Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Exploration of Molecular Targets and Mechanisms of Curcumin in the Treatment of COVID-19 with Depression by an Integrative Pharmacology Strategy

Author(s): Dongwei Zhu and Xianmei Zhou*

Volume 29, Issue 31, 2023

Published on: 20 October, 2023

Page: [2501 - 2519] Pages: 19

DOI: 10.2174/0113816128260436231016061938

Price: $65

Abstract

Background: Coronavirus disease 2019 (COVID-19) not only causes a range of respiratory symptoms but also has a great impact on individual mental health. With the global pandemic of SARS-CoV-2, the incidence of COVID-19 comorbid with depression has increased significantly. Curcumin, a natural polyphenol compound, has been shown to have antidepressant and anti-coronavirus activities.

Methods: This study aimed to explore the molecular targets and underlying biological mechanisms of curcumin in the treatment of COVID-19 with depression through an integrative pharmacology strategy, including target prediction, network analysis, PPI analysis, GO and KEGG enrichment analyses, and molecular docking.

Results: After a comprehensive search and thorough analysis, 8 core targets (ALB, AKT1, CASP3, STAT3, EGFR, PTGS2, FOS, and SERPINE1) were identified. GO and KEGG enrichment analysis results revealed that the pathways related to viral infection, immune regulation, neuronal reorganization, apoptosis, and secretion of inflammatory cytokines were involved in the pathological process. Furthermore, molecular docking showed that curcumin could spontaneously bind to the SARS-CoV-2-related receptor proteins and the core targets with a strong binding force.

Conclusion: The potential pharmacological mechanisms of curcumin in COVID-19 comorbid depression were evaluated. Curcumin can be used as a therapeutic agent for COVID-19 comorbid depression. One of the potential mechanisms may be to reduce the inflammatory response and suppress the cytokine storm by regulating the JAK-STAT signaling pathway and MAPK signaling pathway. These findings may help to overcome the impact of the COVID-19 pandemic on psychological health.

« Previous
[1]
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020; 109: 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[2]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[3]
Xiang M, Liu Y, Yamamoto S, Mizoue T, Kuwahara K. Association of Changes of lifestyle behaviors before and during the COVID-19 pandemic with mental health: A longitudinal study in children and adolescents. Int J Behav Nutr Phys Act 2022; 19(1): 92.
[http://dx.doi.org/10.1186/s12966-022-01327-8] [PMID: 35883177]
[4]
Shah M, Woo HG. Omicron: A heavily mutated SARS-CoV-2 variant exhibits stronger binding to ACE2 and potently escapes approved COVID-19 therapeutic antibodies. Front Immunol 2022; 12: 830527.
[http://dx.doi.org/10.3389/fimmu.2021.830527] [PMID: 35140714]
[5]
WHO COVID-19 Explorer. Geneva: World Health Organization 2020. Available from: https://worldhealthorg.shinyapps.io/covid/ (last cited: 06 September 2023).
[6]
Hernandez-Hernandez ME, Zee RYL, Pulido-Perez P, Torres-Rasgado E, Romero JR. The effects of biological sex and cardiovascular disease on COVID-19 mortality. Am J Physiol Heart Circ Physiol 2022; 323(3): H397-402.
[http://dx.doi.org/10.1152/ajpheart.00295.2022] [PMID: 35867708]
[7]
Kim J, Seo YE, Sung HK, Park HY, Han MH, Lee SH. Predictors of the development of mental disorders in hospitalized COVID-19 patients without previous psychiatric history: A single-center retrospective study in South Korea. Int J Environ Res Public Health 2022; 19(3): 1092.
[http://dx.doi.org/10.3390/ijerph19031092] [PMID: 35162116]
[8]
Li T, Zhang L, Cai S, et al. Association of mental health with clinical outcomes in hospitalized patients with moderate COVID-19. J Affect Disord 2022; 312: 331-6.
[http://dx.doi.org/10.1016/j.jad.2022.05.047] [PMID: 35577158]
[9]
Sârbu F, Oprea V, Tatu A, et al. COVID 19 related psychiatric manifestations requiring hospitalization: Analysis in older vs. younger patients. Exp Ther Med 2022; 24(2): 497.
[http://dx.doi.org/10.3892/etm.2022.11424] [PMID: 35837071]
[10]
Mazza MG, Palladini M, Poletti S, Benedetti F. Post-COVID-19 depressive symptoms: Epidemiology, pathophysiology, and pharmacological treatment. CNS Drugs 2022; 36(7): 681-702.
[http://dx.doi.org/10.1007/s40263-022-00931-3] [PMID: 35727534]
[11]
Clouston SAP, Luft BJ, Sun E. Clinical risk factors for mortality in an analysis of 1375 patients admitted for COVID treatment. Sci Rep 2021; 11(1): 23414.
[http://dx.doi.org/10.1038/s41598-021-02920-w] [PMID: 34862487]
[12]
Zhang J, Xu D, Xie B, et al. Poor-sleep is associated with slow recovery from lymphopenia and an increased need for ICU care in hospitalized patients with COVID-19: A retrospective cohort study. Brain Behav Immun 2020; 88: 50-8.
[http://dx.doi.org/10.1016/j.bbi.2020.05.075] [PMID: 32512133]
[13]
Li J, Li X, Jiang J, et al. The effect of cognitive behavioral therapy on depression, anxiety, and stress in patients with COVID-19: A randomized controlled trial. Front Psychiatry 2020; 11: 580827.
[http://dx.doi.org/10.3389/fpsyt.2020.580827] [PMID: 33192723]
[14]
Surma S, Sahebkar A, Urbański J, Penson PE, Banach M. Curcumin: The nutraceutical with pleiotropic effects? which cardiometabolic subjects might benefit the most? Front Nutr 2022; 9: 865497.
[http://dx.doi.org/10.3389/fnut.2022.865497] [PMID: 35662932]
[15]
Jin T, Zhang Y, Botchway BOA, et al. Curcumin can improve Parkinson’s disease via activating BDNF/PI3k/Akt signaling pathways. Food Chem Toxicol 2022; 164: 113091.
[http://dx.doi.org/10.1016/j.fct.2022.113091] [PMID: 35526734]
[16]
Urošević M, Nikolić L, Gajić I, Nikolić V, Dinić A, Miljković V. Curcumin: Biological activities and modern pharmaceutical forms. Antibiotics 2022; 11(2): 135.
[http://dx.doi.org/10.3390/antibiotics11020135] [PMID: 35203738]
[17]
Pandey S, Vindya HA, Kumar A, Rao PJ. Curcumin loaded core-shell biopolymers colloid and its incorporation in Indian Basmati rice: An enhanced stability, anti-oxidant activity and sensory attributes of fortified rice. Food Chem 2022; 387: 132860.
[http://dx.doi.org/10.1016/j.foodchem.2022.132860] [PMID: 35430539]
[18]
Liu Z, Huang P, Law S, Tian H, Leung W, Xu C. Preventive effect of curcumin against chemotherapy-induced side-effects. Front Pharmacol 2018; 9: 1374.
[http://dx.doi.org/10.3389/fphar.2018.01374] [PMID: 30538634]
[19]
Zhang X, Feng J, Feng W, et al. Glycosaminoglycan-based hydrogel delivery system regulates the wound microenvironment to rescue chronic wound healing. ACS Appl Mater Interfaces 2022; 14(28): 31737-50.
[http://dx.doi.org/10.1021/acsami.2c08593] [PMID: 35802505]
[20]
Azeez TB, Lunghar J. Antiinflammatory effects of turmeric (Curcuma longa) and ginger (Zingiber officinale). In: Inflammation and Natural Products. Academic Press 2021; pp. 127-46.
[http://dx.doi.org/10.1016/B978-0-12-819218-4.00011-0]
[21]
Babaei F, Nassiri-Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci Nutr 2020; 8(10): 5215-27.
[http://dx.doi.org/10.1002/fsn3.1858] [PMID: 33133525]
[22]
Wang Z, Zhang Q, Huang H, Liu Z. The efficacy and acceptability of curcumin for the treatment of depression or depressive symptoms: A systematic review and meta-analysis. J Affect Disord 2021; 282: 242-51.
[http://dx.doi.org/10.1016/j.jad.2020.12.158] [PMID: 33418373]
[23]
Marín-Palma D, Tabares-Guevara JH, Zapata-Cardona MI, et al. Curcumin inhibits in vitro SARS-CoV-2 infection in vero E6 cells through multiple antiviral mechanisms. Molecules 2021; 26(22): 6900.
[http://dx.doi.org/10.3390/molecules26226900] [PMID: 34833991]
[24]
Valizadeh H, Abdolmohammadi-vahid S, Danshina S, et al. Nanocurcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharmacol 2020; 89(Pt B): 107088.
[http://dx.doi.org/10.1016/j.intimp.2020.107088] [PMID: 33129099]
[25]
Pawar KS, Mastud RN, Pawar SK, et al. Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: A randomized clinical trial. Front Pharmacol 2021; 12: 669362.
[http://dx.doi.org/10.3389/fphar.2021.669362] [PMID: 34122090]
[26]
Tahmasebi S, El-Esawi MA, Mahmoud ZH, et al. Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients. J Cell Physiol 2021; 236(7): 5325-38.
[http://dx.doi.org/10.1002/jcp.30233] [PMID: 33372280]
[27]
Badary O, Hamza MS, Tikamdas R. Thymoquinone: A promising natural compound with potential benefits for COVID-19 prevention and cure. Drug Des Devel Ther 2021; 15: 1819-33.
[http://dx.doi.org/10.2147/DDDT.S308863] [PMID: 33976534]
[28]
Saeedi-Boroujeni A, Mahmoudian-Sani MR, Bahadoram M, Alghasi A. COVID-19: A case for inhibiting NLRP3 inflammasome, suppression of inflammation with curcumin? Basic Clin Pharmacol Toxicol 2021; 128(1): 37-45.
[http://dx.doi.org/10.1111/bcpt.13503] [PMID: 33099890]
[29]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[30]
Burley SK, Bhikadiya C, Bi C, et al. RCSB protein data bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 2021; 49(D1): D437-51.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[31]
Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258): 1204-22.
[http://dx.doi.org/10.1016/S0140-6736(20)30925-9] [PMID: 33069326]
[32]
Santomauro DF, Mantilla Herrera AM, Shadid J, et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021; 398(10312): 1700-12.
[http://dx.doi.org/10.1016/S0140-6736(21)02143-7] [PMID: 34634250]
[33]
Sahoo S, Mehra A, Suri V, et al. Lived experiences of the corona survivors (patients admitted in COVID wards): A narrative real-life documented summaries of internalized guilt, shame, stigma, anger. Asian J Psychiatr 2020; 53: 102187.
[http://dx.doi.org/10.1016/j.ajp.2020.102187] [PMID: 32512532]
[34]
Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J 2013; 15(1): 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[35]
Peng Y, Ao M, Dong B, et al. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des Devel Ther 2021; 15: 4503-25.
[http://dx.doi.org/10.2147/DDDT.S327378] [PMID: 34754179]
[36]
Jin Z, Chang B, Wei Y, et al. Curcumin exerts chondroprotective effects against osteoarthritis by promoting AMPK/PINK1/Parkin-mediated mitophagy. Biomed Pharmacother 2022; 151: 113092.
[http://dx.doi.org/10.1016/j.biopha.2022.113092] [PMID: 35550528]
[37]
Fu YS, Chen TH, Weng L, Huang L, Lai D, Weng CF. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed Pharmacother 2021; 141: 111888.
[http://dx.doi.org/10.1016/j.biopha.2021.111888] [PMID: 34237598]
[38]
Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed Pharmacother 2021; 134: 111119.
[http://dx.doi.org/10.1016/j.biopha.2020.111119] [PMID: 33360051]
[39]
Lamanna-Rama N, Romero-Miguel D, Desco M, Soto-Montenegro ML. An update on the exploratory use of curcumin in neuropsychiatric disorders. Antioxidants 2022; 11(2): 353.
[http://dx.doi.org/10.3390/antiox11020353] [PMID: 35204235]
[40]
Sharma R, Bhattu M, Tripathi A, et al. Potential medicinal plants to combat viral infections: A way forward to environmental biotechnology. Environ Res 2023; 227: 115725.
[http://dx.doi.org/10.1016/j.envres.2023.115725] [PMID: 37001848]
[41]
Zahedipour F, Hosseini SA, Sathyapalan T, et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res 2020; 34(11): 2911-20.
[http://dx.doi.org/10.1002/ptr.6738] [PMID: 32430996]
[42]
Chen PC, Lai JJ, Huang CJ. Bio-inspired amphoteric polymer for triggered-release drug delivery on breast cancer cells based on metal coordination. ACS Appl Mater Interfaces 2021; 13(22): 25663-73.
[http://dx.doi.org/10.1021/acsami.1c03191] [PMID: 34032419]
[43]
Lang L, Zhu Z, Xu Z, et al. The Association between the albumin and viral negative conversion rate in patients infected with novel coronavirus disease 2019 (COVID-19). Infect Drug Resist 2022; 15: 1687-94.
[http://dx.doi.org/10.2147/IDR.S353091] [PMID: 35422642]
[44]
Qin S, Li W, Shi X, et al. 3044 cases reveal important prognosis signatures of COVID-19 patients. Comput Struct Biotechnol J 2021; 19: 1163-75.
[http://dx.doi.org/10.1016/j.csbj.2021.01.042] [PMID: 33584997]
[45]
Andrade SA, de Souza DA, Torres AL, et al. Pathophysiology of COVID-19: Critical role of hemostasis. Front Cell Infect Microbiol 2022; 12: 896972.
[http://dx.doi.org/10.3389/fcimb.2022.896972] [PMID: 35719336]
[46]
Nguyen HD, Kim MS. Interactions between cadmium, lead, mercury, and arsenic and depression: A molecular mechanism involved. J Affect Disord 2023; 327: 315-29.
[http://dx.doi.org/10.1016/j.jad.2023.02.013] [PMID: 36758875]
[47]
Xia QD, Xun Y, Lu JL, et al. Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID-19. Cell Prolif 2020; 53(12): e12949.
[http://dx.doi.org/10.1111/cpr.12949] [PMID: 33140889]
[48]
Ji Y, Luo J, Zeng J, et al. Xiaoyao pills ameliorate depression-like behaviors and oxidative stress induced by olfactory bulbectomy in rats via the activation of the PIK3CA-AKT1-NFE2L2/BDNF Signaling Pathway. Front Pharmacol 2021; 12: 643456.
[http://dx.doi.org/10.3389/fphar.2021.643456] [PMID: 33935736]
[49]
Machado-Vieira R, Zanetti MV, Teixeira AL, et al. Decreased AKT1/mTOR pathway mRNA expression in short-term bipolar disorder. Eur Neuropsychopharmacol 2015; 25(4): 468-73.
[http://dx.doi.org/10.1016/j.euroneuro.2015.02.002] [PMID: 25726893]
[50]
Ertürk A, Wang Y, Sheng M. Local pruning of dendrites and spines by caspase-3-dependent and proteasome-limited mechanisms. J Neurosci 2014; 34(5): 1672-88.
[http://dx.doi.org/10.1523/JNEUROSCI.3121-13.2014] [PMID: 24478350]
[51]
Cheng WJ, Li P, Huang WY, et al. Acupuncture relieves stress-induced depressive behavior by reducing oxidative stress and neuroapoptosis in rats. Front Behav Neurosci 2022; 15: 783056.
[http://dx.doi.org/10.3389/fnbeh.2021.783056] [PMID: 35058758]
[52]
Wang YJ, Liu MG, Wang JH, et al. Restoration of cingulate long-term depression by enhancing non-apoptotic caspase 3 alleviates peripheral pain hypersensitivity. Cell Rep 2020; 33(6): 108369.
[http://dx.doi.org/10.1016/j.celrep.2020.108369] [PMID: 33176141]
[53]
Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 2018; 15(4): 234-48.
[http://dx.doi.org/10.1038/nrclinonc.2018.8] [PMID: 29405201]
[54]
Hashemi M, Sabouni E, Rahmanian P, et al. Deciphering STAT3 signaling potential in hepatocellular carcinoma: Tumorigenesis, treatment resistance, and pharmacological significance. Cell Mol Biol Lett 2023; 28(1): 33.
[http://dx.doi.org/10.1186/s11658-023-00438-9] [PMID: 37085753]
[55]
Lu R, Zhang L, Wang H, Li M, Feng W, Zheng X. Echinacoside exerts antidepressant-like effects through enhancing BDNF-CREB pathway and inhibiting neuroinflammation via regulating microglia M1/M2 polarization and JAK1/STAT3 pathway. Front Pharmacol 2023; 13: 993483.
[http://dx.doi.org/10.3389/fphar.2022.993483] [PMID: 36686689]
[56]
Winneke G, Kastka J. Comparison of odour-annoyance data from different industrial sources: Problems and implications. Dev Toxicol Environ Sci 1987; 15: 129-40.
[PMID: 3569077]
[57]
Kang JJ, Ko A, Kil SH, et al. EGFR pathway targeting drugs in head and neck cancer in the era of immunotherapy. Biochim Biophys Acta Rev Cancer 2023; 1878(1): 188827.
[http://dx.doi.org/10.1016/j.bbcan.2022.188827] [PMID: 36309124]
[58]
Qu W, Tian D, Guo Z, et al. Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury. J Neuroinflammation 2012; 9(1): 642.
[http://dx.doi.org/10.1186/1742-2094-9-178] [PMID: 22824323]
[59]
Zarghi A, Mahboubi-Rabbani M, Abbasi M. Natural-derived COX-2 inhibitors as anticancer drugs: A review of their structural diversity and mechanism of action. Anticancer Agents Med Chem 2023; 23(1): 15-36.
[http://dx.doi.org/10.2174/1389450123666220516153915] [PMID: 35638275]
[60]
Montero-Cosme TG, Pascual-Mathey LI, Hernández-Aguilar ME, Herrera-Covarrubias D, Rojas-Durán F, Aranda-Abreu GE. Potential drugs for the treatment of Alzheimer’s disease. Pharmacol Rep 2023; 75(3): 544-59.
[http://dx.doi.org/10.1007/s43440-023-00481-5] [PMID: 37005970]
[61]
Cruz-Mendoza F, Jauregui-Huerta F, Aguilar-Delgadillo A, García-Estrada J, Luquin S. Immediate early gene c-fos in the brain: Focus on glial cells. Brain Sci 2022; 12(6): 687.
[http://dx.doi.org/10.3390/brainsci12060687] [PMID: 35741573]
[62]
Wang B, Gu B, Zhang T, et al. Good or bad: Paradox of plasminogen activator inhibitor 1 (PAI-1) in digestive system tumors. Cancer Lett 2023; 559: 216117.
[http://dx.doi.org/10.1016/j.canlet.2023.216117] [PMID: 36889376]
[63]
Savoy C, Van Lieshout RJ, Steiner M. Is plasminogen activator inhibitor-1 a physiological bottleneck bridging major depressive disorder and cardiovascular disease? Acta Physiol 2017; 219(4): 715-27.
[http://dx.doi.org/10.1111/apha.12726] [PMID: 27246986]
[64]
Matschke J, Lütgehetmann M, Hagel C, et al. Neuropathology of patients with COVID-19 in Germany: A post-mortem case series. Lancet Neurol 2020; 19(11): 919-29.
[http://dx.doi.org/10.1016/S1474-4422(20)30308-2] [PMID: 33031735]
[65]
Mi S, Chang Z, Wang X, et al. Bioactive spinal cord scaffold releasing neurotrophic exosomes to promote in situ centralis neuroplasticity. ACS Appl Mater Interfaces 2023; 15(13): 16355-68.
[http://dx.doi.org/10.1021/acsami.2c19607] [PMID: 36958016]
[66]
Zhou Z, Bai J, Zhong S, et al. Downregulation of PIK3CB involved in Alzheimer’s disease via apoptosis, axon guidance, and FoxO signaling pathway. Oxid Med Cell Longev 2022; 2022: 1-15.
[http://dx.doi.org/10.1155/2022/1260161] [PMID: 35096262]
[67]
André S, Picard M, Cezar R, et al. T cell apoptosis characterizes severe COVID-19 disease. Cell Death Differ 2022; 29(8): 1486-99.
[http://dx.doi.org/10.1038/s41418-022-00936-x] [PMID: 35066575]
[68]
Zhao L, Ren H, Gu S, et al. rTMS ameliorated depressive-like behaviors by restoring HPA axis balance and prohibiting hippocampal neuron apoptosis in a rat model of depression. Psychiatry Res 2018; 269: 126-33.
[http://dx.doi.org/10.1016/j.psychres.2018.08.017] [PMID: 30145293]
[69]
Matias JN, Achete G, Campanari GSS, et al. A systematic review of the antidepressant effects of curcumin: Beyond monoamines theory. Aust N Z J Psychiatry 2021; 55(5): 451-62.
[http://dx.doi.org/10.1177/0004867421998795] [PMID: 33673739]
[70]
Marmitt DJ. Potential plants for inflammatory dysfunction in the SARS-CoV-2 infection. Inflammopharmacology 2022; 30(3): 749-73.
[http://dx.doi.org/10.1007/s10787-022-00981-5] [PMID: 35389124]
[71]
Desforges M, Le Coupanec A, Dubeau P, et al. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses 2019; 12(1): 14.
[http://dx.doi.org/10.3390/v12010014] [PMID: 31861926]
[72]
Huang J, Zhou C, Deng J, Zhou J. JAK inhibition as a new treatment strategy for patients with COVID-19. Biochem Pharmacol 2022; 202: 115162.
[http://dx.doi.org/10.1016/j.bcp.2022.115162] [PMID: 35787993]
[73]
Kaur I, Behl T, Sehgal A, et al. A motley of possible therapies of the COVID-19: reminiscing the origin of the pandemic. Environ Sci Pollut Res Int 2022; 29(45): 67685-703.
[http://dx.doi.org/10.1007/s11356-022-22345-w] [PMID: 35933528]
[74]
Yeung YT, Aziz F, Guerrero-Castilla A, Arguelles S. Signaling pathways in inflammation and anti-inflammatory therapies. Curr Pharm Des 2018; 24(14): 1449-84.
[http://dx.doi.org/10.2174/1381612824666180327165604] [PMID: 29589535]
[75]
Yang J, Li H, Hao Z, et al. Mitigation effects of selenium nanoparticles on depression-like behavior induced by fluoride in mice via the JAK2-STAT3 Pathway. ACS Appl Mater Interfaces 2022; 14(3): 3685-700.
[http://dx.doi.org/10.1021/acsami.1c18417] [PMID: 35023338]
[76]
Behl T, Rana T, Alotaibi GH, et al. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomed Pharmacother 2022; 146: 112545.
[http://dx.doi.org/10.1016/j.biopha.2021.112545] [PMID: 34922112]
[77]
Liu QF, Park SW, Kim YM, et al. Administration of Kyung-Ok-Ko reduces stress-induced depressive behaviors in mice through inhibition of inflammation pathway. J Ethnopharmacol 2021; 265: 113441.
[http://dx.doi.org/10.1016/j.jep.2020.113441] [PMID: 33027642]
[78]
Tan Y, Zhang X, Cheang WS. Isoflavones daidzin and daidzein inhibit lipopolysaccharide-induced inflammation in RAW264.7 macrophages. Chin Med 2022; 17(1): 95.
[http://dx.doi.org/10.1186/s13020-022-00653-0] [PMID: 35974408]
[79]
Grimes JM, Grimes KV. p38 MAPK inhibition: A promising therapeutic approach for COVID-19. J Mol Cell Cardiol 2020; 144: 63-5.
[http://dx.doi.org/10.1016/j.yjmcc.2020.05.007] [PMID: 32422320]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy