Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Flavonoid-metal ion Complexes as Potent Anticancer Metallodrugs: A Comprehensive Review

Author(s): Sainath B. Zangade*, Bashweshawar S. Dhulshette and Pravinkumar B. Patil

Volume 24, Issue 10, 2024

Published on: 20 October, 2023

Page: [1046 - 1060] Pages: 15

DOI: 10.2174/0113895575273658231012040250

Price: $65

Abstract

Background: Flavonoids and their analogous are mainly found in pink lady apples, green and black tea (catechins), celery and red peppers, onions, broccoli and spinach, berries, cherries, soybean, citrus fruits, and fungi. The different derivatives of flavonoids belonging to polyphenolic compounds such as 3,4′,5,7-Tetrahydroxyflavylium (pelargonidin), 2-(3,4-Dihydroxyphenyl)chromenylium-3,5,7-triol (cyanidin), 3,3′,4′,5,5′,7-Hexahydroxyflavylium (delphinidin), 3,3′,4′,5,7-Pentahydroxy-5′-methoxyflavylium (petunidin), and 3,4′,5,7-Tetrahydroxy-3′,5′-dimethoxyflavylium (malvidin) can act as good chelating agents for metal-chelate complex formation. These flavonoid-metal complexes have been reported to have various biomedical and pharmacological activities.

Objective: Flavonoid-metal ion complexes display a broad spectrum of biological properties such as antioxidant, anti-inflammatory, anti-allergic, antiviral, anticarcinogenic, and cytotoxic activity. The literature survey showed that flavonoid metal complexes have potential therapeutic properties against various cancerous cells. The objective is to gain insight into the current perspective and development of novel anticancer metallodrugs.

Methods: The flavonoid-metal ion complexes can be prepared by reacting flavonoid ligand with appropriate metal salt in aqueous or alcoholic reaction medium under stirring or refluxing conditions. In this review article, the various reported methods for the synthesis of flavonoid-metal complexes have been included. The utility of synthetic methods for flavonoid-metal complexes will support the discovery of novel therapeutic drugs.

Results: In this review study, short libraries of flavonoid-metal ion complexes were studied as potential anticancer agents against various human cancer cell lines. The review report reveals that metal ions such as Fe, Co, Ni, Cu, Zn, Rh, Ru, Ga, Ba, Sn etc., when binding to flavonoid ligands, enhance the anticancer activity compared to free ligands. This review study covered some important literature surveys for the last two decades.

Conclusion: It has been concluded that flavonoid metal complexes have been associated with a wide range of biological properties that could be noteworthy in the medicinal field. Therefore, to develop a new anticancer drug, it is essential to determine the primordial interaction of drug with DNA under physiological or anatomical conditions. The study of numerous flavonoid metal complexes mentioned in this paper could be the future treatment against various cancerous diseases.

« Previous
Graphical Abstract

[1]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[2]
Egert, S.; Rimbach, G. Which sources of flavonoids: Complex diets or dietary supplements? Adv. Nutr., 2011, 2(1), 8-14.
[http://dx.doi.org/10.3945/an.110.000026] [PMID: 22211185]
[3]
Cai, C.Y.; Zhang, W.; Wang, J.Q.; Lei, Z.N.; Zhang, Y.K.; Wang, Y.J.; Gupta, P.; Tan, C.P.; Wang, B.; Chen, Z.S. Biological evaluation of non-basic chalcone CYB-2 as a dual ABCG2/ABCB1 inhibitor. Biochem. Pharmacol., 2020, 175, 113848.
[http://dx.doi.org/10.1016/j.bcp.2020.113848] [PMID: 32044354]
[4]
Tan, A.K.X.; Chia, J.K.; Teng, J.J.Z.; Chiow, Y.C.S.; Zhai, W.; Wu, S.; Lee, X.P.; Guo, X.; Lee, P.P.F.; Ganguly, R.; Tan, Y.L.K. Ruthenium arene complexes with chalcone ligands incorporating pyridyl and anthryl units: Synthesis, aqueous stability and interaction with quadruplex DNA. Inorg. Chim. Acta, 2023, 558, 121739.
[http://dx.doi.org/10.1016/j.ica.2023.121739]
[5]
Kasprzak, M.M.; Erxleben, A.; Ochocki, J. Properties and applications of flavonoid metal complexes. RSC Adv., 2015, 5(57), 45853-45877.
[http://dx.doi.org/10.1039/C5RA05069C]
[6]
Symonowicz, M.; Kolanek, M. Flavonoids and their properties to form chelate complexes. Biotechnol. Food Sci., 2012, 76, 35-41.
[7]
Khater, M.; Ravishankar, D.; Greco, F.; Osborn, H.M.I. Metal complexes of flavonoids: Their synthesis, characterization and enhanced antioxidant and anticancer activities. Future Med. Chem., 2019, 11(21), 2845-2867.
[http://dx.doi.org/10.4155/fmc-2019-0237] [PMID: 31722558]
[8]
Shi, J.; Zhang, Z.T. Synthesis, crystal structure and biological activity of two complexes based on 5-hydroxy-4′-methoxyisoflavone-3′-sulfonate. Russ. J. Coord. Chem., 2019, 45(3), 244-252.
[http://dx.doi.org/10.1134/S1070328419030084]
[9]
Durgo, K.; Halec, I.; Šola, I.; Franekić, J. Cytotoxic and genotoxic effects of the quercetin/lanthanum complex on human cervical carcinoma cells in vitro. Arh. Hig. Rada Toksikol., 2011, 62(3), 221-227.
[http://dx.doi.org/10.2478/10004-1254-62-2011-2122] [PMID: 21971105]
[10]
Tan, M.; Zhu, J.; Pan, Y.; Chen, Z.; Liang, H.; Liu, H.; Wang, H. Synthesis, cytotoxic activity, and DNA binding properties of copper (II) complexes with hesperetin, naringenin, and apigenin. Bioinorg. Chem. Appl., 2009, 2009, 347872.
[11]
Pereira, R.M.S.; Andrades, N.E.D.; Paulino, N.; Sawaya, A.C.H.F.; Eberlin, M.N.; Marcucci, M.C.; Favero, G.M.; Novak, E.M.; Bydlowski, S.P. Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. Molecules, 2007, 12, 1352-e1366.
[12]
Etcheverry, S.B.; Ferrer, E.G.; Naso, L.; Rivadeneira, J.; Salinas, V.; Williams, P.A.M. Antioxidant effects of the VO(IV) hesperidin complex and its role in cancer chemoprevention. J. Biol. Inorg. Chem., 2008, 13(3), 435-447.
[http://dx.doi.org/10.1007/s00775-007-0332-9] [PMID: 18097692]
[13]
Selvaraj, S.; Krishnaswamy, S.; Devashya, V.; Sethuraman, S.; Krishnan, U.M. Membrane fluidization & eryptotic properties of hesperidin–copper complex. RSC Adv., 2012, 113, 1138e11146.
[14]
Heidari, A.; Jafari Navimipour, N.; Unal, M.; Toumaj, S. Machine learning applications for COVID-19 outbreak management. Neural Comput. Appl., 2022, 34(18), 15313-15348.
[http://dx.doi.org/10.1007/s00521-022-07424-w] [PMID: 35702664]
[15]
Aminizadeh, S.; Heidari, A.; Toumaj, S.; Darbandi, M.; Navimipour, N.J.; Rezaei, M.; Talebi, S.; Azad, P.; Unal, M. The applications of machine learning techniques in medical data processing based on distributed computing and the Internet of Things. Comput. Methods Programs Biomed., 2023, 241, 107745.
[http://dx.doi.org/10.1016/j.cmpb.2023.107745] [PMID: 37579550]
[16]
Batra, P.; Sharma, A. K. Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech, 2013, 3, 439-459.
[17]
Mahesha, P.; Shetty, N.S.; Kulkarni, S.D. A review on metal ion sensors derived from chalcone precursor. J. Fluoresc., 2022, 32(3), 835-862.
[http://dx.doi.org/10.1007/s10895-022-02900-x] [PMID: 35199297]
[18]
Britton, R.G.; Horner-Glister, E.; Pomenya, O.A.; Smith, E.E.; Denton, R.; Jenkins, P.R.; Steward, W.P.; Brown, K.; Gescher, A.; Sale, S. Synthesis and biological evaluation of novel flavonols as potential anti-prostate cancer agents. Eur. J. Med. Chem., 2012, 54, 952-958.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.031] [PMID: 22789812]
[19]
Zhou, J.; Wang, L.; Wang, J.; Tang, N. Antioxidative and anti-tumour activities of solid quercetin metal(II) complexes. Trans. Met. Chem., 2001, 26(1/2), 57-63.
[http://dx.doi.org/10.1023/A:1007152927167]
[20]
Lu, J.; Papp, L.V.; Fang, J.; Rodriguez-Nieto, S.; Zhivotovsky, B.; Holmgren, A. Inhibition of mammalian thioredoxin reductase by some flavonoids: Implications for myricetin and quercetin anticancer activity. Cancer Res., 2006, 66(8), 4410-4418.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3310] [PMID: 16618767]
[21]
Dias, T.A.; Duarte, C.L.; Lima, C.F.; Proença, M.F.; Pereira-Wilson, C. Superior anticancer activity of halogenated chalcones and flavonols over the natural flavonol quercetin. Eur. J. Med. Chem., 2013, 65, 500-510.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.064] [PMID: 23771043]
[22]
Kobayashi, T.; Nakata, T.; Kuzumaki, T. Effect of flavonoids on cell cycle progression in prostate cancer cells. Cancer Lett., 2002, 176(1), 17-23.
[http://dx.doi.org/10.1016/S0304-3835(01)00738-8] [PMID: 11790449]
[23]
Ikeda, N.E.A.; Novak, E.M.; Maria, D.A.; Velosa, A.S.; Pereira, R.M.S. Synthesis, characterization and biological evaluation of Rutin–zinc(II) flavonoid -metal complex. Chem. Biol. Interact., 2015, 239, 184-191.
[http://dx.doi.org/10.1016/j.cbi.2015.06.011] [PMID: 26091902]
[24]
Kotha, R.R.; Kulkarni, R.G.; Garige, A.K.; Nerella, S.G.; Garlapati, A. Synthesis and cytotoxic activity of new chalcones and their flavonol derivatives. Med. Chem., 2017, 7, 353-360.
[25]
Martínez Medina, J.J.; Naso, L.G.; Pérez, A.L.; Rizzi, A.; Ferrer, E.G.; Williams, P.A.M. Antioxidant and anticancer effects and bioavailability studies of the flavonoid baicalin and its oxidovanadium(IV) complex. J. Inorg. Biochem., 2017, 166, 150-161.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.11.005] [PMID: 27863301]
[26]
Alper, P.; Erkisa, M.; Genckal, H.M.; Sahin, S.; Ulukaya, E.; Ari, F. Synthesis, characterization, anticancer and antioxidant activity of new nickel(II) and copper(II) flavonoid complexes. J. Mol. Struct., 2019, 1196, 783-792.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.009]
[27]
Thangavel, P.; Viswanath, B.; Kim, S. Synthesis and characterization of kaempferol-based ruthenium (II) complex: A facile approach for superior anticancer application. Mater. Sci. Eng. C, 2018, 89, 87-94.
[http://dx.doi.org/10.1016/j.msec.2018.03.020] [PMID: 29752123]
[28]
Halevas, E.; Mavroidi, B.; Antonoglou, O.; Hatzidimitriou, A.; Sagnou, M.; Pantazaki, A.A.; Litsardakis, G.; Pelecanou, M. Structurally characterized gallium–chrysin complexes with anticancer potential. Dalton Trans., 2020, 49(8), 2734-2746.
[http://dx.doi.org/10.1039/C9DT04540F] [PMID: 32064490]
[29]
Kozsup, M.; Zhou, X.; Farkas, E.; Bényei, A.C.; Bonnet, S.; Patonay, T.; Kónya, K.; Buglyó, P. Synthesis, characterization and cytotoxicity studies of Co(III)-flavonolato complexes. J. Inorg. Biochem., 2021, 217, 111382.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111382] [PMID: 33588278]
[30]
Albuquerque, H.; Santos, C.; Cavaleiro, J.; Silva, A. Chalcones as versatile synthons for the synthesis of 5- and 6-membered nitrogen heterocycles. Curr. Org. Chem., 2014, 18(21), 2750-2775.
[http://dx.doi.org/10.2174/1385272819666141013224253]
[31]
Winter, E.; Locatelli, C.; Pietro, A.; Creczynski-Pasa, T. Recent trends of chalcones potentialities as antiproliferative and antiresistance agents. Anticancer. Agents Med. Chem., 2015, 15(5), 592-604.
[http://dx.doi.org/10.2174/1871520615666150101130800] [PMID: 25553434]
[32]
Borge, V.V.; Patil, R.M. Syntheses and characterization of copper metal complexes prepared from chalcone derivatives. Microchem. J., 2019, 145, 456-459.
[http://dx.doi.org/10.1016/j.microc.2018.11.001]
[33]
Patil, P.; Zangade, S. Synthesis, characterization, antimicrobial screening and cytotoxic properties of Cu(II) and Zn(II) complexes with bidentate hydroxylated 1,3-diaryl-2-propene-1-ones ligand. J. Serb. Chem. Soc., 2021, 86(2), 153-164.
[http://dx.doi.org/10.2298/JSC200901068Z]
[34]
Dkhar, L.; Banothu, V.; Pinder, E.; Phillips, R.M.; Kaminsky, W.; Kollipara, M.R. Ru, Rh and Ir metal complexes of pyridyl chalcone derivatives: Their potent antibacterial activity, comparable cytotoxicity potency and selectivity to cisplatin. Polyhedron, 2020, 185, 114606.
[http://dx.doi.org/10.1016/j.poly.2020.114606]
[35]
Mishra, L.; Itokawa, H.; Bastow, K.F.; Tachibana, Y.; Nakanishi, Y.; Kilgore, N.; Lee, K-H.; Sinha, R. Anti-HIV and cytotoxic activities of Ru(II)/Ru(III) polypyridyl complexes containing 2,6-(2′-benzimidazolyl)-pyridine/chalcone as co-ligand. Bioorg. Med. Chem., 2001, 9(7), 1667-1671.
[http://dx.doi.org/10.1016/S0968-0896(01)00074-8] [PMID: 11425566]
[36]
Yu, Y.; Yuan, D.; Wang, Y.; Yao, Y. Lanthanide alkoxide complexes stabilized by a novel salen-type Schiff-base ligand: Synthesis, structure, and catalysis for the polymerization of lactide. J. Organomet. Chem., 2016, 819, 37-45.
[http://dx.doi.org/10.1016/j.jorganchem.2016.06.020]
[37]
Skiba, J.; Karpowicz, R.; Szabó, I.; Therrien, B.; Kowalski, K. Synthesis and anticancer activity studies of ferrocenyl-thymine-3,6-dihydro-2H-thiopyranes – A new class of metallocene-nucleobase derivatives. J. Organomet. Chem., 2015, 794, 216-222.
[http://dx.doi.org/10.1016/j.jorganchem.2015.07.012]
[38]
Monserrat, J.P.; Tiwari, K.N.; Quentin, L.; Pigeon, P.; Jaouen, G.; Vessières, A.; Chabot, G.G.; Hillard, E.A. Ferrocenyl flavonoid-induced morphological modifications of endothelial cells and cytotoxicity against B16 murine melanoma cells. J. Organomet. Chem., 2013, 734, 78-85.
[http://dx.doi.org/10.1016/j.jorganchem.2012.12.031]
[39]
Zhang, P.; Sadler, P.J. Advances in the design of organometallic anticancer complexes. J. Organomet. Chem., 2017, 839, 5-14.
[http://dx.doi.org/10.1016/j.jorganchem.2017.03.038]
[40]
Delavault, A.; Fronczek, F.R.; Xu, W.; Srivastava, R.S. Ionic η5-Cp-Ruthenium (II) complexes as potential anticancer agents. J. Organomet. Chem., 2018, 875, 29-34.
[http://dx.doi.org/10.1016/j.jorganchem.2018.08.027]
[41]
Wei, J.N.; Jia, Z.D.; Zhou, Y.Q.; Chen, P.H.; Li, B.; Zhang, N.; Hao, X.Q.; Xu, Y.; Zhang, B. Synthesis, characterization and antitumor activity of novel ferrocene-coumarin conjugates. J. Organomet. Chem., 2019, 902, 120968.
[http://dx.doi.org/10.1016/j.jorganchem.2019.120968]
[42]
Liu, Y.T.; Sheng, J.; Yin, D.W.; Xin, H.; Yang, X.M.; Qiao, Q.Y.; Yang, Z.J. Ferrocenyl chalcone-based Schiff bases and their metal complexes: Highly efficient, solvent-free synthesis, characterization, biological research. J. Organomet. Chem., 2018, 856, 27-33.
[http://dx.doi.org/10.1016/j.jorganchem.2017.12.022]
[43]
Khanapure, S.; Jagadale, M.; Bansode, P.; Choudhari, P.; Rashinkar, G. Anticancer activity of ruthenocenyl chalcones and their molecular docking studies. J. Mol. Struct., 2018, 1173, 142-147.
[http://dx.doi.org/10.1016/j.molstruc.2018.06.091]
[44]
Gaber, M.; El-Ghamry, H.A.; Mansour, M.A. Pd(II) and Pt(II) chalcone complexes. Synthesis, spectral characterization, molecular modeling, biomolecular docking, antimicrobial and antitumor activities. J. Photochem. Photobiol. Chem., 2018, 354, 163-174.
[http://dx.doi.org/10.1016/j.jphotochem.2017.07.031]
[45]
Gaber, M.; Awad, M.K.; Atlam, F.M. Pd (II) complexes of bidentate chalcone ligands: Synthesis, spectral, thermal, antitumor, antioxidant, antimicrobial, DFT and SAR studies. J. Mol. Struct., 2018, 1160, 348-359.
[http://dx.doi.org/10.1016/j.molstruc.2018.02.012]
[46]
Da Silva, J.G.; Recio Despaigne, A.A.; Louro, S.R.W.; Bandeira, C.C.; Souza-Fagundes, E.M.; Beraldo, H. Cytotoxic activity, albumin and DNA binding of new copper(II) complexes with chalcone-derived thiosemicarbazones. Eur. J. Med. Chem., 2013, 65, 415-426.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.036] [PMID: 23747809]
[47]
Imran, M.; Ayub, W.; Butler, I.S. Zia-ur-Rehman, Photoactivated platinum-based anticancer drugs. Coord. Chem. Rev., 2018, 376, 405-429.
[http://dx.doi.org/10.1016/j.ccr.2018.08.009]
[48]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[49]
Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4(4), 307-320.
[http://dx.doi.org/10.1038/nrd1691] [PMID: 15789122]
[50]
Liu, F.; Gou, S.; Chen, F.; Fang, L.; Zhao, J. Study on antitumor platinum(II) complexes of chiral diamines with dicyclic species as steric hindrance. J. Med. Chem., 2015, 58(16), 6368-6377.
[http://dx.doi.org/10.1021/jm501952r] [PMID: 26247573]
[51]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[52]
Peng, K.; Liang, B.B.; Liu, W.; Mao, Z.W. What blocks more anticancer platinum complexes from experiment to clinic: Major problems and potential strategies from drug design perspectives. Coord. Chem. Rev., 2021, 449, 214210.
[http://dx.doi.org/10.1016/j.ccr.2021.214210]
[53]
Wang, X.; Guo, Z. Targeting and delivery of platinum-based anticancer drugs. Chem. Soc. Rev., 2013, 42(1), 202-224.
[http://dx.doi.org/10.1039/C2CS35259A] [PMID: 23042411]
[54]
Huang, X.; Huang, R.; Wang, Z.; Li, L.; Gou, S.; Liao, Z.; Wang, H. Pt(IV) complexes conjugating with chalcone analogue as inhibitors of microtubule polymerization exhibited selective inhibition in human cancer cells. Eur. J. Med. Chem., 2018, 146, 435-450.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.075] [PMID: 29407969]
[55]
El Sayed Aly, M.R.; Abd El Razek Fodah, H.H.; Saleh, S.Y. Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes. Eur. J. Med. Chem., 2014, 76, 517-530.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.021] [PMID: 24602794]
[56]
Kadhium, A.J.; Mahdi, S.M.; Alrammahi, F.A.H. Preparation and characterization of new azo/azo-chalcone ligands and their mixed ligands transition metal complexes with a study of palladium complex anticancer activity. Res. J. Pharm. Technol., 2019, 12(12), 5947-5955.
[http://dx.doi.org/10.5958/0974-360X.2019.01032.1]
[57]
Křikavová, R.; Vančo, J.; Trávníček, Z.; Hutyra, J.; Dvořák, Z. Design and characterization of highly in vitro antitumor active ternary copper(II) complexes containing 2′-hydroxychalcone ligands. J. Inorg. Biochem., 2016, 163, 8-17.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.07.005] [PMID: 27423037]
[58]
Verma, C.P.; Subin Kumar, K.; Aravindhakshan, K.K. Synthesis, characterization and pharmacological activity of complexes of Cu(II), Ni(II), Mn(II) and Co(II) from Chalcone N(4)-methyl(phenyl)thiosemicarbazone. J. Pharm. Sci. Res., 2017, 9, 1444-1449.
[59]
Singh, A.K.; Saxena, G.; Dixit, S.; Hamidullah, S.K.; Singh, S.K.; Singh, S.K.; Arshad, M.; Konwar, R. Synthesis, characterization and biological activities of some Ru(II) complexes with substituted chalcones and their applications as chemotherapeutics against breast cancer. J. Mol. Struct., 2016, 1111, 90-99.
[http://dx.doi.org/10.1016/j.molstruc.2016.01.070]
[60]
Fayed, T.A.; Gaber, M.; EI-Nahass, M.; Diasb, H.A.; EI-Gamil, M.M. Synthesis, structural characterization, thermal modeling and biological studies of Chalcones and Cr(III), Mn(II), Cu(II), Zn(II) and Cd(II) chelates. J. Mol. Struct., 2020, 1221, 128742.
[http://dx.doi.org/10.1016/j.molstruc.2020.128742]
[61]
Wang, Q.Y.; He, Y.; Meng, Q.H.; Zhang, X.L.; Zhang, Z.T. Self-assembly and crystal structures of coordination polymers constructed by 4′-hydroxyisoflavone-3′-sulfonates with Cs(I) and Rb(I). J. Coord. Chem., 2017, 70(6), 1105-1120.
[http://dx.doi.org/10.1080/00958972.2017.1280603]
[62]
Dowling, S.; Regan, F.; Hughes, H. The characterisation of structural and antioxidant properties of isoflavone metal chelates. J. Inorg. Biochem., 2010, 104(10), 1091-1098.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.06.007] [PMID: 20656356]
[63]
Wang, Q.Y.; Zhang, X.L.; Meng, Q.H.; Xue, D.; He, Y.; Zhang, Z.T. Metal–organic coordination polymers based on Cs(I), Rb(I) and isoflavone-3′-sulfonate ligands. Polyhedron, 2015, 85, 953-961.
[http://dx.doi.org/10.1016/j.poly.2014.10.017]
[64]
Sánchez, Y.; Amrán, D.; de Blas, E.; Aller, P. Regulation of genistein-induced differentiation in human acute myeloid leukaemia cells (HL60, NB4). Biochem. Pharmacol., 2009, 77(3), 384-396.
[http://dx.doi.org/10.1016/j.bcp.2008.10.035] [PMID: 19038232]
[65]
Privat, M.; Aubel, C.; Arnould, S.; Communal, Y.; Ferrara, M.; Bignon, Y.J. Breast cancer cell response to genistein is conditioned by BRCA1 mutations. Biochem. Biophys. Res. Commun., 2009, 379(3), 785-789.
[http://dx.doi.org/10.1016/j.bbrc.2008.12.151] [PMID: 19126406]
[66]
Yokosuka, A.; Haraguchi, M.; Usui, T.; Kazami, S.; Osada, H.; Yamori, T.; Mimaki, Y.; Roguin, L.P. Glaziovianin A, a new isoflavone, from the leaves of Ateleia glazioviana and its cytotoxic activity against human cancer cells. Bioorg. Med. Chem. Lett., 2007, 17(11), 3091-3094.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.044] [PMID: 17428663]
[67]
Grazul, M.; Budzisz, E. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord. Chem. Rev., 2009, 253(21-22), 2588-2598.
[http://dx.doi.org/10.1016/j.ccr.2009.06.015]
[68]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612.
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[69]
Tang, L.J.; Chen, X.; Sun, Y.N.; Ye, J.; Lu, J.; Han, Y.; Jiang, X.; Cheng, C.C.; He, C.C.; Qiu, P.H.; Li, X.K. Synthesis and biological studies of 4′, 7, 8-trihydroxy-isoflavone metal complexes. J. Inorg. Biochem., 2011, 105(12), 1623-1629.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.08.019] [PMID: 22071087]
[70]
Chen, X.; Tang, L.J.; Sun, Y.N.; Qiu, P.H.; Liang, G. Syntheses, characterization and antitumor activities of transition metal complexes with isoflavone. J. Inorg. Biochem., 2010, 104(4), 379-384.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.11.008] [PMID: 20015553]
[71]
Kowalski, K.; Koceva-Chyła, A.; Szczupak, Ł.; Hikisz, P.; Bernasińska, J.; Rajnisz, A.; Solecka, J.; Therrien, B. Ferrocenylvinyl-flavones: Synthesis, structure, anticancer and antibacterial activity studies. J. Organomet. Chem., 2013, 741-742, 153-161.
[http://dx.doi.org/10.1016/j.jorganchem.2013.05.009]
[72]
Naso, L.; Ferrer, E.G.; Lezama, L.; Rojo, T.; Etcheverry, S.B.; Williams, P. Role of oxidative stress in the antitumoral action of a new vanadyl(IV) complex with the flavonoid chrysin in two osteoblast cell lines: Relationship with the radical scavenger activity. J. Biol. Inorg. Chem., 2010, 15(6), 889-902.
[http://dx.doi.org/10.1007/s00775-010-0652-z] [PMID: 20364393]
[73]
Dai, F.; Yan, W.J.; Du, Y.T.; Bao, X.Z.; Li, X.Z.; Zhou, B. Structural basis, chemical driving forces and biological implications of flavones as Cu(II) ionophores. Free Radic. Biol. Med., 2017, 108, 554-563.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.023] [PMID: 28431962]
[74]
Marques, J.; Silva, A.M.S.; Marques, M.P.M.; Braga, S.S. Ruthenium(II) trithiacyclononane complexes of 7,3′,4′-trihydroxyflavone, chrysin and tectochrysin: Synthesis, characterisation, and cytotoxic evaluation. Inorg. Chim. Acta, 2019, 488, 71-79.
[http://dx.doi.org/10.1016/j.ica.2019.01.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy