Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Understanding Alzheimer’s Disease and its Metal Chelation Therapeutics: A Narrative Review

Author(s): Ritik Thakur, Ritu Karwasra and Tarana Umar*

Volume 29, Issue 30, 2023

Published on: 19 October, 2023

Page: [2377 - 2386] Pages: 10

DOI: 10.2174/0113816128263992231012113847

Price: $65

Abstract

The neurodegenerative disorders are age-related illnesses that cause the morphology or activity of neurons to deteriorate over time. Alzheimer’s disease is the most frequent neurodegenerative illness in the long run. The rate of advancement might vary, even though it is a progressive neurological illness. Various explanations have been proposed, however the true etiology of Alzheimer’s disease remains unclear. Most pharmacological interventions are based on the cholinergic theory, that is earliest idea. In accordance with the amyloid hypothesis, the buildup of beta-amyloid in brain regions is the primitive cause of illness. There is no proof that any one strategy is useful in avoiding Alzheimer’s disease, though some epidemiological studies have suggested links within various modifiable variables, such as cardiovascular risk, diet and so on. Different metals like zinc, iron, and copper are naturally present in our bodies. In metal chelation therapy drugs are used to jam the metal ions from combining with other molecules in the body. Clioquinol is one of the metal chelation drugs used by researchers. Research on metal chelation is still ongoing. In the present review, we go over the latest developments in prevalence, incidence, etiology, or pathophysiology of our understanding of Alzheimer’s disease. Additionally, a brief discussion on the development of therapeutic chelating agents and their viability as Alzheimer’s disease medication candidates is presented. We also assess the effect of clioquinol as a potential metal chelator.

[1]
Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020; 396(10248): 413-46.
[http://dx.doi.org/10.1016/S0140-6736(20)30367-6] [PMID: 32738937]
[2]
Rodríguez JM, Murphy K, Stanton C, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 2015; 26: 26050.
[PMID: 25651996]
[3]
Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MG. Alzheimer’s disease: Risk factors and potentially protective measures. J Biomed Sci 2019; 26(1): 33.
[http://dx.doi.org/10.1186/s12929-019-0524-y] [PMID: 31072403]
[4]
Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis Model Mech 2017; 10(5): 499-502.
[http://dx.doi.org/10.1242/dmm.030205] [PMID: 28468935]
[5]
Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 2018; 10(4): a033118.
[http://dx.doi.org/10.1101/cshperspect.a033118] [PMID: 28716886]
[6]
Galimberti D, Scarpini E, Eds. Neurodegenerative Diseases. (2nd.), Springer Cham 2018.
[http://dx.doi.org/10.1007/978-3-319-72938-1]
[7]
Chauhan MSS, Umar T, Aulakh MK. Quinolines: Privileged scaffolds for developing new anti-neurodegenerative agents. ChemistrySelect 2023; 8(14): e202204960.
[http://dx.doi.org/10.1002/slct.202204960]
[8]
Kiaei M. New hopes and challenges for treatment of neurodegenerative disorders: Great opportunities for young neuroscientists. Basic Clin Neurosci 2013; 4(1): 3-4.
[PMID: 25337322]
[9]
Blokhuis AM, Groen EJN, Koppers M, van den Berg LH, Pasterkamp RJ. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 2013; 125(6): 777-94.
[http://dx.doi.org/10.1007/s00401-013-1125-6] [PMID: 23673820]
[10]
Lucke-Wold BP, Turner RC, Logsdon AF, Bailes JE, Huber JD, Rosen CL. Linking traumatic brain injury to chronic traumatic encephalopathy: Identification of potential mechanisms leading to neurofibrillary tangle development. J Neurotrauma 2014; 31(13): 1129-38.
[http://dx.doi.org/10.1089/neu.2013.3303] [PMID: 24499307]
[11]
David MA, Tayebi M. Detection of protein aggregates in brain and cerebrospinal fluid derived from multiple sclerosis patients. Front Neurol 2014; 5: 251.
[http://dx.doi.org/10.3389/fneur.2014.00251] [PMID: 25520699]
[12]
Pereira TMC, Coco LZ, Ton AMM, et al. The emerging scenario of the gut-brain axis: The therapeutic actions of the new actor kefir against neurodegenerative diseases. Antioxidants 2021; 10(11): 1845.
[13]
Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018; 154(2): 204-19.
[http://dx.doi.org/10.1111/imm.12922] [PMID: 29513402]
[14]
Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019; 24(8): 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[15]
Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 2006; 443(7113): 780-6.
[http://dx.doi.org/10.1038/nature05291] [PMID: 17051204]
[16]
Bredesen DE, Rao RV, Mehlen P. Cell death in the nervous system. Nature 2006; 443(7113): 796-802.
[http://dx.doi.org/10.1038/nature05293] [PMID: 17051206]
[17]
Umar T, Hoda N. Alzheimer’s disease: A systemic review of substantial therapeutic targets and the leading multi-functional molecules. Curr Top Med Chem 2018; 17(31): 3370-89.
[http://dx.doi.org/10.2174/1568026618666180112161024] [PMID: 29332579]
[18]
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[19]
Wenk GL. Neuropathologic changes in Alzheimer’s disease. J Clin Psychiatry 2003; 64(9) (9): 7-10.
[PMID: 12934968]
[20]
Burns A, Iliffe S. Alzheimer’s disease. BMJ 2009; 338(feb05 1): b158-8.
[http://dx.doi.org/10.1136/bmj.b158] [PMID: 19196745]
[21]
Hong MG, Alexeyenko A, Lambert JC, Amouyel P, Prince JA. Genome-wide pathway analysis implicates intracellular transmembrane protein transport in Alzheimer disease. J Hum Genet 2010; 55(10): 707-9.
[http://dx.doi.org/10.1038/jhg.2010.92] [PMID: 20668461]
[22]
Delrieu J, Ousset PJ, Caillaud C, Vellas B. Retracted: ‘Clinical trials in Alzheimer’s disease’: Immunotherapy approaches. J Neurochem 2012; 120(s1): 186-93.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07458.x] [PMID: 21883222]
[23]
Umar T, Shalini S, Raza MK, et al. A multifunctional therapeutic approach: Synthesis, biological evaluation, crystal structure and molecular docking of diversified 1H-pyrazolo[3,4-b]pyridine derivatives against Alzheimer’s disease. Eur J Med Chem 2019; 175: 2-19.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.038] [PMID: 31055149]
[24]
Umar T, Gusain S, Raza MK, et al. Naphthalene-triazolopyrimidine hybrid compounds as potential multifunctional anti-Alzheimer’s agents. Bioorg Med Chem 2019; 27(14): 3156-66.
[http://dx.doi.org/10.1016/j.bmc.2019.06.004] [PMID: 31176571]
[25]
Umar T, Shalini S, Raza MK, et al. New amyloid beta-disaggregating agents: Synthesis, pharmacological evaluation, crystal structure and molecular docking of N-(4-((7-chloroquinolin-4-yl)oxy)-3-ethoxybenzyl)amines. MedChemComm 2018; 9(11): 1891-904.
[http://dx.doi.org/10.1039/C8MD00312B] [PMID: 30568757]
[26]
Querfurth Henry W, LaFerla Frank M. Alzheimer’s disease. N Engl J Med 2010; 362(4): 329-44.
[27]
Umar T, Meena R, Mustehasan , Kumar P, Khan AA. Recent updates in the development of small molecules as potential clinical candidates for Alzheimer’s disease: A review. Chem Biol Drug Des 2022; 100(5): 674-81.
[http://dx.doi.org/10.1111/cbdd.14133] [PMID: 35996229]
[28]
Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020; 25(24): 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[29]
Gulisano W, Maugeri D, Baltrons MA, et al. Role of amyloid-β and tau proteins in Alzheimer’s disease: Confuting the amyloid cascade. J Alzheimers Dis 2018; 64(s1): S611-31.
[http://dx.doi.org/10.3233/JAD-179935] [PMID: 29865055]
[30]
Tackenberg C, Kulic L, Nitsch RM. Familial Alzheimer’s disease mutations at position 22 of the amyloid β-peptide sequence differentially affect synaptic loss, tau phosphorylation and neuronal cell death in an ex vivo system. PLoS One 2020; 15(9): e0239584.
[http://dx.doi.org/10.1371/journal.pone.0239584] [PMID: 32966331]
[31]
Mudher A, Lovestone S. Alzheimer’s disease: Do tauists and baptists finally shake hands? Trends Neurosci 2002; 25(1): 22-6.
[http://dx.doi.org/10.1016/S0166-2236(00)02031-2] [PMID: 11801334]
[32]
Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 1991; 12(10): 383-8.
[http://dx.doi.org/10.1016/0165-6147(91)90609-V] [PMID: 1763432]
[33]
Goedert M, Spillantini MG, Crowther RA. Tau proteins and neurofibrillary degeneration. Brain Pathol 1991; 1(4): 279-86.
[http://dx.doi.org/10.1111/j.1750-3639.1991.tb00671.x] [PMID: 1669718]
[34]
Long JM, Holtzman DM. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019; 179(2): 312-39.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[35]
Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci 2006; 103(15): 5644-51.
[http://dx.doi.org/10.1073/pnas.0600549103] [PMID: 16567625]
[36]
Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 2006; 368(9533): 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[37]
Mendez MF. The accurate diagnosis of early-onset dementia. Int J Psychiatry Med 2006; 36(4): 401-12.
[http://dx.doi.org/10.2190/Q6J4-R143-P630-KW41] [PMID: 17407994]
[38]
Klafki HW, Staufenbiel M, Kornhuber J, Wiltfang J. Therapeutic approaches to Alzheimer’s disease. Brain 2006; 129(11): 2840-55.
[http://dx.doi.org/10.1093/brain/awl280] [PMID: 17018549]
[39]
Weller J, Budson A. Current understanding of Alzheimer's disease diagnosis and treatment. F1000Research 2018; 7: 1161.
[40]
Fasae KD, Abolaji AO, Faloye TR, et al. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer’s disease: Limitations, and current and future perspectives. J Trace Elem Med Biol 2021; 67: 126779.
[http://dx.doi.org/10.1016/j.jtemb.2021.126779] [PMID: 34034029]
[41]
Hsu D, Marshall GA. Primary and secondary prevention trials in Alzheimer disease: Looking back, moving forward. Curr Alzheimer Res 2017; 14(4): 426-40.
[http://dx.doi.org/10.2174/1567205013666160930112125] [PMID: 27697063]
[42]
Patterson C, Feightner JW, Garcia A, Hsiung GYR, MacKnight C, Sadovnick AD. Diagnosis and treatment of dementia: 1. Risk assessment and primary prevention of Alzheimer disease. CMAJ 2008; 178(5): 548-56.
[http://dx.doi.org/10.1503/cmaj.070796] [PMID: 18299540]
[43]
Ding J, Davis-Plourde KL, Sedaghat S, et al. Antihypertensive medications and risk for incident dementia and Alzheimer’s disease: A meta-analysis of individual participant data from prospective cohort studies. Lancet Neurol 2020; 19(1): 61-70.
[http://dx.doi.org/10.1016/S1474-4422(19)30393-X] [PMID: 31706889]
[44]
Dominguez LJ, Barbagallo M. Nutritional prevention of cognitive decline and dementia. Acta Biomed 2018; 89(2): 276-90.
[PMID: 29957766]
[45]
Basics of Alzheimer’s disease and dementia: What do we know about diet and prevention of Alzheimer's disease? Available from: nia.nih.gov (updated 2019 Nov 27; cited 16 Aug 23).
[46]
Kirchhoff BA, Lugar HM, Smith SE, et al. Hypoglycaemia-induced changes in regional brain volume and memory function. Diabet Med 2013; 30(4): e151-6.
[http://dx.doi.org/10.1111/dme.12135] [PMID: 23330574]
[47]
Canevelli M, Lucchini F, Quarata F, Bruno G, Cesari M. Nutrition and dementia: Evidence for preventive approaches? Nutrients 2016; 8(3): 144.
[http://dx.doi.org/10.3390/nu8030144] [PMID: 26959055]
[48]
Budimir A. Metal ions, Alzheimer’s disease and chelation therapy. Acta Pharm 2011; 61(1): 1-14.
[http://dx.doi.org/10.2478/v10007-011-0006-6] [PMID: 21406339]
[49]
Wärmländer SKTS, Österlund N, Wallin C, et al. Metal binding to the amyloid-β peptides in the presence of biomembranes: Potential mechanisms of cell toxicity. J Biol Inorg Chem 2019; 24(8): 1189-96.
[http://dx.doi.org/10.1007/s00775-019-01723-9] [PMID: 31562546]
[50]
Drew SC. The case for abandoning therapeutic chelation of copper ions in Alzheimer’s disease. Front Neurosci 2017; 11: 317.
[http://dx.doi.org/10.3389/fnins.2017.00317] [PMID: 28626387]
[51]
Liu Y, Nguyen M, Robert A, Meunier B. Metal ions in Alzheimer’s disease: A key role or not? Acc Chem Res 2019; 52(7): 2026-35.
[http://dx.doi.org/10.1021/acs.accounts.9b00248] [PMID: 31274278]
[52]
Robert A, Liu Y, Nguyen M, Meunier B. Regulation of copper and iron homeostasis by metal chelators: A possible chemotherapy for Alzheimer’s disease. Acc Chem Res 2015; 48(5): 1332-9.
[http://dx.doi.org/10.1021/acs.accounts.5b00119] [PMID: 25946460]
[53]
Singh I, Sagare AP, Coma M, et al. Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance. Proc Natl Acad Sci 2013; 110(36): 14771-6.
[http://dx.doi.org/10.1073/pnas.1302212110] [PMID: 23959870]
[54]
Ward RJ, Dexter DT, Crichton RR. Neurodegenerative diseases and therapeutic strategies using iron chelators. J Trace Elem Med Biol 2015; 31: 267-73.
[http://dx.doi.org/10.1016/j.jtemb.2014.12.012] [PMID: 25716300]
[55]
Xiong Y, Jing XP, Zhou XW, et al. Zinc induces protein phosphatase 2A inactivation and tau hyperphosphorylation through Src dependent PP2A (tyrosine 307) phosphorylation. Neurobiol Aging 2013; 34(3): 745-56.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.07.003] [PMID: 22892311]
[56]
Hegde ML, Bharathi P, Suram A, et al. Challenges associated with metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis 2009; 17(3): 457-68.
[http://dx.doi.org/10.3233/JAD-2009-1068] [PMID: 19363258]
[57]
Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 1998; 158(1): 47-52.
[http://dx.doi.org/10.1016/S0022-510X(98)00092-6] [PMID: 9667777]
[58]
Filiz G, Price KA, Caragounis A, Du T, Crouch PJ, White AR. The role of metals in modulating metalloprotease activity in the AD brain. Eur Biophys J 2008; 37(3): 315-21.
[http://dx.doi.org/10.1007/s00249-007-0244-1] [PMID: 18270696]
[59]
Finefrock AE, Bush AI, Doraiswamy PM. Current status of metals as therapeutic targets in Alzheimer’s disease. J Am Geriatr Soc 2003; 51(8): 1143-8.
[http://dx.doi.org/10.1046/j.1532-5415.2003.51368.x] [PMID: 12890080]
[60]
Zatta P, Lucchini R, van Rensburg SJ, Taylor A. The role of metals in neurodegenerative processes: Aluminum, manganese, and zinc. Brain Res Bull 2003; 62(1): 15-28.
[http://dx.doi.org/10.1016/S0361-9230(03)00182-5] [PMID: 14596888]
[61]
Di Vaira M, Bazzicalupi C, Orioli P, Messori L, Bruni B, Zatta P. Clioquinol, a drug for Alzheimer’s disease specifically interfering with brain metal metabolism: Structural characterization of its zinc(II) and copper(II) complexes. Inorg Chem 2004; 43(13): 3795-7.
[http://dx.doi.org/10.1021/ic0494051] [PMID: 15206857]
[62]
Rosenberg RN. Metal chelation therapy for Alzheimer disease. Arch Neurol 2003; 60(12): 1678-9.
[http://dx.doi.org/10.1001/archneur.60.12.1678] [PMID: 14676040]
[63]
Dairam A, Limson JL, Watkins GM, Antunes E, Daya S. Curcuminoids, curcumin, and demethoxycurcumin reduce lead-induced memory deficits in male Wistar rats. J Agric Food Chem 2007; 55(3): 1039-44.
[http://dx.doi.org/10.1021/jf063446t] [PMID: 17263510]
[64]
Joseph JA, Shukitt-Hale B, Casadesus G. Reversing the deleterious effects of aging on neuronal communication and behavior: Beneficial properties of fruit polyphenolic compounds. Am J Clin Nutr 2005; 81(1) (Suppl.): 313S-6S.
[http://dx.doi.org/10.1093/ajcn/81.1.313S] [PMID: 15640496]
[65]
Budimir A, Humbert N, Elhabiri M, Osinska I, Biruš M, Albrecht- Gary AM. Hydroxyquinoline based binders: Promising ligands for chelatotherapy? J Inorg Biochem 2011; 105(3): 490-6.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.08.014] [PMID: 20926137]
[66]
Bush AI, Tanzi RE. Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics 2008; 5(3): 421-32.
[http://dx.doi.org/10.1016/j.nurt.2008.05.001] [PMID: 18625454]
[67]
Braymer JJ, Choi JS, DeToma AS, et al. Development of bifunctional stilbene derivatives for targeting and modulating metal-amyloid-β species. Inorg Chem 2011; 50(21): 10724-34.
[http://dx.doi.org/10.1021/ic2012205] [PMID: 21954910]
[68]
Santos MA, Chand K, Chaves S. Recent progress in multifunctional metal chelators as potential drugs for Alzheimer’s disease. Coord Chem Rev 2016; 327-328: 287-303.
[http://dx.doi.org/10.1016/j.ccr.2016.04.013]
[69]
Xu P, Zhang M, Sheng R, Ma Y. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ1–42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. Eur J Med Chem 2017; 127: 174-86.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.045] [PMID: 28061347]
[70]
Li SY, Wang XB, Kong LY. Design, synthesis and biological evaluation of imine resveratrol derivatives as multi-targeted agents against Alzheimer’s disease. Eur J Med Chem 2014; 71: 36-45.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.068] [PMID: 24269515]
[71]
Geng J, Li M, Wu L, Ren J, Qu X. Liberation of copper from amyloid plaques: Making a risk factor useful for Alzheimer’s disease treatment. J Med Chem 2012; 55(21): 9146-55.
[http://dx.doi.org/10.1021/jm3003813] [PMID: 22663067]
[72]
Zhang Y, Chen LY, Yin WX, Yin J, Zhang SB, Liu CL. The chelation targeting metal–Aβ40 aggregates may lead to formation of Aβ40 oligomers. Dalton Trans 2011; 40(18): 4830-3.
[http://dx.doi.org/10.1039/c1dt00020a] [PMID: 21437337]
[73]
Rodríguez-Rodríguez C, Telpoukhovskaia MA, Alí-Torres J, et al. Thioflavin-based molecular probes for application in Alzheimer’s disease: From in silico to in vitro models. Metallomics 2015; 7(1): 83-92.
[http://dx.doi.org/10.1039/C4MT00167B] [PMID: 25325557]
[74]
Jones MR, Mu C, Wang MCP, Webb MI, Walsby CJ, Storr T. Modulation of the Aβ peptide aggregation pathway by KP1019 limits Aβ-associated neurotoxicity. Metallomics 2015; 7(1): 129-35.
[http://dx.doi.org/10.1039/C4MT00252K] [PMID: 25387614]
[75]
Sun Q, Peng DY, Yang SG, Zhu XL, Yang WC, Yang GF. Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase. Bioorg Med Chem 2014; 22(17): 4784-91.
[http://dx.doi.org/10.1016/j.bmc.2014.06.057] [PMID: 25088549]
[76]
Huang M, Xie SS, Jiang N, Lan JS, Kong LY, Wang XB. Multifunctional coumarin derivatives: Monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s disease. Bioorg Med Chem Lett 2015; 25(3): 508-13.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.034] [PMID: 25542589]
[77]
Xie S, Chen J, Li X, et al. Synthesis and evaluation of selegiline derivatives as monoamine oxidase inhibitor, antioxidant and metal chelator against Alzheimer’s disease. Bioorg Med Chem 2015; 23(13): 3722-9.
[http://dx.doi.org/10.1016/j.bmc.2015.04.009] [PMID: 25934229]
[78]
Bush AI. Metal complexing agents as therapies for Alzheimer’s disease. Neurobiol Aging 2002; 23(6): 1031-8.
[http://dx.doi.org/10.1016/S0197-4580(02)00120-3] [PMID: 12470799]
[79]
Cherny RA, Atwood CS, Xilinas ME, et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 2001; 30(3): 665-76.
[http://dx.doi.org/10.1016/S0896-6273(01)00317-8] [PMID: 11430801]
[80]
Ritchie CW, Bush AI, Mackinnon A, et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial. Arch Neurol 2003; 60(12): 1685-91.
[http://dx.doi.org/10.1001/archneur.60.12.1685] [PMID: 14676042]
[81]
Tateishi J. Subacute myelo-optico-neuropathy: Clioquinol intoxication in humans and animals. Neuropathology 2000; 20(s1) (Suppl.): 20-4.
[http://dx.doi.org/10.1046/j.1440-1789.2000.00296.x] [PMID: 11037182]
[82]
Yassin MS, Ekblom J, Xilinas M, Gottfries CG, Oreland L. Changes in uptake of vitamin B12 and trace metals in brains of mice treated with clioquinol. J Neurol Sci 2000; 173(1): 40-4.
[http://dx.doi.org/10.1016/S0022-510X(99)00297-X] [PMID: 10675578]
[83]
Wagner CC, Calvo S, Torre MH, Baran EJ. Vibrational spectra of clioquinol and its Cu(II) complex. J Raman Spectrosc 2007; 38(4): 373-6.
[http://dx.doi.org/10.1002/jrs.1654]
[84]
Cherny RA, Legg JT, McLean CA, et al. Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion. J Biol Chem 1999; 274(33): 23223-8.
[http://dx.doi.org/10.1074/jbc.274.33.23223] [PMID: 10438495]
[85]
Kaur D, Yantiri F, Rajagopalan S, et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo : A novel therapy for Parkinson’s disease. Neuron 2003; 37(6): 899-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00126-0] [PMID: 12670420]
[86]
Grossi C, Francese S, Casini A, et al. Clioquinol decreases amyloid-beta burden and reduces working memory impairment in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 2009; 17(2): 423-40.
[http://dx.doi.org/10.3233/JAD-2009-1063] [PMID: 19363260]
[87]
Lannfelt L, Blennow K, Zetterberg H, et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: A phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 2008; 7(9): 779-86.
[http://dx.doi.org/10.1016/S1474-4422(08)70167-4] [PMID: 18672400]
[88]
Adlard PA, Cherny RA, Finkelstein DI, et al. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron 2008; 59(1): 43-55.
[http://dx.doi.org/10.1016/j.neuron.2008.06.018] [PMID: 18614028]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy