doi.org/10.1021/acs.joc.8b02019] [PMID: 30246531]
[142]
Egan, B.A.; Burton, P.M. Synthesis of 3-aryl-1H-indazoles via iridium-catalysed C–H borylation and suzuki–miyaura coupling. RSC Advances, 2014, 4(53), 27726.
[http://dx.doi.org/10.1039/c4ra04235b]
[143]
Kaldhi, D.; Gujjarappa, R.; Vodnala, N.; Kabi, A.K.; Aljaar, N.; Malakar, C.C. Mo(VI)-catalyzed synthesis of 2-Aryl-2 H -innlm-citation citationaromatics. Chem. Lett., 2019, 48(10), 1258-1261.
[http://dx.doi.org/10.1246/cl.190490]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy