Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis of Tetrahydrobenzo[b]pyrans Catalyzed by 1,3-Dibenzyl-1H-benzo[d] imidazole-3-ium Chloride

Author(s): Ali Moradi Delfani, Hamzeh Kiyani* and Mehdi Zamani

Volume 27, Issue 17, 2023

Published on: 18 October, 2023

Page: [1542 - 1552] Pages: 11

DOI: 10.2174/0113852728269951231009060535

Price: $65

Abstract

Tetrahydrobenzo[b]pyrans are fused oxygen-containing heterocycles that are found in many biologically active compounds. Therefore, researchers in organic synthesis are searching for suitable, efficient, and useful methods for their synthesis. In this contribution, a series of tetrahydrobenzo[b]pyran derivatives was synthesized using aryl aldehydes, malononitrile, and cyclohexane-1,3-dione or dimedone as the available starting materials. The three-component reactions were catalyzed by 1,3-dibenzyl-1H-benzo[d]imidazol-3-ium chloride as the N-heterocyclic carbene precursor. The heterocyclic oxygen-containing products were obtained in good to excellent isolated yields within relatively shorter reaction times. Optimizing the reaction conditions was performed from the point of view of various parameters of the reaction. The results of these experiments showed that the best solvent system includes water-ethanol, the most suitable reaction temperature is 60ºC, and the optimal amount of the imidazolium catalyst loading is 5 mol%. Operational simplicity, no need for chromatographic methods for purification, simple work-up for pure products, and avoiding hazardous solvents are remarkable features of this three-component reaction. Moreover, in these multicomponent cyclo-condensations, no by-products were observed.

Graphical Abstract

[1]
(a) Reihani, N.; Kiyani, H. Three-component synthesis of 4-arylidene-3-alkylisoxazol-5(4H)-ones in the presence of potassium 2,5-dioxoimida-zolidin-1-ide. Curr. Org. Chem., 2021, 25(8), 950-962.
[http://dx.doi.org/10.2174/1385272825666210212120517];
(b) Kamalifar, S.; Kiyani, H. An expeditious one-pot three-component synthesis of 4-aryl-3,4-dihydrobenzo[g] quinoline-2,5,10(1H)-triones under green conditions. Curr. Org. Chem., 2020, 23(23), 2626-2634.
[http://dx.doi.org/10.2174/1385272823666191108123330];
(c) Reguera, L.; Rivera, D.G. Multicomponent reaction toolbox for peptide macrocyclization and stapling. Chem. Rev., 2019, 119(17), 9836-9860.
[http://dx.doi.org/10.1021/acs.chemrev.8b00744] [PMID: 30990310];
(d) Kamalifar, S.; Kiyani, H. An expeditious and green one-pot synthesis of 12-substituted-3,3-dimethyl-3,4,5,12-tetrahydrobenzo[b]acridine-1,6,11(2H)-triones. Res. Chem. Intermed., 2019, 45(12), 5975-5987.
[http://dx.doi.org/10.1007/s11164-019-04014-9];
(e) Kamalifar, S.; Kiyani, H. Facile and efficient synthesis of 9-aryl-1,8-dioxo-octahydroxanthenes catalyzed by sulfacetamide. Polycycl. Aromat. Compd., 2022, 42(6), 3675-3693.
[http://dx.doi.org/10.1080/10406638.2021.1872656];
(f) Ostadzadeh, H.; Kiyani, H. Multicomponent synthesis of tetrahydrobenzo[b]pyrans, pyrano[2,3-d]pyrimidines, and dihydropyrano[3,2-c]chromenes catalyzed by sodium benzoate. Polycycl. Aromat. Compd., 2022, 1-20.
[http://dx.doi.org/10.1080/10406638.2022.2162091];
(g) Delfani, A.M.; Kiyani, H.; Zamani, M. An expeditious synthesis of ethyl-2-(4-(arylmethylene)-5-oxo-4,5-dihydroisoxazol-3-yl)acetate derivatives. Curr. Org. Chem., 2022, 26(16), 1575-1584.
[http://dx.doi.org/10.2174/1385272827666221124105402];
(h) Ghorbani, F.; Kiyani, H.; Pourmousavi, S.A. Facile and expedient synthesis of α,β--unsaturated isoxazol-5(4H)-ones under mild conditions. Res. Chem. Intermed., 2020, 46(1), 943-959.
[http://dx.doi.org/10.1007/s11164-019-03999-7]
[2]
Kiyani, H. Recent advances in three-component cyclocondensation of dimedone with aldehydes and malononitrile for construction of tetrahydrobenzo[b]pyrans using organocatalysts. Curr. Org. Synth., 2018, 15(8), 1043-1072.
[http://dx.doi.org/10.2174/1570179415666181031124459]
[3]
Abdelrazek, F.M.; Metz, P.; Farrag, E.K. Synthesis and molluscicidal activity of 5-oxo-5,6,7,8-tetrahydro-4H-chromene derivatives. Arch. Pharm., 2004, 337(9), 482-485.
[http://dx.doi.org/10.1002/ardp.200400881] [PMID: 15362120]
[4]
(a) Thangaraj, M.; Ranjan, B.; Muthusamy, R.; Murugesan, A.; Gengan, R.M. Microwave synthesis of fused pyrans by humic acid supported ionic liquid catalyst and their antimicrobial, antioxidant, toxicity assessment, and molecular docking studies. J. Heterocycl. Chem., 2019, 56(3), 867-885.
[http://dx.doi.org/10.1002/jhet.3465];
(b) Khoshbakhsh Foumani, M.; Conrad, J.; Frey, W.; Beifuss, U. Flexible approach for the synthesis of annulated 4H-pyrans based on a Cu(I)- catalyzed c-allylation/o-vinylation reaction of cyclic 1-bromoallyl tosylates with cyclic and acyclic 1,3-dicarbonyls. J. Org. Chem., 2022, 87(13), 8316-8341.
[http://dx.doi.org/10.1021/acs.joc.1c02997] [PMID: 35732059];
(c) Kate, P.; Pandit, V.; Jawale, V.; Bachute, M. L-Proline catalyzed one-pot three-component synthesis and evaluation for biological activities of tetrahydrobenzo[ b]pyran: Evaluation by green chemistry metrics. J. Chem. Sci., 2022, 134(1), 4.
[http://dx.doi.org/ 10.1007/s12039-021-01990-7]
[5]
Mohareb, R.M.; Abbas, N.S.; Abdelaziz, M.A. Heterocyclic ring extension of androstenedione: Synthesis and cytotoxicity of fused pyran, pyrimidine and thiazole derivatives. Steroids, 2014, 86, 45-55.
[http://dx.doi.org/10.1016/j.steroids.2014.04.011] [PMID: 24793334]
[6]
Huynh, T.H.V.; Shim, I.; Bohr, H.; Abrahamsen, B.; Nielsen, B.; Jensen, A.A.; Bunch, L. Structure-activity relationship study of selective excitatory amino acid transporter subtype 1 (EAAT1) inhibitor 2-amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chrom-ene-3-carbonitrile (UCPH-101) and absolute configurational assignment using infrared and vibrational circular dichroism spectroscopy in combination with ab initio Hartree-Fock calculations. J. Med. Chem., 2012, 55(11), 5403-5412.
[http://dx.doi.org/10.1021/jm300345z] [PMID: 22594609]
[7]
Chavan, P.; Pansare, D.; Shelke, R.; Shejul, S.; Bhoir, P. Ultrasound-assisted synthesis and biological significance of substituted 4H-chromene-3-carbonitrile using greenery approaches. Curr. Chem. Lett., 2021, 10, 43-52.
[http://dx.doi.org/10.5267/j.ccl.2020.7.003]
[8]
Sankpal, S.; Choudhari, P.; Kumbhar, S.; Phalle, S.; Deshmukh, M. One pot synthesis and docking study of some tetrahydrobenzo[b]pyran derivatives as extended spectrum class lactamase inhibitors for urinary tract infection. Thaiphesatchasan, 2016, 40, 190-193.
[9]
(a) Khare, S.P.; Deshmukh, T.R.; Akolkar, S.V.; Sangshetti, J.N.; Khedkar, V.M.; Shingate, B.B. New 1,2,3-triazole-linked tetrahydrobenzo[b]pyran derivatives: Facile synthesis, biological evaluation and molecular docking study. Res. Chem. Intermed., 2019, 45(10), 5159-5182.
[http://dx.doi.org/10.1007/s11164-019-03906-0];
(b) Baitha, A.; Gopinathan, A.; Krishnan, K.; Dabholkar, V.V. Synthesis of 2-amino-4-(2-ethoxybenzo[d][1,3]dioxol-5-yl)-4H-pyran-3-carbonitrile derivatives and their biological evaluation. J. Heterocycl. Chem., 2018, 55(5), 1189-1192.
[http://dx.doi.org/10.1002/jhet.3152]
[10]
Brahmachari, G. Green Synthetic Approaches for Biologically Relevant Heterocycles (Green Synthetic Approaches for Biologically Relevant 2-amino-4H-pyrans and 2-amino-4H-pyran-Annulated Heterocycles in Aqueous Media); Elsevier: Amsterdam, Netherlands, 2015, pp. 185-207.
[11]
Wagh, Y.B.; Tayade, Y.A.; Padvi, S.A.; Patil, B.S.; Patil, N.B.; Dalal, D.S. A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2-amino-3-cyano-4H-pyran and spirooxindole derivatives. Chin. Chem. Lett., 2015, 26(10), 1273-1277.
[http://dx.doi.org/10.1016/j.cclet.2015.06.014]
[12]
Mulik, A.; Hegade, P.; Mulik, S.; Deshmukh, M. CuO nanoparticles and nanobelts catalyzed potent synthesis of benzopyran derivatives. Res. Chem. Intermed., 2019, 45(11), 5641-5647.
[http://dx.doi.org/10.1007/s11164-019-03925-x]
[13]
Tazari, M.; Kiyani, H. Expeditious synthesis of 2-Amino-4H-chromenes and 2-amino-4H-pyran-3-carboxylates promoted by sodium malonate. Curr. Org. Synth., 2019, 16(5), 793-800.
[http://dx.doi.org/10.2174/1570179416666190415105818] [PMID: 31984895]
[14]
Kiyani, H.; Sadat Jalali, M. Facile and efficient access to tetrahydrobenzo[b]pyrans catalyzed by N,N-dimethylbenzylamine. Heterocycles, 2016, 92(1), 75-85.
[http://dx.doi.org/10.3987/COM-15-13360]
[15]
Kiyani, H.; Ghorbani, F. Potassium phthalimide promoted green multicomponent tandem synthesis of 2-amino-4H-chromenes and 6-amino-4H-pyran-3-carboxylates. J. Saudi Chem. Soc., 2014, 18(5), 689-701.
[http://dx.doi.org/10.1016/j.jscs.2014.02.004]
[16]
Kiyani, H.; Ghorbani, F. Efficient tandem synthesis of a variety of pyranannulated heterocycles, 3,4-disubstituted isoxazol-5(4H)-ones, and α,β-unsaturated nitriles catalyzed by potassium hydrogen phthalate in water. Res. Chem. Intermed., 2015, 41(10), 7847-7882.
[http://dx.doi.org/10.1007/s11164-014-1863-7]
[17]
Mishra, M.; Devi, K.R.S.; Pinheiro, D.; Nizam, A. Zirconia supported on rice husk silica from biowaste: A novel, efficient, and recoverable nanocatalyst for the green synthesis of tetrahydro-1-benzopyrans. Russ. J. Org. Chem., 2020, 56(10), 1784-1789.
[http://dx.doi.org/10.1134/S107042802010019X]
[18]
Patil, P.; Kadam, S.; Patil, D.; More, P. An eco-friendly innovative halide and metal-free basic ionic liquid catalyzed synthesis of tetrahydrobenzo[b] pyran derivatives in aqueous media: A sustainable protocol. J. Mol. Liq., 2022, 345, 117867.
[http://dx.doi.org/10.1016/j.molliq.2021.117867]
[19]
Damghani, F.K.; Pourmousavi, S.A.; Kiyani, H. Starch-derived magnetic nanoparticles (Fe3O4@C-SO3H): Synthesis, characterization and its application on the preparation of dihydropyrano[c]chromenes,2-amino-3-cyano-4H-pyrans and 2-amino-4H-chromenes derivatives. Appl. Chem., 2019, 14, 109-124.
[20]
Dutta, A.; Goswami, M.; Rabha, J.; Das, S.; Jha, D.K.; Nongkhlaw, R. Fe3O4 @RB@LDH: Efficient and recyclable photocatalyst visible-light mediated synthesis of pyran and pyrrolidinone derivatives and their anti-microbial activities. ChemistrySelect, 2022, 7(6), e202104075.
[http://dx.doi.org/10.1002/slct.202104075]
[21]
Katariya, A.P.; Yadav, A.R.; Pawar, O.B.; Pisal, P.M.; Sangshetti, J.N.; Katariya, M.V.; Deshmukh, S.U. An efficient and green synthesis of tetrahydrobenzo[b]pyran derivatives using [(EMIM)Ac] at room temperature. ChemistrySelect, 2022, 7(15), e202104184.
[http://dx.doi.org/10.1002/slct.202104184]
[22]
Manjul, R.K.; Gade, V.B.; Gaikwad, D.N.; Suryavanshi, D.M.; Rajbhoj, A.S.; Gaikwad, S.T. 1-ethyl-3-methylimidazolium cyanoborohydride catalyzed solvent free microwave assisted one pot multicomponent synthesis of tetrahydrobenzo[b]pyran derivatives. Lett. Org. Chem., 2022, 19(6), 457-462.
[http://dx.doi.org/10.2174/1570178618666210405151600]
[23]
Baghaie, F.; Kiyani, H. Three-component synthesis of tetrahydrobenzo[b]pyrans catalyzed by sodium cyclamate. Heterocycles, 2022, 104, 2226-2237.
[24]
Borhade, A.V.; Agashe, J.A.; Tope, D.R. An efficient multicomponent synthesis of tetrahydropyrans using novel recyclable nanocrystalline Y2(CO3)3 catalyst. Russ. J. Appl. Chem., 2017, 90(6), 1005-1014.
[http://dx.doi.org/10.1134/S1070427217060234]
[25]
Shaikh, S.A.; Kamble, V.S.; Gupta, R.H.; Awale, A.G.; Salunkhe, S.T.; Aghav, B.D. Bimetallic COCEO2 oxide nanoparticles: An efficient and reusable heterogeneous catalyst for the preparation of 2‐amino‐3‐cyano‐4H‐pyran derivatives. J. Heterocycl. Chem., 2023, 60(6), 1004-1013.
[http://dx.doi.org/10.1002/jhet.4646]
[26]
Chu, X.; Jiang, L.; Lu, Q.; Dong, J. Mechano-biocatalytic rapid synthesis of 2-amino-3-cyano-4H-pyran derivatives. Heterocycles, 2022, 104(4), 723-738.
[http://dx.doi.org/10.3987/COM-21-14608]
[27]
Patil, S.P.; Shinde, S.K.; Patil, M.U.; Patil, S.S. Coconut endocarp shell ash (CESA): A versatile and waste-originated catalyst for the synthesis of tetrahydrobenzo[b]pyrans and 1,4-dihydropyridines. Res. Chem. Intermed., 2022, 48(8), 3589-3612.
[http://dx.doi.org/10.1007/s11164-022-04770-1]
[28]
Rashidi, S.; Gholamian, F.; Hajjami, M. Immobilization of Ni(II)-4-phenylthiosemicarbazide into functionalized MCM-41 as nano catalyst in synthesis of tetrahydrobenzo[b]pyran and 1,4-dihydropyrano[2,3-c]pyrazole. J. Nanopart. Res., 2023, 25(5), 102.
[http://dx.doi.org/10.1007/s11051-023-05752-z]
[29]
Aghavandi, H.; Ghorbani-Choghamarani, A. Preparation and application of ZnFe2O4@SiO2–SO3H, as a novel heterogeneous acidic magnetic nanocatalyst for the synthesis of tetrahydrobenzo[b]pyran and 2,3-dihydroquinazolin-4(1H)-one derivative. Res. Chem. Intermed., 2023, 49(2), 441-467.
[http://dx.doi.org/10.1007/s11164-022-04890-8]
[30]
Amiri-Zirtol, L.; Khabnadideh, S. GO treated with aminoethyl-piperazine as a reusable and eco-friendly organocatalyst for synthesis of some xanthen and pyran derivatives. ChemistrySelect, 2023, 8(19), e202204007.
[http://dx.doi.org/10.1002/slct.202204007]
[31]
Nesaragi, A.R.; Gasti, T.; Metre, T.V.; Anand, A.; Kamble, R.R.; Chougale, R.B.; Keri, R.S. Chitosan-ZnO: An efficient and recyclable polymer incorporated hybrid nanocatalyst to synthesize tetrahydrobenzo[b]pyrans and pyrano[2,3-d]pyrimidinones under microwave expedition. ChemistrySelect, 2022, 7(14), e202200604.
[http://dx.doi.org/10.1002/slct.202200604]
[32]
Dangolani, S.K.; Panahi, F.; Nourisefat, M.; Khalafi-Nezhad, A. 4-Dialkylaminopyridine modified magnetic nanoparticles: As an efficient nano-organocatalyst for one-pot synthesis of 2-amino-4H-chromene-3-carbonitrile derivatives in water. RSC Advances, 2016, 6(95), 92316-92324.
[http://dx.doi.org/10.1039/C6RA18078G]
[33]
Xu, J.C.; Li, W.M.; Zheng, H.; Lai, Y.F.; Zhang, P.F. One-pot synthesis of tetrahydrochromene derivatives catalyzed by lipase. Tetrahedron, 2011, 67(49), 9582-9587.
[http://dx.doi.org/10.1016/j.tet.2011.09.137]
[34]
a) Maddila, S.; Kerru, N.; Jonnalagadda, S.B. Recent progress in the multicomponent synthesis of pyran derivatives by sustainable catalysts under green conditions. Molecules, 2022, 27(19), 6347.
[http://dx.doi.org/10.3390/molecules27196347] [PMID: 36234888];
(b) Nawaz, A.; Aslam, S.; Ahmad, M.; Zahoor, A.F.; Naqvi, S.A.R. Synthetic strategies of pyran derivatives by multicomponent reaction (MCR) approach. J. Indian Chem. Soc., 2022, 19(9), 3721-3768.
[http://dx.doi.org/10.1007/s13738-022-02581-0];
(c) Kauthale, S.S.; Tekale, S.U.; Kótai, L.; Kendrekar, P.S.; Pawar, R.P. Synthesis of pyran annulated heterocyclic compounds under catalyst free conditions using aqueous ethylene glycol. Org. Prep. Proced.Int., 2020, 52(6), 564-571.
[http://dx.doi.org/10.1080/00304948.2020.1812360]
[35]
Dang, R.; Wang, Y.; Zeng, J.; Huang, Z.; Fei, Z.; Dyson, P.J. Benzimidazolium salt-based solid-state electrolytes afford efficient quantum-dot sensitized solar cells. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(26), 13526-13534.
[http://dx.doi.org/10.1039/C7TA02925J]
[36]
(a) Hahn, F.E.; Jahnke, M.C.; Gomez-Benitez, V; Morales-Morales, D.; Pape, T. Synthesis and catalytic activity of pincer-type bis(benzimidazolin-2-ylidene) palladium complexes. Organometallics, 2005, 24(26), 6458-6463.
[http://dx.doi.org/10.1021/om0507124];
(b) Benhamou, L.; Chardon, E.; Lavigne, G.; Bellemin-Laponnaz, S.; César, V. Synthetic routes to N-heterocyclic carbene precursors. Chem. Rev., 2011, 111(4), 2705-2733.
[http://dx.doi.org/10.1021/cr100328e] [PMID: 21235210];
(c) Hamdi, N.; Slimani, I.; Mansour, L.; Alresheedi, F.; Gürbüz, N.; Özdemir, I. N-Heterocyclic carbene-palladium-PEPPSI complexes and their catalytic activity in the direct C–H bond activation of heteroarene derivatives with aryl bromides: Synthesis, and antimicrobial and antioxidant activities. New J. Chem., 2021, 45(45), 21248-21262.
[http://dx.doi.org/10.1039/D1NJ04606C];
(d) Iwamoto, K.; Hamaya, M.; Hashimoto, N.; Kimura, H.; Suzuki, Y.; Sato, M. Benzoin reaction in water as an aqueous medium catalyzed by benzimidazolium salt. Tetrahedron Lett., 2006, 47(40), 7175-7177.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.153];
(e) Hadei, N.; Kantchev, E.A.B.; O’Brie, C.J.; Organ, M.G. Electronic nature of N-heterocyclic carbene ligands: Effect on the Suzuki reaction. Org. Lett., 2005, 7(10), 1991-1994.
[http://dx.doi.org/10.1021/ol050471w] [PMID: 15876037];
(f) Chan, A.; Scheidt, K.A. Highly stereoselective formal [3 + 3] cycloaddition of enals and azomethine imines catalyzed by N-heterocyclic carbenes. J. Am. Chem. Soc., 2007, 129(17), 5334-5335.
[http://dx.doi.org/10.1021/ja0709167] [PMID: 17407298];
(g) Hamdi, N.; Mnasri, A.; Al Nasr, I.S.; Koko, W.S.; Khan, T.A.; Biersack, B.; Özdemir, I.; Gürbüz, N. Highly efficient single A3-coupling (aldehydeamine- alkyne) reaction catalyzed by air stable silver-(n-heterocyclic carbene) complexes: Synthesis and characterization. Polycycl. Aromat. Compd., 2022, 1-16.
[http://dx.doi.org/10.1080/10406638.2021.2019064];
(h) Sun, Z.; Zhou, J.; Liu, X. Facile synthesis of chiral benzimidazolium salts and the application in asymmetric catalytic borylation. Heterocycles, 2016, 92(5), 944-953.
[http://dx.doi.org/10.3987/COM-16-13434];
(i) Muskawar, P.N.; Karthikeyan, P.; Aswar, S.A.; Bhagat, P.R.; Senthil Kumar, S. NHC–metal complexes based on benzimidazolium moiety for chemical transformation. Arab. J. Chem., 2016, 9, S1765-S1778.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.040]
[37]
(a) Salvitti, C.; Bortolami, M.; Chiarotto, I.; Troiani, A. de Petris, G. The Knoevenagel condensation catalysed by ionic liquids: A mass spectrometric insight into the reaction mechanism. New J. Chem., 2021, 45(38), 17787-17795.
[http://dx.doi.org/10.1039/D1NJ03594K];
(b) Priede, E.; Brica, S.; Bakis, E.; Udris, N.; Zicmanis, A. Ionic liquids as solvents for the Knoevenagel condensation: Understanding the role of solvent–solute interactions. New J. Chem., 2015, 39(12), 9132-9142.
[http://dx.doi.org/10.1039/C5NJ01906K];
(c) Hu, X.; Ngwa, C.; Zheng, Q. A simple and efficient procedure for knoevenagel reaction promoted by imidazolium-based ionic liquids. Curr. Org. Synth., 2015, 13(1), 101-110.
[http://dx.doi.org/10.2174/1570179412666150505185134];
(d) Sarkar, A.; Roy, S.R.; Parikh, N.; Chakraborti, A.K. Nonsolvent application of ionic liquids: Organo-catalysis by 1-alkyl-3-methylimidazolium cation based room-temperature ionic liquids for chemoselective N-tertbutyloxycarbonylation of amines and the influence of the C-2 hydrogen on catalytic efficiency. J. Org. Chem., 2011, 76(17), 7132-7140.
[http://dx.doi.org/10.1021/jo201102q] [PMID: 21774556];
(e) Chakraborti, A.K.; Roy, S.R.; Kumar, D.; Chopra, P. Catalytic application of room temperature ionic liquids: [bmim][MeSO4] as a recyclable catalyst for synthesis of bis(indolyl)methanes. Ion-fishing by MALDI-TOF-TOF MS and MS/MS studies to probe the proposed mechanistic model of catalysis. Green Chem., 2008, 10(10), 1111-118.
[http://dx.doi.org/10.1039/b807572g];
(f) Chakraborti, A.K.; Roy, S.R. On catalysis by ionic liquids. J. Am. Chem. Soc., 2009, 131(20), 6902-6903.
[http://dx.doi.org/10.1021/ja900076a] [PMID: 19413313];
(g) Roy, S.R.; Chakraborti, A.K. Supramolecular assemblies in ionic liquid catalysis for aza-Michael reaction. Org. Lett., 2010, 12(17), 3866-3869.
[http://dx.doi.org/10.1021/ol101557t] [PMID: 20690631];
(h) Sarkar, A.; Roy, S.R.; Chakraborti, A.K. Ionic liquid catalysed reaction of thiols with α,β-unsaturated carbonyl compounds-remarkable influence of the C-2 hydrogen and the anion. Chem. Commun., 2011, 47(15), 4538-4540.
[http://dx.doi.org/10.1039/c1cc10151j] [PMID: 21387055]
[38]
Yu, C.; Lu, J.; Li, T.; Wang, D.; Qin, B.; Zhang, H.; Yao, C.A. NHC-involved, cascade, metal-free, and three-component synthesis of 2,3-diarylated fully substituted furans under solvent-free conditions. Synlett, 2011, 2420-2424.
[39]
Huang, W.; Guo, J.; Xiao, Y.; Zhu, M.; Zou, G.; Tang, J. Palladium–benzimidazolium salt catalyst systems for Suzuki coupling: Development of a practical and highly active palladium catalyst system for coupling of aromatic halides with arylboronic acids. Tetrahedron, 2005, 61(41), 9783-9790.
[http://dx.doi.org/10.1016/j.tet.2005.06.060]
[40]
Khaksar, S.; Rouhollahpour, A.; Talesh, S.M. A facile and efficient synthesis of 2-amino-3-cyano-4H-chromenes and tetrahydrobenzo[b]pyrans using 2,2,2-trifluoroethanol as a metal-free and reusable medium. J. Fluor. Chem., 2012, 141, 11-15.
[http://dx.doi.org/10.1016/j.jfluchem.2012.05.014]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy