Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Management of Colorectal Cancer Using Nanocarriers-based Drug Delivery for Herbal Bioactives: Current and Emerging Approaches

Author(s): Rohitas Deshmukh*, Mahendra Prajapati and Ranjit K. Harwansh

Volume 25, Issue 5, 2024

Published on: 18 October, 2023

Page: [599 - 622] Pages: 24

DOI: 10.2174/0113892010242028231002075512

Price: $65

Abstract

Colorectal cancer (CRC) is a complex and multifactorial disorder in middle-aged people. Several modern medicines are available for treating and preventing it. However, their therapeutic uses are limited due to drawbacks, such as gastric perforation, diarrhea, intestinal bleeding, abdominal cramps, hair loss, nausea, vomiting, weight loss, and adverse reactions. Hence, there is a continuous quest for safe and effective medicines to manage human health problems, like CRC. In this context, herbal medicines are considered an alternative disease control system. It has become popular in countries, like American, European, and Asian, due to its safety and effectiveness, which has been practiced for 1000 years. During the last few decades, herbal medicines have been widely explored through multidisciplinary fields for getting active compounds against human diseases. Several herbal bioactives, like curcumin, glycyrrhizin, paclitaxel, chlorogenic acid, gallic acid, catechin, berberine, ursolic acid, betulinic acid, chrysin, resveratrol, quercetin, etc., have been found to be effective against CRC. However, their pharmacological applications are limited due to low bioavailability and therapeutic efficacy apart from their several health benefits. An effective delivery system is required to increase their bioavailability and efficacy. Therefore, targeted novel drug delivery approaches are promising for improving these substances’ solubility, bioavailability, and therapeutic effects. Novel carrier systems, such as liposomes, nanoparticles, micelles, microspheres, dendrimers, microbeads, and hydrogels, are promising for delivering poorly soluble drugs to the target site, i.e., the colon. Thus, the present review is focused on the pathophysiology, molecular pathways, and diagnostic and treatment approaches for CRC. Moreover, an emphasis has been laid especially on herbal bioactive-based novel delivery systems and their clinical updates.

Graphical Abstract

[1]
You, X.; Kang, Y.; Hollett, G.; Chen, X.; Zhao, W.; Gu, Z.; Wu, J. Polymeric nanoparticles for colon cancer therapy: Overview and perspectives. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(48), 7779-7792.
[http://dx.doi.org/10.1039/C6TB01925K] [PMID: 32263770]
[2]
Harwansh, R.K.; Deshmukh, R. Breast cancer: An insight into its inflammatory, molecular, pathological and targeted facets with update on investigational drugs. Crit. Rev. Oncol. Hematol., 2020, 154, 103070.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103070] [PMID: 32871325]
[3]
Aiello, P.; Sharghi, M.; Mansourkhani, S.M.; Ardekan, A.P.; Jouybari, L.; Daraei, N.; Peiro, K.; Mohamadian, S.; Rezaei, M.; Heidari, M.; Peluso, I.; Ghorat, F.; Bishayee, A.; Kooti, W. Medicinal plants in the prevention and treatment of colon cancer. Oxid. Med. Cell. Longev., 2019, 2019, 1-51.
[http://dx.doi.org/10.1155/2019/2075614] [PMID: 32377288]
[4]
Garg, A.; Chaturvedi, S. A comprehensive review on chrysin: Emphasis on molecular targets, pharmacological actions and bio-pharmaceutical aspects. Curr. Drug Targets, 2022, 23(4), 420-436.
[http://dx.doi.org/10.2174/1389450122666210824141044] [PMID: 34431464]
[5]
Gupta, J.; Gupta, R.; Varshney, B. Green approaches of flavonoids in cancer: Chemistry, applications, management, healthcare and future perspectives. J. Pharm. Res. Int., 2021, 33, 130-143.
[http://dx.doi.org/10.9734/jpri/2021/v33i59A34257]
[6]
Khan, T.; Gurav, P. PhytoNanotechnology: Enhancing delivery of plant based anti-cancer drugs. Front. Pharmacol., 2018, 8, 1002.
[http://dx.doi.org/10.3389/fphar.2017.01002] [PMID: 29479316]
[7]
Gupta, J.; Ahuja, A.; Gupta, R. Green approaches for cancers management: An effective tool for health care. Anticancer. Agents Med. Chem., 2021, 22(1), 101-114.
[http://dx.doi.org/10.2174/1871520621666210119091826] [PMID: 33463475]
[8]
Rahman, M.; Zaki Ahmad, M.; Kazmi, I.; Akhter, S.; Afzal, M.; Gupta, G.; Ranjan, S.V. Emergence of nanomedicine as cancer targeted magic bullets: recent development and need to address the toxicity apprehension. Curr. Drug Discov. Technol., 2012, 9(4), 319-329.
[http://dx.doi.org/10.2174/157016312803305898] [PMID: 22725687]
[9]
Rahman, M.; Ahmad, M.Z.; Kazmi, I.; Akhter, S.; Afzal, M.; Gupta, G.; Jalees Ahmed, F.; Anwar, F. Advancement in multifunctional nanoparticles for the effective treatment of cancer. Expert Opin. Drug Deliv., 2012, 9(4), 367-381.
[http://dx.doi.org/10.1517/17425247.2012.668522] [PMID: 22400808]
[10]
Ahmad, J.; Akhter, S.; Rizwanullah, M.; Amin, S.; Rahman, M.; Ahmad, M.Z.; Rizvi, M.A.; Kamal, M.A.; Ahmad, F.J. Nanotechnology-based inhalation treatments for lung cancer: State of the art. Nanotechnol. Sci. Appl., 2015, 8, 55-66.
[PMID: 26640374]
[11]
Lodhi, M.S.; Khan, M.T.; Aftab, S.; Samra, Z.Q.; Wang, H.; Wei, D.Q. A novel formulation of theranostic nanomedicine for targeting drug delivery to gastrointestinal tract cancer. Cancer Nanotechnol., 2021, 12(1), 26.
[http://dx.doi.org/10.1186/s12645-021-00098-4]
[12]
Chaturvedi, S.; Pathak, K. Nanoparticulate systems and their translation potential for breast cancer therapeutics. In: Advanced Drug Delivery Systems in the Management of Cancer; Dua, K.; Mehta, M.; de Jesus, A.P.I.; Pont, LG; Williams, KA; Rathbone, MJ, Eds.; Academic Press, 2021; pp. 299-318.
[13]
Harwansh, R.K.; Deshmukh, R.; Rahman, M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol., 2019, 51, 224-233.
[http://dx.doi.org/10.1016/j.jddst.2019.03.006]
[14]
Shin, S-A.; Moon, S.Y.; Kim, W-Y.; Paek, S-M.; Park, H.H.; Lee, C.S. Structure-based classification and anti-cancer effects of plant metabolites. Int J Mol Sci, 2018, 19, 2651.
[15]
Sharma, A.; Sharma, P.; Tuli, H.S.; Sharma, A. Phytochemical and pharmacological properties of flavonols. In: Encyclopedia of Life Sciences; John Wiley & Sons, 2018; pp. 1-12.
[http://dx.doi.org/10.1002/9780470015902.a0027666]
[16]
Aneja, P.; Rahman, M.; Beg, S.; Aneja, S.; Dhingra, V.; Chugh, R. Cancer targeted magic bullets for effective treatment of cancer. Recent Patents Anti-Infect. Drug Disc., 2015, 9(2), 121-135.
[http://dx.doi.org/10.2174/1574891X10666150415120506] [PMID: 25876849]
[17]
Mishra, B.; Chaurasia, S. Design of novel chemotherapeutic delivery systems for colon cancer therapy based on oral polymeric nanoparticles. Ther. Deliv., 2017, 8(1), 29-47.
[http://dx.doi.org/10.4155/tde-2016-0058] [PMID: 27982736]
[18]
Tiwari, A.; Saraf, S.; Jain, A.; Panda, P.K.; Verma, A.; Jain, S.K. Basics to advances in nanotherapy of colorectal cancer. Drug Deliv. Transl. Res., 2020, 10(2), 319-338.
[http://dx.doi.org/10.1007/s13346-019-00680-9] [PMID: 31701486]
[19]
Pino, M.S.; Chung, D.C. The chromosomal instability pathway in colon cancer. Gastroenterology, 2010, 138(6), 2059-2072.
[http://dx.doi.org/10.1053/j.gastro.2009.12.065] [PMID: 20420946]
[20]
Matsuzaki, K.; Deng, G.; Tanaka, H.; Kakar, S.; Miura, S.; Kim, Y.S. The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin. Cancer Res., 2005, 11(24), 8564-8569.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0859] [PMID: 16361538]
[21]
Bienz, M.; Clevers, H. Linking colorectal cancer to Wnt signaling. Cell, 2000, 103(2), 311-320.
[http://dx.doi.org/10.1016/S0092-8674(00)00122-7] [PMID: 11057903]
[22]
Fodde, R.; Smits, R.; Clevers, H. APC, Signal transduction and genetic instability in colorectal cancer. Nat. Rev. Cancer, 2001, 1(1), 55-67.
[http://dx.doi.org/10.1038/35094067] [PMID: 11900252]
[23]
Lemieux, E.; Cagnol, S.; Beaudry, K.; Carrier, J.; Rivard, N. Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene, 2015, 34(38), 4914-4927.
[http://dx.doi.org/10.1038/onc.2014.416] [PMID: 25500543]
[24]
Scott, N.; Sagar, P.; Stewart, J.; Blair, G.E.; Dixon, M.F.; Quirke, P. p53 in colorectal cancer: Clinicopathological correlation and prognostic significance. Br. J. Cancer, 1991, 63(2), 317-319.
[http://dx.doi.org/10.1038/bjc.1991.74] [PMID: 1997114]
[25]
Smith, G.; Carey, F.A.; Beattie, J.; Wilkie, M.J.V.; Lightfoot, T.J.; Coxhead, J.; Garner, R.C.; Steele, R.J.C.; Wolf, C.R. Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer. Proc. Natl. Acad. Sci., 2002, 99(14), 9433-9438.
[http://dx.doi.org/10.1073/pnas.122612899] [PMID: 12093899]
[26]
Geiersbach, K.B.; Samowitz, W.S. Microsatellite instability and colorectal cancer. Arch. Pathol. Lab. Med., 2011, 135(10), 1269-1277.
[http://dx.doi.org/10.5858/arpa.2011-0035-RA] [PMID: 21970482]
[27]
Armaghany, T.; Wilson, J.D.; Chu, Q.; Mills, G. Genetic alterations in colorectal cancer. Gastrointest. Cancer Res., 2012, 5(1), 19-27.
[PMID: 22574233]
[28]
Kuismanen, S.A.; Holmberg, M.T.; Salovaara, R.; de la Chapelle, A.; Peltomäki, P. Genetic and epigenetic modification of MLH1 accounts for a major share of microsatellite-unstable colorectal cancers. Am. J. Pathol., 2000, 156(5), 1773-1779.
[http://dx.doi.org/10.1016/S0002-9440(10)65048-1] [PMID: 10793088]
[29]
Parsons, R.; Myeroff, L.L.; Liu, B.; Willson, J.K.; Markowitz, S.D.; Kinzler, K.W.; Vogelstein, B. Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res., 1995, 55(23), 5548-5550.
[PMID: 7585632]
[30]
Sinicrope, F.A.; Sargent, D.J. Molecular pathways: Microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications. Clin. Cancer Res., 2012, 18(6), 1506-1512.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1469] [PMID: 22302899]
[31]
Mundade, R.; Imperiale, T.F.; Prabhu, L.; Loehrer, P.J.; Lu, T. Genetic pathways, prevention, and treatment of sporadic colorectal cancer. Oncoscience, 2014, 1(6), 400-406.
[http://dx.doi.org/10.18632/oncoscience.59] [PMID: 25594038]
[32]
Chung, D.C. The genetic basis of colorectal cancer: Insights into critical pathways of tumorigenesis. Gastroenterology, 2000, 119(3), 854-865.
[http://dx.doi.org/10.1053/gast.2000.16507] [PMID: 10982779]
[33]
Murphy, K.M.; Zhang, S.; Geiger, T.; Hafez, M.J.; Bacher, J.; Berg, K.D.; Eshleman, J.R. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J. Mol. Diagn., 2006, 8(3), 305-311.
[http://dx.doi.org/10.2353/jmoldx.2006.050092] [PMID: 16825502]
[34]
Imai, K.; Yamamoto, H. Carcinogenesis and microsatellite instability: The interrelationship between genetics and epigenetics. Carcinogenesis, 2008, 29(4), 673-680.
[http://dx.doi.org/10.1093/carcin/bgm228] [PMID: 17942460]
[35]
Copija, A.; Waniczek, D.; Witkoś, A.; Walkiewicz, K.; Nowakowska-Zajdel, E. Clinical significance and prognostic relevance of microsatellite instability in sporadic colorectal cancer patients. Int. J. Mol. Sci., 2017, 18(1), 107.
[http://dx.doi.org/10.3390/ijms18010107] [PMID: 28067827]
[36]
Toyota, M.; Issa, J.P.J. CpG island methylator phenotypes in aging and cancer. Semin. Cancer Biol., 1999, 9(5), 349-357.
[http://dx.doi.org/10.1006/scbi.1999.0135] [PMID: 10547343]
[37]
Samowitz, W.S.; Albertsen, H.; Sweeney, C.; Herrick, J.; Caan, B.J.; Anderson, K.E.; Wolff, R.K.; Slattery, M.L. Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer. J. Natl. Cancer Inst., 2006, 98(23), 1731-1738.
[http://dx.doi.org/10.1093/jnci/djj468] [PMID: 17148775]
[38]
Toyota, M.; Ahuja, N.; Ohe-Toyota, M.; Herman, J.G.; Baylin, S.B.; Issa, J.P.J. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci., 1999, 96(15), 8681-8686.
[http://dx.doi.org/10.1073/pnas.96.15.8681] [PMID: 10411935]
[39]
Weisenberger, D.J.; Siegmund, K.D.; Campan, M.; Young, J.; Long, T.I.; Faasse, M.A.; Kang, G.H.; Widschwendter, M.; Weener, D.; Buchanan, D.; Koh, H.; Simms, L.; Barker, M.; Leggett, B.; Levine, J.; Kim, M.; French, A.J.; Thibodeau, S.N.; Jass, J.; Haile, R.; Laird, P.W. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet., 2006, 38(7), 787-793.
[http://dx.doi.org/10.1038/ng1834] [PMID: 16804544]
[40]
Nosho, K.; Irahara, N.; Shima, K.; Kure, S.; Kirkner, G.J.; Schernhammer, E.S.; Hazra, A.; Hunter, D.J.; Quackenbush, J.; Spiegelman, D.; Giovannucci, E.L.; Fuchs, C.S.; Ogino, S. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One, 2008, 3(11), e3698.
[http://dx.doi.org/10.1371/journal.pone.0003698] [PMID: 19002263]
[41]
Jover, R.; Nguyen, T.P.; Pérez-Carbonell, L.; Zapater, P.; Payá, A.; Alenda, C.; Rojas, E.; Cubiella, J.; Balaguer, F.; Morillas, J.D.; Clofent, J.; Bujanda, L.; Reñé, J.M.; Bessa, X.; Xicola, R.M.; Nicolás-Pérez, D.; Castells, A.; Andreu, M.; Llor, X.; Boland, C.R.; Goel, A. 5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer. Gastroenterology, 2011, 140(4), 1174-1181.
[http://dx.doi.org/10.1053/j.gastro.2010.12.035] [PMID: 21185836]
[42]
East, J.E.; Saunders, B.P.; Jass, J.R. Sporadic and syndromic hyperplastic polyps and serrated adenomas of the colon: classification, molecular genetics, natural history, and clinical management. Gastroenterol. Clin. North Am., 2008, 37(1), 25-46, v.
[http://dx.doi.org/10.1016/j.gtc.2007.12.014] [PMID: 18313538]
[43]
Noffsinger, A.E. Serrated polyps and colorectal cancer: New pathway to malignancy. Annu. Rev. Pathol., 2009, 4(1), 343-364.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092317] [PMID: 19400693]
[44]
Nobili, S.; Lippi, D.; Witort, E.; Donnini, M.; Bausi, L.; Mini, E.; Capaccioli, S. Natural compounds for cancer treatment and prevention. Pharmacol. Res., 2009, 59(6), 365-378.
[http://dx.doi.org/10.1016/j.phrs.2009.01.017] [PMID: 19429468]
[45]
Pan, M.H.; Lai, C.S.; Wu, J.C.; Ho, C.T. Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Mol. Nutr. Food Res., 2011, 55(1), 32-45.
[http://dx.doi.org/10.1002/mnfr.201000412] [PMID: 21207511]
[46]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers, 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[47]
Singh, C.K.; George, J.; Ahmad, N. Resveratrol-based combinatorial strategies for cancer management. Ann. N. Y. Acad. Sci., 2013, 1290(1), 113-121.
[http://dx.doi.org/10.1111/nyas.12160] [PMID: 23855473]
[48]
Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul., 1984, 22, 27-55.
[http://dx.doi.org/10.1016/0065-2571(84)90007-4] [PMID: 6382953]
[49]
Redondo-Blanco, S.; Fernández, J.; Gutiérrez-del-Río, I.; Villar, C.J.; Lombó, F. New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front. Pharmacol., 2017, 8, 109.
[http://dx.doi.org/10.3389/fphar.2017.00109] [PMID: 28352231]
[50]
Tong, Y.; Liu, Y.; Zheng, H.; Zheng, L.; Liu, W.; Wu, J.; Ou, R.; Zhang, G.; Li, F.; Hu, M.; Liu, Z.; Lu, L. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget, 2016, 7(21), 31413-31428.
[http://dx.doi.org/10.18632/oncotarget.8920] [PMID: 27119499]
[51]
Krishna, S.; Ganapathi, S.; Ster, I.C.; Saeed, M.E.M.; Cowan, M.; Finlayson, C.; Kovacsevics, H.; Jansen, H.; Kremsner, P.G.; Efferth, T.; Kumar, D. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine, 2015, 2(1), 82-90.
[http://dx.doi.org/10.1016/j.ebiom.2014.11.010] [PMID: 26137537]
[52]
Liu, Z.L.; Liu, Q.R.; Chu, S.S.; Jiang, G.H. Insecticidal activity and chemical composition of the essential oils of Artemisia lavandulaefolia and Artemisia sieversiana from China. Chem. Biodivers., 2010, 7(8), 2040-2045.
[http://dx.doi.org/10.1002/cbdv.200900410] [PMID: 20730967]
[53]
Yue, G.G.L.; Kwok, H.F.; Lee, J.K.M.; Jiang, L.; Wong, E.C.W.; Gao, S.; Wong, H.L.; Li, L.; Chan, K.M.; Leung, P.C.; Fung, K.P.; Zuo, Z.; Lau, C.B.S. Combined therapy using bevacizumab and turmeric ethanolic extract (with absorbable curcumin) exhibited beneficial efficacy in colon cancer mice. Pharmacol. Res., 2016, 111, 43-57.
[http://dx.doi.org/10.1016/j.phrs.2016.05.025] [PMID: 27241019]
[54]
Dimas, K.; Tsimplouli, C.; Houchen, C.; Pantazis, P.; Sakellaridis, N.; Tsangaris, G.T.; Anastasiadou, E.; Ramanujam, R.P. An ethanol extract of hawaiian turmeric: Extensive in vitro anticancer activity against human colon cancer cells. Altern. Ther. Health Med., 2015, 21(S2), 46-54.
[PMID: 26308760]
[55]
Carvalho, M.; Silva, B.M.; Silva, R.; Valentão, P.; Andrade, P.B.; Bastos, M.L. First report on Cydonia oblonga Miller anticancer potential: differential antiproliferative effect against human kidney and colon cancer cells. J. Agric. Food Chem., 2010, 58(6), 3366-3370.
[http://dx.doi.org/10.1021/jf903836k] [PMID: 20192210]
[56]
Chan, C.K.; Supriady, H.; Goh, B.H.; Kadir, H.A. Elephantopus scaber induces apoptosis through ROS-dependent mitochondrial signaling pathway in HCT116 human colorectal carcinoma cells. J. Ethnopharmacol., 2015, 168, 291-304.
[http://dx.doi.org/10.1016/j.jep.2015.03.072] [PMID: 25861953]
[57]
Charepalli, V.; Reddivari, L.; Vadde, R.; Walia, S.; Radhakrishnan, S.; Vanamala, J. Eugenia jambolana (Java Plum) fruit extract exhibits anti-cancer activity against early stage human hct-116 colon cancer cells and colon cancer stem cells. Cancers., 2016, 8(3), 29.
[http://dx.doi.org/10.3390/cancers8030029] [PMID: 26927179]
[58]
Hajiaghaalipour, F.; Kanthimathi, M.S.; Sanusi, J.; Rajarajeswaran, J. White tea (Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage. Food Chem., 2015, 169, 401-410.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.005] [PMID: 25236244]
[59]
Jung, Y.D.; Kim, M.S.; Shin, B.A.; Chay, K.O.; Ahn, B.W.; Liu, W.; Bucana, C.D.; Gallick, G.E.; Ellis, L.M. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br. J. Cancer, 2001, 84(6), 844-850.
[http://dx.doi.org/10.1054/bjoc.2000.1691] [PMID: 11259102]
[60]
Sun, J.; Zhang, X.; Sun, Y.; Tang, Z.S.; Guo, D.Y. Effects of Hylomecon vernalis ethanol extracts on cell cycle and apoptosis of colon cancer cells. Mol. Med. Rep., 2017, 15(6), 3485-3492.
[http://dx.doi.org/10.3892/mmr.2017.6426] [PMID: 28393197]
[61]
Kwok, A.H.Y.; Wang, Y.; Ho, W.S. Cytotoxic and pro-oxidative effects of Imperata cylindrica aerial part ethyl acetate extract in colorectal cancer in vitro. Phytomedicine, 2016, 23(5), 558-565.
[http://dx.doi.org/10.1016/j.phymed.2016.02.015] [PMID: 27064015]
[62]
Krifa, M.; Pizzi, A.; Mousli, M.; Chekir-Ghedira, L.; Leloup, L.; Ghedira, K. Limoniastrum guyonianum aqueous gall extract induces apoptosis in colorectal cancer cells by inhibiting calpain activity. Tumour Biol., 2014, 35(8), 7877-7885.
[http://dx.doi.org/10.1007/s13277-014-1993-y] [PMID: 24828012]
[63]
Zeriouh, W.; Nani, A.; Belarbi, M.; Dumont, A.; de Rosny, C.; Aboura, I.; Ghanemi, F.Z.; Murtaza, B.; Patoli, D.; Thomas, C.; Apetoh, L.; Rébé, C.; Delmas, D.; Akhtar Khan, N.; Ghiringhelli, F.; Rialland, M.; Hichami, A. Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway. PLoS One, 2017, 12(2), e0170823.
[http://dx.doi.org/10.1371/journal.pone.0170823] [PMID: 28212423]
[64]
Behzad, S.; Ebrahim, K.; Mosaddegh, M.; Haeri, A. Primula auriculata extracts exert cytotoxic and apoptotic effects against HT-29 human colon adenocarcinoma cells. Iran. J. Pharm. Res., 2016, 15(1), 311-322.
[PMID: 27610172]
[65]
Ren, C.M.; Li, Y.; Chen, Q.Z.; Zeng, Y.H.; Shao, Y.; Wu, Q.X.; Yuan, S.X.; Yang, J.Q.; Yu, Y.; Wu, K.; He, B.C.; Sun, W.J. Oridonin inhibits the proliferation of human colon cancer cells by upregulating BMP7 to activate p38 MAPK. Oncol. Rep., 2016, 35(5), 2691-2698.
[http://dx.doi.org/10.3892/or.2016.4654] [PMID: 26986967]
[66]
Yang, J.; Jiang, H.; Wang, C.; Yang, B.; Zhao, L.; Hu, D.; Qiu, G.; Dong, X.; Xiao, B. Oridonin triggers apoptosis in colorectal carcinoma cells and suppression of microRNA-32 expression augments oridonin-mediated apoptotic effects. Biomed. Pharmacother., 2015, 72, 125-134.
[http://dx.doi.org/10.1016/j.biopha.2015.04.016] [PMID: 26054686]
[67]
Reddivari, L.; Charepalli, V.; Radhakrishnan, S.; Vadde, R.; Elias, R.J.; Lambert, J.D.; Vanamala, J.K.P. Grape compounds suppress colon cancer stem cells in vitro and in a rodent model of colon carcinogenesis. BMC Complement. Altern. Med., 2016, 16(1), 278.
[http://dx.doi.org/10.1186/s12906-016-1254-2] [PMID: 27506388]
[68]
Zhang, Z.; Du, G.J.; Wang, C.Z.; Wen, X.D.; Calway, T.; Li, Z.; He, T.C.; Du, W.; Bissonnette, M.; Musch, M.; Chang, E.; Yuan, C.S. Compound K, a Ginsenoside Metabolite, Inhibits Colon Cancer Growth via Multiple Pathways Including p53-p21 Interactions. Int. J. Mol. Sci., 2013, 14(2), 2980-2995.
[http://dx.doi.org/10.3390/ijms14022980] [PMID: 23434653]
[69]
Yang, X.; Zou, J.; Cai, H.; Huang, X.; Yang, X.; Guo, D.; Cao, Y. Ginsenoside Rg3 inhibits colorectal tumor growth via down-regulation of C/EBPβ/NF-κB signaling. Biomed. Pharmacother., 2017, 96, 1240-1245.
[http://dx.doi.org/10.1016/j.biopha.2017.11.092] [PMID: 29169725]
[70]
Yang, M.; Hu, C.; Cao, Y.; Liang, W.; Yang, X.; Xiao, T. Ursolic acid regulates cell cycle and proliferation in colon adenocarcinoma by suppressing cyclin B1. Front. Pharmacol., 2021, 11, 622212.
[http://dx.doi.org/10.3389/fphar.2020.622212] [PMID: 33628185]
[71]
Zhao, J.; Leng, P.; Xu, W.; Sun, J.L.; Ni, B.B.; Liu, G.W. Investigating the multitarget pharmacological mechanism of ursolic acid acting on colon cancer: A network pharmacology approach. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/9980949] [PMID: 34194533]
[72]
Singh, R.P.; Gu, M.; Agarwal, R. Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Res., 2008, 68(6), 2043-2050.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6247] [PMID: 18339887]
[73]
Raina, K.; Agarwal, C.; Agarwal, R. Effect of silibinin in human colorectal cancer cells: Targeting the activation of NF-κB signaling. Mol. Carcinog., 2013, 52(3), 195-206.
[http://dx.doi.org/10.1002/mc.21843] [PMID: 22086675]
[74]
Dai, G.; Ding, K.; Cao, Q.; Xu, T.; He, F.; Liu, S.; Ju, W. Emodin suppresses growth and invasion of colorectal cancer cells by inhibiting VEGFR2. Eur. J. Pharmacol., 2019, 859, 172525.
[http://dx.doi.org/10.1016/j.ejphar.2019.172525] [PMID: 31288005]
[75]
Wang, Y.; Luo, Q.; He, X.; Wei, H.; Wang, T.; Shao, J.; Jiang, X. Emodin induces apoptosis of colon cancer cells via induction of autophagy in a ROS-dependent manner. Oncol. Res., 2018, 26(6), 889-899.
[http://dx.doi.org/10.3727/096504017X15009419625178] [PMID: 28762328]
[76]
Johnson, S.M.; Wang, X.; Evers, B.M. Triptolide inhibits proliferation and migration of colon cancer cells by inhibition of cell cycle regulators and cytokine receptors. J. Surg. Res., 2011, 168(2), 197-205.
[http://dx.doi.org/10.1016/j.jss.2009.07.002] [PMID: 19922946]
[77]
Shi, W.; Men, L.; Pi, X.; Jiang, T.; Peng, D.; Huo, S.; Luo, P.; Wang, M.; Guo, J.; Jiang, Y.; Peng, L.; Lin, L.; Li, S.; Lv, J. Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL‑6/STAT3 signaling pathway. Int. J. Oncol., 2021, 59(6), 99.
[http://dx.doi.org/10.3892/ijo.2021.5279] [PMID: 34726248]
[78]
Zhou, Z.; Ma, J. Gambogic acid suppresses colon cancer cell activity in vitro. Exp. Ther. Med., 2019, 18(4), 2917-2923.
[http://dx.doi.org/10.3892/etm.2019.7912] [PMID: 31555380]
[79]
Gonçalves, P.; Araújo, J.; Pinho, M.J.; Martel, F. In vitro studies on the inhibition of colon cancer by butyrate and polyphenolic compounds. Nutr. Cancer, 2011, 63(2), 282-294.
[http://dx.doi.org/10.1080/01635581.2011.523166] [PMID: 21207318]
[80]
Zhong, Y.; Krisanapun, C.; Lee, S.H.; Nualsanit, T.; Sams, C.; Peungvicha, P.; Baek, S.J. Molecular targets of apigenin in colorectal cancer cells: Involvement of p21, NAG-1 and p53. Eur. J. Cancer, 2010, 46(18), 3365-3374.
[http://dx.doi.org/10.1016/j.ejca.2010.07.007] [PMID: 20709524]
[81]
Lefort, É.C.; Blay, J. The dietary flavonoid apigenin enhances the activities of the anti-metastatic protein CD26 on human colon carcinoma cells. Clin. Exp. Metastasis, 2011, 28(4), 337-349.
[http://dx.doi.org/10.1007/s10585-010-9364-6] [PMID: 21298326]
[82]
Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J. Nutr. Biochem., 2007, 18(7), 427-442.
[http://dx.doi.org/10.1016/j.jnutbio.2006.11.004] [PMID: 17321735]
[83]
Wang, W.; VanAlstyne, P.C.; Irons, K.A.; Chen, S.; Stewart, J.W.; Birt, D.F. Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines. Nutr. Cancer, 2004, 48(1), 106-114.
[http://dx.doi.org/10.1207/s15327914nc4801_14] [PMID: 15203384]
[84]
Soobrattee, M.A.; Bahorun, T.; Aruoma, O.I. Chemopreventive actions of polyphenolic compounds in cancer. Biofactors, 2006, 27(1-4), 19-35.
[http://dx.doi.org/10.1002/biof.5520270103] [PMID: 17012761]
[85]
Dihal, A.A.; Woutersen, R.A.; Ommen, B.; Rietjens, I.M.C.M.; Stierum, R.H. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2. Cancer Lett., 2006, 238(2), 248-259.
[http://dx.doi.org/10.1016/j.canlet.2005.07.007] [PMID: 16129554]
[86]
Kim, W.; Bang, M.; Kim, E.; Kang, N.; Jung, K.; Cho, H.; Park, J. Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J. Nutr. Biochem., 2005, 16(3), 155-162.
[http://dx.doi.org/10.1016/j.jnutbio.2004.10.010] [PMID: 15741050]
[87]
Özsoy, S.; Becer, E.; Kabadayı, H.; Vatansever, H.S.; Yücecan, S. Quercetin-mediated apoptosis and cellular senescence in human colon cancer. Anticancer. Agents Med. Chem., 2020, 20(11), 1387-1396.
[http://dx.doi.org/10.2174/1871520620666200408082026] [PMID: 32268873]
[88]
Mukherjee, P.K.; Bahadur, S.; Harwansh, R.K.; Biswas, S.; Banerjee, S. Paradigm shift in natural product research: Traditional medicine inspired approaches. Phytochem. Rev., 2017, 16(5), 803-826.
[http://dx.doi.org/10.1007/s11101-016-9489-6]
[89]
Gerhäuser, C. Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer, 2005, 41(13), 1941-1954.
[http://dx.doi.org/10.1016/j.ejca.2005.04.012] [PMID: 15953717]
[90]
Miranda, C.L.; Stevens, J.F.; Helmrich, A.; Henderson, M.C.; Rodriguez, R.J.; Yang, Y.H.; Deinzer, M.L.; Barnes, D.W.; Buhler, D.R. Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol., 1999, 37(4), 271-285.
[http://dx.doi.org/10.1016/S0278-6915(99)00019-8] [PMID: 10418944]
[91]
Pan, L.; Becker, H.; Gerhäuser, C. Xanthohumol induces apoptosis in cultured 40-16 human colon cancer cells by activation of the death receptor- and mitochondrial pathway. Mol. Nutr. Food Res., 2005, 49(9), 837-843.
[http://dx.doi.org/10.1002/mnfr.200500065] [PMID: 15995977]
[92]
Pang, Y.; Nikolic, D.; Zhu, D.; Chadwick, L.R.; Pauli, G.F.; Farnsworth, N.R.; van Breemen, R.B. Binding of the hop (Humulus lupulus L.) chalcone xanthohumol to cytosolic proteins in Caco-2 intestinal epithelial cells. Mol. Nutr. Food Res., 2007, 51(7), 872-879.
[http://dx.doi.org/10.1002/mnfr.200600252] [PMID: 17579893]
[93]
Zeng, A.; Hua, H.; Liu, L.; Zhao, J. Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo. Bioorg. Med. Chem., 2019, 27(12), 2546-2552.
[http://dx.doi.org/10.1016/j.bmc.2019.03.033] [PMID: 30910472]
[94]
Ni, H.; Han, Y.; Jin, X. Celastrol inhibits colon cancer cell proliferation by downregulating miR-21 and PI3K/AKT/GSK-3β pathway. Int. J. Clin. Exp. Pathol., 2019, 12(3), 808-816.
[PMID: 31933888]
[95]
Enrico, C. Nanotechnology-based drug delivery of natural compounds and phytochemicals for the treatment of cancer and other diseases. In: Stud. Nat. Prod. Chem; , 2019; 62, pp. 91-123.
[http://dx.doi.org/10.1016/B978-0-444-64185-4.00003-4]
[96]
Bayraktar, O.; Köse, M.; Erdogan, I.; Kalmaz, G. Nanocarriers for plant-derived natural compounds. In: Nanostructures for Antimicrobial Therapy; , 2017; pp. 395-412.
[http://dx.doi.org/10.1016/B978-0-323-46152-8.00017-2]
[97]
Wahab, S.; Alshahrani, M.Y.; Ahmad, M.F.; Abbas, H. Current trends and future perspectives of nanomedicine for the management of colon cancer. Eur. J. Pharmacol., 2021, 910, 174464.
[http://dx.doi.org/10.1016/j.ejphar.2021.174464] [PMID: 34474029]
[98]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[99]
Rahman, M.; Beg, S.; Ahmed, A.; Swain, D.S. Emergence of functionalized nanomedicines in cancer chemotherapy: Recent advancements, current challenges and toxicity considerations. Recent Pat. Nanomed., 2013, 3(2), 128-139.
[100]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[101]
Anitha, A.; Deepa, N.; Chennazhi, K.P.; Lakshmanan, V.K.; Jayakumar, R. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(9), 2730-2743.
[http://dx.doi.org/10.1016/j.bbagen.2014.06.004] [PMID: 24946270]
[102]
Xiao, B.; Si, X.; Han, M.K.; Viennois, E.; Zhang, M.; Merlin, D. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(39), 7724-7733.
[http://dx.doi.org/10.1039/C5TB01245G] [PMID: 26617985]
[103]
Akl, M.A.; Kartal-Hodzic, A.; Oksanen, T.; Ismael, H.R.; Afouna, M.M.; Yliperttula, M.; Samy, A.M.; Viitala, T. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J. Drug Deliv. Sci. Technol., 2016, 32, 10-20.
[http://dx.doi.org/10.1016/j.jddst.2016.01.007]
[104]
Lotfi-Attari, J.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Alipour, S.; Farajzadeh, R.; Javidfar, S.; Zarghami, N. Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and htert gene expression in human colorectal cancer cells. Nutr. Cancer, 2017, 69(8), 1290-1299.
[http://dx.doi.org/10.1080/01635581.2017.1367932] [PMID: 29083232]
[105]
Sunoqrot, S.; Abujamous, L. pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. J. Drug Deliv. Sci. Technol., 2019, 52, 670-676.
[http://dx.doi.org/10.1016/j.jddst.2019.05.035]
[106]
Senthil Kumar, C.; Thangam, R.; Mary, S.A.; Kannan, P.R.; Arun, G.; Madhan, B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr. Polym., 2020, 231, 115682.
[http://dx.doi.org/10.1016/j.carbpol.2019.115682] [PMID: 31888816]
[107]
Sufi, S.A.; Hoda, M.; Pajaniradje, S.; Mukherjee, V.; Coumar, S.M.; Rajagopalan, R. Enhanced drug retention, sustained release, and anti-cancer potential of curcumin and indole-curcumin analog-loaded polysorbate 80-stabilizied PLGA nanoparticles in colon cancer cell line SW480. Int. J. Pharm., 2020, 588, 119738.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119738] [PMID: 32777534]
[108]
Khan, F.A.; Lammari, N.; Muhammad Siar, A.S.; Alkhater, K.M.; Asiri, S.; Akhtar, S.; Almansour, I.; Alamoudi, W.; Haroun, W.; Louaer, W.; Meniai, A.H.; Elaissari, A. Quantum dots encapsulated with curcumin inhibit the growth of colon cancer, breast cancer and bacterial cells. Nanomedicine., 2020, 15(10), 969-980.
[http://dx.doi.org/10.2217/nnm-2019-0429] [PMID: 32223518]
[109]
Colpan, R.D.; Erdemir, A. Co-delivery of quercetin and caffeic-acid phenethyl ester by polymeric nanoparticles for improved antitumor efficacy in colon cancer cells. J. Microencapsul., 2021, 38(6), 381-393.
[http://dx.doi.org/10.1080/02652048.2021.1948623] [PMID: 34189998]
[110]
Saraf, A.; Dubey, N.; Dubey, N.; Sharma, M. Curcumin loaded eudragit s100/plga nanoparticles in treatment of colon cancer: Formulation, optimization, and in-vitro cytotoxicity study. Indian J. Pharm. Educ. Res., 2021, 55(2s), s428-s440.
[http://dx.doi.org/10.5530/ijper.55.2s.114]
[111]
Wang, Y.; Ma, J.; Qiu, T.; Tang, M.; Zhang, X.; Dong, W. In vitro and in vivo combinatorial anticancer effects of oxaliplatin- and resveratrol-loaded N,O-carboxymethyl chitosan nanoparticles against colorectal cancer. Eur. J. Pharm. Sci., 2021, 163, 105864.
[http://dx.doi.org/10.1016/j.ejps.2021.105864] [PMID: 33965502]
[112]
Gao, W.; Hu, C.M.J.; Fang, R.H.; Zhang, L. Liposome-like nanostructures for drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(48), 6569.
[http://dx.doi.org/10.1039/c3tb21238f] [PMID: 24392221]
[113]
Dua, K.; Rapalli, V.K.; Shukla, S.D.; Singhvi, G.; Shastri, M.D.; Chellappan, D.K.; Satija, S.; Mehta, M.; Gulati, M.; Pinto, T.D.J.A.; Gupta, G.; Hansbro, P.M. Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: Emerging need for novel drug delivery approaches. Biomed. Pharmacother., 2018, 107, 1218-1229.
[http://dx.doi.org/10.1016/j.biopha.2018.08.101] [PMID: 30257336]
[114]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[115]
Xiong, M.; Lei, Q.; You, X.; Gao, T.; Song, X.; Xia, Y.; Ye, T.; Zhang, L.; Wang, N.; Yu, L. Mannosylated liposomes improve therapeutic effects of paclitaxel in colon cancer models. J. Microencapsul., 2017, 34(6), 513-521.
[http://dx.doi.org/10.1080/02652048.2017.1339739] [PMID: 28705043]
[116]
Sesarman, A.; Muntean, D.; Abrudan, B.; Tefas, L.; Sylvester, B.; Licarete, E.; Rauca, V.; Luput, L.; Patras, L.; Banciu, M.; Vlase, L.; Porfire, A. Improved pharmacokinetics and reduced side effects of doxorubicin therapy by liposomal co-encapsulation with curcumin. J. Liposome Res., 2021, 31(1), 1-10.
[http://dx.doi.org/10.1080/08982104.2019.1682604] [PMID: 31631726]
[117]
Sen, K.; Banerjee, S.; Mandal, M. Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf. B Biointerfaces, 2019, 180, 9-22.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.035] [PMID: 31015105]
[118]
Banerjee, A.; Pathak, S.; Subramanium, V.D.; G, D.; Murugesan, R.; Verma, R.S. Strategies for targeted drug delivery in treatment of colon cancer: Current trends and future perspectives. Drug Discov. Today, 2017, 22(8), 1224-1232.
[http://dx.doi.org/10.1016/j.drudis.2017.05.006] [PMID: 28545838]
[119]
Alibolandi, M.; Hoseini, F.; Mohammadi, M.; Ramezani, P.; Einafshar, E.; Taghdisi, S.M.; Ramezani, M.; Abnous, K. Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. Int. J. Pharm., 2018, 549(1-2), 67-75.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.052] [PMID: 30048777]
[120]
Alibolandi, M.; Taghdisi, S.M.; Ramezani, P.; Hosseini Shamili, F.; Farzad, S.A.; Abnous, K.; Ramezani, M. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int. J. Pharm., 2017, 519(1-2), 352-364.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.044] [PMID: 28126548]
[121]
Ge, P.; Niu, B.; Wu, Y.; Xu, W.; Li, M.; Sun, H.; Zhou, H.; Zhang, X.; Xie, J. Enhanced cancer therapy of celastrol in vitro and in vivo by smart dendrimers delivery with specificity and biosafety. Chem. Eng. J., 2020, 383, 123228.
[http://dx.doi.org/10.1016/j.cej.2019.123228]
[122]
Biswas, S.; Kumari, P.; Lakhani, P.M.; Ghosh, B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci., 2016, 83, 184-202.
[http://dx.doi.org/10.1016/j.ejps.2015.12.031] [PMID: 26747018]
[123]
Langridge, T.D.; Gemeinhart, R.A. Toward understanding polymer micelle stability: Density ultracentrifugation offers insight into polymer micelle stability in human fluids. J. Control. Release, 2020, 319, 157-167.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.038] [PMID: 31881319]
[124]
Xiao, N.Y.; Li, A.L.; Liang, H.; Lu, J. A well-defined novel aldehyde-functionalized glycopolymer: Synthesis, micelle formation, and its protein immobilization. Macromolecules, 2008, 41(7), 2374-2380.
[http://dx.doi.org/10.1021/ma702510n]
[125]
Le, T.T.; Kim, D. Folate-PEG/Hyd-curcumin/C18-g-PSI micelles for site specific delivery of curcumin to colon cancer cells via Wnt/β-catenin signaling pathway. Mater. Sci. Eng. C, 2019, 101, 464-471.
[http://dx.doi.org/10.1016/j.msec.2019.03.100] [PMID: 31029341]
[126]
Yang, X.; Li, Z.; Wang, N.; Li, L.; Song, L.; He, T.; Sun, L.; Wang, Z.; Wu, Q.; Luo, N.; Yi, C.; Gong, C. Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo. Sci. Rep., 2015, 5(1), 10322.
[http://dx.doi.org/10.1038/srep10322] [PMID: 25980982]
[127]
Yang, J.; Tao, R.; Wang, L.; Song, L.; Wang, Y.; Gong, C.; Yao, S.; Wu, Q. Thermosensitive micelles encapsulating phenylalanine ammonia lyase act as a sustained and efficacious therapy against colorectal cancer. J. Biomed. Nanotechnol., 2019, 15(4), 717-727.
[http://dx.doi.org/10.1166/jbn.2019.2734] [PMID: 30841965]
[128]
Woraphatphadung, T.; Sajomsang, W.; Rojanarata, T.; Ngawhirunpat, T.; Tonglairoum, P.; Opanasopit, P. Development of chitosan-based ph-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech, 2018, 19(3), 991-1000.
[http://dx.doi.org/10.1208/s12249-017-0906-y] [PMID: 29110292]
[129]
Yuan, Z.; Yuan, Y.; Han, L.; Qiu, Y.; Huang, X.; Gao, F.; Fan, G.; Zhang, Y.; Tang, X.; He, X.; Xu, K.; Yin, P. Bufalin-loaded vitamin E succinate-grafted-chitosan oligosaccharide/RGD conjugated TPGS mixed micelles demonstrated improved antitumor activity against drug-resistant colon cancer. Int. J. Nanomedicine, 2018, 13, 7533-7548.
[http://dx.doi.org/10.2147/IJN.S170692] [PMID: 30532537]
[130]
Hani, U.; Yasmin Begum, M.; Wahab, S.; Siddiqua, A.; Osmani, R.A.M.; Rahmathulla, M. A comprehensive review of current perspectives on novel drug delivery systems and approaches for lung cancer management. J. Pharm. Innov., 2021.
[131]
Dai, M.; Xu, X.; Song, J.; Fu, S.; Gou, M.; Luo, F.; Qian, Z. Preparation of camptothecin-loaded PCEC microspheres for the treatment of colorectal peritoneal carcinomatosis and tumor growth in mice. Cancer Lett., 2011, 312(2), 189-196.
[http://dx.doi.org/10.1016/j.canlet.2011.08.007] [PMID: 21943824]
[132]
Jyoti, K.; Bhatia, R.K.; Martis, E.A.F.; Coutinho, E.C.; Jain, U.K.; Chandra, R.; Madan, J. Soluble curcumin amalgamated chitosan microspheres augmented drug delivery and cytotoxicity in colon cancer cells: in vitro and in vivo study. Colloids Surf. B Biointerfaces, 2016, 148, 674-683.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.044] [PMID: 27701049]
[133]
Narayanaswamy, R.; Torchilin, V.P. Hydrogels and their applications in targeted drug delivery. Molecules, 2019, 24(3), 603.
[http://dx.doi.org/10.3390/molecules24030603] [PMID: 30744011]
[134]
Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer, 2008, 49(8), 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[135]
Sadeghi-Abandansari, H.; Pakian, S.; Nabid, M.R.; Ebrahimi, M.; Rezalotfi, A. Local co-delivery of 5-fluorouracil and curcumin using Schiff’s base cross-linked injectable hydrogels for colorectal cancer combination therapy. Eur. Polym. J., 2021, 157, 110646.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110646]
[136]
Mukherjee, P.K.; Harwansh, R.K.; Bhattacharyya, S. Bioavailability of herbal products: Approach toward improved pharmacokinetics. Mukherjee, P.K. In: Evidence-Based Validation of Herbal Medicine; Elsevier: Boston, 2015; pp. 217-245.
[137]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[138]
Singh, G. Resveratrol: Nanocarrier-based delivery systems to enhance its therapeutic potential. Nanomedicine, 2020, 15(28), 2801-2817.
[http://dx.doi.org/10.2217/nnm-2020-0289] [PMID: 33191840]
[139]
Li, H.; Li, M.; Fu, J.; Ao, H.; Wang, W.; Wang, X. Enhancement of oral bioavailability of quercetin by metabolic inhibitory nanosuspensions compared to conventional nanosuspensions. Drug Deliv., 2021, 28(1), 1226-1236.
[http://dx.doi.org/10.1080/10717544.2021.1927244] [PMID: 34142631]
[140]
Zhang, G.; Zhang, J. Enhanced oral bioavailability of EGCG using pH-sensitive polymeric nanoparticles: characterization and in vivo investigation on nephrotic syndrome rats. Drug Des. Devel. Ther., 2018, 12, 2509-2518.
[http://dx.doi.org/10.2147/DDDT.S172919] [PMID: 30147298]
[141]
Wang, L.; Li, H.; Wang, S.; Liu, R.; Wu, Z.; Wang, C.; Wang, Y.; Chen, M. Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech, 2014, 15(4), 834-844.
[http://dx.doi.org/10.1208/s12249-014-0112-0] [PMID: 24696391]
[142]
Jain, K.; Kumar, R.; Sood, S.; Kuppusamy, G. Enhanced oral bioavailability of Atorvastatin via oil-in-water nanoemulsion using aqueous titration method. J. Pharm. Sci. Res., 2013, 5, 18-25.
[143]
Godugu, C.; Doddapaneni, R.; Singh, M. Honokiol nanomicellar formulation produced increased oral bioavailability and anticancer effects in triple negative breast cancer (TNBC). Colloids Surf. B Biointerfaces, 2017, 153, 208-219.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.038] [PMID: 28249200]
[144]
Zhu, D.; Zhang, Q.; Chen, Y.; Xie, M.; Li, J.; Yao, S.; Li, M.; Lou, Z.; Cai, Y.; Sun, X. Mechanochemical preparation of triptolide-loaded self-micelle solid dispersion with enhanced oral bioavailability and improved anti-tumor activity. Drug Deliv., 2022, 29(1), 1398-1408.
[http://dx.doi.org/10.1080/10717544.2022.2069879] [PMID: 35532137]
[145]
Zhao, L.; Wei, Y.; Fu, J.; Huang, Y.; He, B.; Zhou, Y. Nanoemulsion improves the oral bioavailability of baicalin in rats: In vitro and in vivo evaluation. Int. J. Nanomedicine, 2013, 8, 3769-3779.
[http://dx.doi.org/10.2147/IJN.S51578] [PMID: 24124365]
[146]
Tan, S.; Zou, C.; Zhang, W.; Yin, M.; Gao, X.; Tang, Q. Recent developments in D -α-tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy. Drug Deliv., 2017, 24(1), 1831-1842.
[http://dx.doi.org/10.1080/10717544.2017.1406561] [PMID: 29182031]
[147]
Available from: https://clinicaltrials.gov/
[148]
Harwansh, R.K.; Bahadur, S.; Deshmukh, R.; Rahman, M.A. Exciting potential of nanoparticlized lipidic system for effective treatment of breast cancer and clinical updates: A translational prospective. Curr. Pharm. Des., 2020, 26(11), 1191-1205.
[http://dx.doi.org/10.2174/1381612826666200131101156] [PMID: 32003686]
[149]
Wu, K.; Xing, F.; Wu, S.Y.; Watabe, K. Extracellular vesicles as emerging targets in cancer: Recent development from bench to bedside. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(2), 538-563.
[http://dx.doi.org/10.1016/j.bbcan.2017.10.001] [PMID: 29054476]
[150]
Kulwal, V.; Baxi, K.; Sawarkar, S.P.; Bhatt, L.K. Colorectal cancer management by herbal drug-based nanocarriers: An overview. Crit. Rev. Ther. Drug Carrier Syst., 2020, 37(1), 65-104.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2019030507] [PMID: 32450014]
[151]
Rama, A.R.; Jimenez-Lopez, J.; Cabeza, L.; Jimenez-Luna, C.; Leiva, M.C.; Perazzoli, G.; Hernandez, R.; Zafra, I.; Ortiz, R.; Melguizo, C.; Prados, J. Last advances in nanocarriers-based drug delivery systems for colorectal cancer. Curr. Drug Deliv., 2016, 13(6), 830-838.
[http://dx.doi.org/10.2174/1567201813666151203232852] [PMID: 26634791]
[152]
Bartoş, A.; Bartoş, D.; Szabo, B.; Breazu, C.; Opincariu, I.; Mironiuc, A.; Iancu, C. Recent achievements in colorectal cancer diagnostic and therapy by the use of nanoparticles. Drug Metab. Rev., 2016, 48(1), 27-46.
[http://dx.doi.org/10.3109/03602532.2015.1130052] [PMID: 26828283]
[153]
Aljuffali, I.A.; Fang, C.L.; Chen, C.H.; Fang, J.Y. Nanomedicine as a strategy for natural compound delivery to prevent and treat cancers. Curr. Pharm. Des., 2016, 22(27), 4219-4231.
[http://dx.doi.org/10.2174/1381612822666160620072539] [PMID: 27323758]
[154]
Jadid, M.F.S.; Jafari-Gharabaghlou, D.; Bahrami, M.K.; Bonabi, E.; Zarghami, N. Enhanced anti-cancer effect of curcumin loaded-niosomal nanoparticles in combination with heat-killed Saccharomyces cerevisiae against human colon cancer cells. J. Drug Deliv. Sci. Technol., 2023, 80, 104167.
[http://dx.doi.org/10.1016/j.jddst.2023.104167]
[155]
de Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy