Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Insights into Quinoline in Context of Conventional versus Green Synthesis

Author(s): Taruna Grover, Navneet Singh* and Maulikkumar Vaja*

Volume 27, Issue 16, 2023

Published on: 18 October, 2023

Page: [1381 - 1392] Pages: 12

DOI: 10.2174/0113852728268691231009063856

Price: $65

Abstract

A relatively new field dubbed "green chemistry" seeks to achieve sustainability at the molecular level. This topic has received a lot of interest in recent years because of its ability to fulfill both environmental and economic goals through non-hazardous chemical innovation. A number of substituted quinoline derivatives were synthesized using microwave irradiation (MW), light irradiation, the presence of a non-biodegradable and recyclable catalyst, the presence of nanoparticles under solvent-free conditions, or the use of a green solvent. High target compound yields, fast reaction times, a simple workup process, the ability to reuse the catalyst, and environmentally favorable settings are all advantages of this effective approach. This study explores the synthesis of quinoline, a versatile heterocyclic compound with widespread applications in pharmaceuticals, agrochemicals, and material science. The focus is on comparing conventional and green synthesis methods and evaluating their respective advantages, drawbacks, and environmental impacts. The transition from conventional to sustainable green methodologies highlights the significance of reducing waste, energy consumption and toxic reagents in quinoline synthesis.

Next »
Graphical Abstract

[1]
Bharti, A.; Bijauliya, R.K.; Yadav, A. The chemical and pharmacological advancements of quinoline: A mini review. J. Drug Deliv. Therap., 2022, 12(4), 211-215.
[2]
Kucharski, D.J.; Jaszczak, M.K.; Boratyński, P.J. A review of modifications of quinoline antimalarials: Mefloquine and (hydroxy)Chloroquine. Molecules, 2022, 27(3), 1003.
[http://dx.doi.org/10.3390/molecules27031003] [PMID: 35164267]
[3]
Malecki, N.; Carato, P.; Rigo, B.; Goossens, J.F.; Houssin, R.; Bailly, C.; Hénichart, J.P. Synthesis of condensed quinolines and quinazolines as DNA ligands. Bioorg. Med. Chem., 2004, 12(3), 641-647.
[http://dx.doi.org/10.1016/j.bmc.2003.10.014] [PMID: 14738975]
[4]
Paquin, F.; Rivnay, J.; Salleo, A.; Stingelin, N.; Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 10715-10722.
[http://dx.doi.org/10.1039/C5TC02043C]
[5]
Patel, K.A.; Devani, A.A.; Hirani, R.V. Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J. Mol. Struct., 2022, 1248, 131473.
[http://dx.doi.org/10.1016/j.molstruc.2021.131473]
[6]
Mathada, B.S. The versatile quinoline and its derivatives as anti-cancer agents: An overview. Polycycl. Aromat. Compd., 2023, 43(5), 4333-4345.
[http://dx.doi.org/10.1080/10406638.2022.2089177]
[7]
Zajdel, P.; Partyka, A.; Marciniec, K.; Bojarski, A.J.; Pawlowski, M.; Wesolowska, A. Quinoline- and isoquinoline-sulfonamide analogs of aripiprazole: Novel antipsychotic agents? Future Med. Chem., 2014, 6(1), 57-75.
[http://dx.doi.org/10.4155/fmc.13.158]
[8]
Orhan Püsküllü, M.; Tekiner, B.; Suzen, S. Recent studies of antioxidant quinoline derivatives. Mini Rev. Med. Chem., 2013, 13(3), 365-372.
[PMID: 23190035]
[9]
Dorababu, A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch Pharm., 2021, 354(3), 2000232.
[http://dx.doi.org/10.1002/ardp.202000232] [PMID: 33210348]
[10]
Wang, R.; Xu, K.; Shi, W. Quinolone derivatives: Potential anti‐HIV agent-development and application. Arch. Pharm., 2019, 352(9), 1900045.
[http://dx.doi.org/10.1002/ardp.201900045] [PMID: 31274223]
[11]
Dorababu, A. Quinoline: A promising scaffold in recent antiprotozoal drug discovery. ChemistrySelect, 2021, 6(9), 2164-2177.
[http://dx.doi.org/10.1002/slct.202100115]
[12]
Ilina, K.; Henary, M. Cyanine dyes containing quinoline moieties: History, synthesis, optical properties, and applications. Chemistry, 2021, 27(13), 4230-4248.
[http://dx.doi.org/10.1002/chem.202003697] [PMID: 33137212]
[13]
Ramann, G.; Cowen, B. Recent advances in metal-free quinoline synthesis. Molecules, 2016, 21(8), 986.
[http://dx.doi.org/10.3390/molecules21080986] [PMID: 27483222]
[14]
Sakaguchi, S.; Shibamoto, A.; Ishii, Y. Remarkable effect of nitrogen dioxide for N-hydroxyphthalimide-catalyzed aerobic oxidation of methylquinolines. Chem. Commun., 2002, 2(2), 180-181.
[http://dx.doi.org/10.1039/b108880g] [PMID: 12120360]
[15]
Gao, W.; Zhang, C.; Li, Y. A novel one-pot three-step synthesis of 2-(1-Benzofuran-2-yl)quinoline-3-carboxylic acid derivatives. J. Braz. Chem. Soc., 2010, 21(5), 806-812.
[http://dx.doi.org/10.1590/S0103-50532010000500007]
[16]
Matada, B.S.; Yernale, N.G. The contemporary synthetic recipes to access versatile quinoline heterocycles. Synth. Commun., 2021, 51(8), 1-18.
[http://dx.doi.org/10.1080/00397911.2021.1876240]
[17]
Venkatesan, H.; Hocutt, F.M.; Jones, T.K.; Rabinowitz, M.H. A one-step synthesis of 2,4-unsubstituted quinoline-3-carboxylic acid esters from o-nitrobenzaldehydes. J. Org. Chem., 2010, 75(10), 3488-3491.
[http://dx.doi.org/10.1021/jo100392x] [PMID: 20420395]
[18]
Denmark, S.E.; Venkatraman, S. On the mechanism of the Skraup-Doebner-Von Miller quinoline synthesis. J. Org. Chem., 2006, 71(4), 1668-1676.
[http://dx.doi.org/10.1021/jo052410h] [PMID: 16468822]
[19]
Li, A.; Luo, C.; Wu, F.; Zheng, S.; Li, L.; Zhang, J.; Chen, L.; Liu, K.; Zhou, C. Mesoporous HBeta zeolite obtained via zeolitic dissolution–recrystallization successive treatment for vapor-phase Doebner–Von Miller reaction to quinolines. New J. Chem., 2020, 44(46), 20396-20404.
[http://dx.doi.org/10.1039/D0NJ04539J]
[20]
Weyesa, A.; Mulugeta, E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: A review. RSC Adv., 2020, 10(35), 20784-20793.
[http://dx.doi.org/10.1039/D0RA03763J] [PMID: 35517753]
[21]
Yu, X.X.; Zhao, P.; Zhou, Y.; Huang, C.; Wang, L.S.; Wu, Y.D.; Wu, A.X. Employing arylacetylene as a diene precursor and dienophile: Synthesis of quinoline via the povarov reaction. J. Org. Chem., 2021, 86(12), 8381-8388.
[http://dx.doi.org/10.1021/acs.joc.1c00793] [PMID: 34106703]
[22]
Ghashghaei, O.; Masdeu, C.; Alonso, C.; Palacios, F.; Lavilla, R. Recent advances of the povarov reaction in medicinal chemistry. Drug Discov. Today. Technol., 2018, 29(xx), 71-79.
[http://dx.doi.org/10.1016/j.ddtec.2018.08.004] [PMID: 30471676]
[23]
Harry, N.A. Recent advances and prospects in the metal-free synthesis of quinolines. Org. Biomol. Chem., 2020, 18, 9775-9790.
[http://dx.doi.org/10.1039/D0OB02000A]
[24]
Luis, D. Synthesis of quinoline‐4‐carboxamides and quinoline‐4‐carboxylates via a modified pfitzinger reaction of N‐Vinylisatins. Europ. J. Org. Chem., 2021, 2021(4), 637-647.
[http://dx.doi.org/10.1002/ejoc.202001455]
[25]
Das, A. A hydrazine functionalized UiO-66(Hf) metal–organic framework for the synthesis of quinolines via Friedländer condensation. New J. Chem., 2020, 44, 10982-10988.
[http://dx.doi.org/10.1039/D0NJ01891K]
[26]
Poronik, Y.M.; Klajn, J.; Borz, W.; Gryko, D.T. The Niementowski reaction of anthranilic acid with ethyl acetoacetate revisited: A new access to pyrano[3,2-c]quinoline-2,5-dione. Arkivoc, 2017, 2, 7-11.
[27]
Yadav, P.; Shah, K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem., 2021, 109(109), 104639.
[http://dx.doi.org/10.1016/j.bioorg.2021.104639] [PMID: 33618829]
[28]
Pe, E.; Soriano, E. Recent advances in the Friedländer reaction. Chem. Rev., 2009, 109(6), 2652-2671.
[http://dx.doi.org/10.1021/cr800482c]
[29]
Wang, G.W.; Jia, C.S.; Dong, Y.W. Benign and highly efficient synthesis of quinolines from 2-aminoarylketone or 2-aminoarylaldehyde and carbonyl compounds mediated by hydrochloric acid in water. Tetrahedron Lett., 2006, 47(7), 1059-1063.
[http://dx.doi.org/10.1016/j.tetlet.2005.12.053]
[30]
de Marco, B.A.; Rechelo, B.S.; Tótoli, E.G.; Kogawa, A.C.; Salgado, H.R.N. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J., 2019, 27(1), 1-8.
[http://dx.doi.org/10.1016/j.jsps.2018.07.011] [PMID: 30627046]
[31]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[32]
Nasseri, M.A.; Zakerinasab, B.; Kamayestani, S. Proficient procedure for preparation of quinoline derivatives catalyzed by NbCl5 in glycerol as green solvent. J. Appl. Chem., 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/743094]
[33]
Hamama, W.S.; Waly, S.M.; Said, S.B.; Zoorob, H.H. Annulation of o-aminoquinoxaline-1,4-dioxidenitrile with ketonic compounds under friedländer-type cyclocondensation and its biological evaluation. J. Heterocycl. Chem., 2018, 55(7), 1554-1563.
[http://dx.doi.org/10.1002/jhet.3182]
[34]
Reddy, B.V.S.; Sreedhar, P.; Rao, R.S.; Nagaiah, K. Silver phosphotungstate: A novel and recyclable heteropoly acid for friedländer quinoline synthesis. Synthesis, 2004, 14, 2381-2385.
[http://dx.doi.org/10.1055/s-2004-831185]
[35]
Sridharan, V.; Ribelles, P.; Ramos, M.T.; Men, J.C.; Knorr, C.L. Cerium(IV) ammonium nitrate is an excellent, general catalyst for the Friedländer and Friedländer-Borsche quinoline syntheses: Very efficient access to the antitumor alkaloid luotonin A. J. Org. Chem., 2009, 74(15), 5715-5718.
[http://dx.doi.org/10.1021/jo900965f]
[36]
Das, B.; Damodar, K.; Chowdhury, N.; Suneel, K. A rapid, high-yielding, and efficient friedlander synthesis of quinolines catalyzed by 2,4,6-trichloro-1,3,5-triazine. Chem. Lett., 2007, 36(6), 796-797.
[http://dx.doi.org/10.1246/cl.2007.796]
[37]
Akbari, J.; Heydari, A.; Reza Kalhor, H.; Kohan, S.A. Sulfonic acid functionalized ionic liquid in combinatorial approach, a recyclable and water tolerant-acidic catalyst for one-pot Friedlander quinoline synthesis. J. Comb. Chem., 2010, 12(1), 137-140.
[http://dx.doi.org/10.1021/cc9001313] [PMID: 19883051]
[38]
Borade, R.M.; Somvanshi, S.B.; Kale, S.B.; Pawar, R.P.; Jadhav, K.M. Spinel zinc ferrite nanoparticles: An active nanocatalyst for microwave irradiated solvent free synthesis of chalcones. Mater. Res. Express, 2020, 7(1), 016116.
[http://dx.doi.org/10.1088/2053-1591/ab6c9c]
[39]
Zolfigol, M.A.; Salehi, P.; Ghaderi, A.; Shiri, M. A catalytic and green procedure for Friedlander quinoline synthesis in aqueous media. Catal. Commun., 2007, 8(8), 1214-1218.
[http://dx.doi.org/10.1016/j.catcom.2006.11.004]
[40]
Madhav, B.; Murthy, S.N.; Rao, K.R.; Nageswar, Y.V.D. An improved protocol for the synthesis of quinoline-2,3-dicarboxylates under neutral conditions via biomimetic approach. Helv. Chim. Acta, 2010, 93(2), 257-260.
[http://dx.doi.org/10.1002/hlca.200900254]
[41]
Reddy, T.R.; Reddy, L.S.; Reddy, G.R.; Yarbagi, K.; Lingappa, Y.; Rambabu, D.; Krishna, G.R.; Reddy, C.M.; Kumar, K.S.; Pal, M. Construction of a quinoline ring via a 3-component reaction in water: Crystal structure analysis and H-bonding patterns of a 2-aryl quinoline. Green Chem., 2012, 14(7), 1870-1872.
[http://dx.doi.org/10.1039/c2gc35256g]
[42]
Corio, A.; Gravier-Pelletier, C.; Busca, P. Regioselective functionalization of quinolines through C-H Activation: A comprehensive review. Molecules, 2021, 26(18), 5467.
[http://dx.doi.org/10.3390/molecules26185467] [PMID: 34576936]
[43]
Vlocskó, R.B.; Xie, G.; Török, B. Green synthesis of aromatic nitrogen-containing heterocycles by catalytic and non-traditional activation methods. Molecules, 2023, 28(10), 4153.
[http://dx.doi.org/10.3390/molecules28104153] [PMID: 37241894]
[44]
Lv, K.H.; Chen, L.; Zhao, K.; Yang, J.M.; Yan, S.J. Cu-catalyzed decarboxylative annulation of N -phenylglycines with maleimides: Synthesis of 1H-Pyrrolo[3,4-c]quinoline-1,3(2H)-diones. J. Org. Chem., 2023, 88(4), 2358-2366.
[http://dx.doi.org/10.1021/acs.joc.2c02757] [PMID: 36753732]
[45]
Kumari, P. Alka; Kumar, S.; Nisa, K.; Kumar Sharma, D. Efficient system for encapsulation and removal of paraquat and diquat from aqueous solution: 4-Sulfonatocalix[n]arenes and its magnetite modified nanomaterials. J. Environ. Chem. Eng., 2019, 7(3), 103130.
[http://dx.doi.org/10.1016/j.jece.2019.103130]
[46]
Campos, J.F.; Berteina-Raboin, S. Greener synthesis of nitrogen-containing heterocycles in water, PEG, and bio-based solvents. Catalysts, 2020, 10(4), 429.
[http://dx.doi.org/10.3390/catal10040429]
[47]
Palimkar, S.S.; Siddiqui, S.A.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Ionic liquid-promoted regiospecific Friedlander annulation: Novel synthesis of quinolines and fused polycyclic quinolines. J. Org. Chem., 2003, 68(24), 9371-9378.
[http://dx.doi.org/10.1021/jo035153u] [PMID: 14629159]
[48]
Qureshi, Z.S.; Deshmukh, K.M.; Bhanage, B.M. Applications of ionic liquids in organic synthesis and catalysis. Clean Technol. Environ. Policy, 2014, 16(8), 1487-1513.
[http://dx.doi.org/10.1007/s10098-013-0660-0]
[49]
San, Y.; Sun, J.; Wang, H.; Jin, Z.H.; Gao, H.J. Synthesis of 1,8-naphthyridines by the ionic liquid-catalyzed friedlander reaction and application in corrosion inhibition. ACS Omega, 2021, 6(42), 28063-28071.
[http://dx.doi.org/10.1021/acsomega.1c04103] [PMID: 34723006]
[50]
Seyyedi, N.; Shirini, F.; Nikoo Langarudi, M.S. DABCO-based ionic liquids: Green and recyclable catalysts for the synthesis of barbituric and thiobarbituric acid derivatives in aqueous media. RSC Adv., 2016, 6(50), 44630-44640.
[http://dx.doi.org/10.1039/C6RA05878G]
[51]
Lenardão, E.J.; Manke Barcellos, A.; Penteado, F.; Alves, D.; Perin, G. Glycerol as a solvent in organic synthesis. Revista Virtual de Química, 2017, 9(1), 192-237.
[http://dx.doi.org/10.21577/1984-6835.20170015]
[52]
Communication, I. C.; Zakerinasab, B.; Nasseri, M. A.; Kamali, F. Efficient procedure for the synthesis of quinoline derivatives by NbCl5.PEG and NbCl5 in glycerol as green solvent Iran. chem. commun., 2015, 3, 335-347.
[53]
Zolfigol, M.A.; Salehi, P.; Ghaderi, A.; Shiri, M. Iodine-catalyzed friedlander quinoline synthesis under solvent-free conditions. J. Chin. Chem. Soc., 2007, 54(2), 267-271.
[http://dx.doi.org/10.1002/jccs.200700039]
[54]
Xue, J.; Bai, L.G.; Zhang, L.; Zhou, Y.; Lin, X.L.; Mou, N.J.; Xiao, D.R.; Luo, Q.L. One-pot synthesis of 2,4-diacyl thiophenes from α-oxo ketene dithioacetals and propargylic alcohols. J. Org. Chem., 2020, 85(15), 9761-9775.
[http://dx.doi.org/10.1021/acs.joc.0c01093] [PMID: 32654488]
[55]
Subashini, R.; Angajala, G.; Aggile, K.; Khan, F.N. Microwave-assisted solid acid-catalyzed synthesis of quinolinyl quinolinones and evaluation of their antibacterial, antioxidant activities. Res. Chem. Intermed., 2014, 41, 4899-4912.
[http://dx.doi.org/10.1007/s11164-014-1575-z]
[56]
Ajani, O.O.; Iyaye, K.T.; Aderohunmu, D.V.; Olanrewaju, I.O.; Germann, M.W.; Olorunshola, S.J.; Bello, B.L. Microwave-assisted synthesis and antibacterial propensity of N′-s-benzylidene-2-propylquinoline-4-carbohydrazide and N′-((s-1H-pyrrol-2-yl)methylene)-2-propylquinoline-4-carbohydrazide motifs. Arab. J. Chem., 2020, 13(1), 1809-1820.
[http://dx.doi.org/10.1016/j.arabjc.2018.01.015]
[57]
Godino-Ojer, M.; Soriano, E.; Calvino-Casilda, V.; Maldonado-Hódar, F.J.; Pérez-Mayoral, E. Metal-free synthesis of quinolines catalyzed by carbon aerogels: Influence of the porous texture and surface chemistry. Chem. Eng. J., 2017, 314, 488-497.
[http://dx.doi.org/10.1016/j.cej.2016.12.006]
[58]
Godino-Ojer, M.; Matos, I.; Bernardo, M.; Carvalho, R.; Olívia, O.S.; Durán-Valle, C.; Fonseca, I.M.; Mayoral, E.P. Acidic porous carbons involved in the green and selective synthesis of benzodiazepines. Catalysis Tod., 2020, 357, 64-73.
[http://dx.doi.org/10.1016/j.cattod.2019.11.027]
[59]
Pérez-Mayoral, E.; Matos, I.; Bernardo, M.; Fonseca, I. New and advanced porous carbon materials in fine chemical synthesis. Emerging precursors of porous carbons. Catalysts, 2019, 9(2), 133.
[http://dx.doi.org/10.3390/catal9020133]
[60]
Jia, C.S.; Zhang, Z.; Tu, S.J.; Wang, G.W. Rapid and efficient synthesis of poly-substituted quinolines assisted by p-toluene sulphonic acid under solvent-free conditions: Comparative study of microwave irradiation versus conventional heating. Org. Biomol. Chem., 2006, 4(1), 104-110.
[http://dx.doi.org/10.1039/B513721G] [PMID: 16358003]
[61]
Tasqeeruddin, S.; Asiri, Y.; Alsherhri, J.A. An efficient and green microwave-assisted synthesis of quinoline derivatives via knoevengal condensation. Lett. Org. Chem., 2020, 17(2), 157-163.
[http://dx.doi.org/10.2174/1570178616666190618153721]
[62]
Muscia, G.C.; Bollini, M.; Carnevale, J.P.; Bruno, A.M.; Asís, S.E. Microwave-assisted Friedländer synthesis of quinolines derivatives as potential antiparasitic agents. Tetrahedron Lett., 2006, 47(50), 8811-8815.
[http://dx.doi.org/10.1016/j.tetlet.2006.10.073]
[63]
Amariucai-Mantu, D.; Mangalagiu, V.; Danac, R.; Mangalagiu, I.I. Microwave assisted reactions of azaheterocycles formedicinal chemistry applications. Molecules, 2020, 25(3), 716.
[http://dx.doi.org/10.3390/molecules25030716] [PMID: 32046020]
[64]
Venkanna, A.; Swapna, K.; Rao, P.V. Recyclable nano copper oxide catalyzed synthesis of quinoline-2,3-dicarboxylates under ligand free conditions. RSC Adv., 2014, 4(29), 15154-15160.
[http://dx.doi.org/10.1039/c3ra47212d]
[65]
Samiei, Z.; Soleimani-Amiri, S.; Azizi, Z. Fe3O4@C@OSO3H as an efficient, recyclable magnetic nanocatalyst in Pechmann condensation: Green synthesis, characterization, and theoretical study. Mol. Divers., 2021, 25(1), 67-86.
[http://dx.doi.org/10.1007/s11030-019-10025-w] [PMID: 31927717]
[66]
Das, B.; Damodar, K.; Chowdhury, N.; Kumar, R.A. Application of heterogeneous solid acid catalysts for Friedlander synthesis of quinolines. J. Mol. Catal. Chem., 2007, 274(1-2), 148-152.
[http://dx.doi.org/10.1016/j.molcata.2007.04.034]
[67]
Gre, A.N.; Arcadi, Q.; Chiarini, M.; Giuseppe, S. Di; Marinelli, F.; Ingegneria, C.; Aquila, U. L.; Vetoio, V.; Due, C. A new green approach to the friedländer synthesis of quinolines. Academia, 2002, 1-4.
[68]
Shirini, F.; Yahyazadeh, A.; Mohammadi, K.; Khaligh, N.G. Solvent-free synthesis of quinoline derivatives via the Friedländer reaction using 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient and recyclable ionic liquid catalyst. C. R. Chim., 2014, 17(4), 370-376.
[http://dx.doi.org/10.1016/j.crci.2013.10.007]
[69]
Zhu, Y.Q.; He, J.L.; Niu, Y.X.; Han, T.F.; Zhu, K. Rapid Microwave‐assisted, solvent‐free approach to functionalization of 8‐methylquinolines via Rh‐Catalyzed C(sp3)‐H activation. ChemistrySelect, 2019, 4(2), 576-579.
[http://dx.doi.org/10.1002/slct.201803833]
[70]
Naidoo, S.A. A green, solvent-free one-pot synthesis of disubstituted quinolines via a3-coupling using 1 Mol% FeCl3. Heterocycles, 2016, 92(9), 1655.
[71]
Fallah-Mehrjardi, M. Friedlander synthesis of poly-substituted quinolines: A mini review. Mini Rev. Org. Chem., 2017, 14(3), 187-196.
[http://dx.doi.org/10.2174/1570193X14666170206124809]
[72]
Abdollahi-Alibeik, M.; Pouriayevali, M. Nanosized MCM-41 supported protic ionic liquid as an efficient novel catalytic system for Friedlander synthesis of quinolines. Catal. Commun., 2012, 22, 13-18.
[http://dx.doi.org/10.1016/j.catcom.2012.02.004]
[73]
Ma, L.; Jia, I.; Guo, X.; Xiang, L. High performance of Pd Catalysts on bimodal mesopore for the silica catalytic oxidation of toluene. Chin. J. Catal., 2014, 35, 108-119.
[http://dx.doi.org/10.1016/S1872-2067(12)60720-7]
[74]
Mohamadpour, F.; Maghsoodlou, M.T.; Lashkari, M.; Heydari, R.; Hazeri, N. Synthesis of quinolines, Spiro[4H-pyran-oxindoles] and Xanthenes under solvent-free conditions. Org. Prep. Proced. Int., 2019, 51(5), 456-476.
[http://dx.doi.org/10.1080/00304948.2019.1653126]
[75]
Sarma, P.; Dutta, A.K.; Gogoi, P.; Sarma, B.; Borah, R. 3-Methyl-1-sulfoimidazolium ionic liquids as recyclable medium for efficient synthesis of quinoline derivatives by Friedländer annulation. Monatsh. Chem., 2015, 146(1), 173-180.
[http://dx.doi.org/10.1007/s00706-014-1305-7]
[76]
Gajare, S.; Patil, A.; Hangirgekar, S.; Dhanmane, S.; Rashinkar, G. Green synthesis of quinolines via A3-coupling by using graphene oxide-supported Brønsted acidic ionic liquid. Res. Chem. Intermed., 2020, 46(5), 2417-2436.
[http://dx.doi.org/10.1007/s11164-020-04099-7]
[77]
Dabiri, M.; Bashiribod, S. Phosphotungstic acid: An efficient, cost-effective and recyclable catalyst for the synthesis of polysubstituted quinolines. Molecules, 2009, 14(3), 1126-1133.
[http://dx.doi.org/10.3390/molecules14031126] [PMID: 19305365]
[78]
Maleki, A.; Javanshir, S.; Sharifi, S. Silica-based sulfonic acid (MCM-41-SO3H): A practical and efficient catalyst for the synthesis of highly substituted quinolines under solvent-free conditions at ambient temperature. Current Chemistry Letters, 2014, 3(2), 125-132.
[http://dx.doi.org/10.5267/j.ccl.2013.11.001]
[79]
Herr, J.M.; Rössiger, C.; Albrecht, G.; Yanagi, H.; Göttlich, R. Solvent-free microwave-assisted synthesis of imidazo[1,5-a]pyridine and quinoline derivatives. Synth. Commun., 2019, 49(21), 1-10.
[http://dx.doi.org/10.1080/00397911.2019.1650188]
[80]
Dabiri, M.; Baghbanzadeh, M.; Nikcheh, M.S. Oxalic acid: An efficient and cost-effective organic catalyst for the Friedländer quinoline synthesis under solvent-free conditions. Monatsh. Chem., 2007, 138(12), 1249-1252.
[http://dx.doi.org/10.1007/s00706-007-0712-4]
[81]
Palakshi Reddy, B.; Iniyavan, P.; Sarveswari, S.; Vijayakumar, V. Nickel oxide nanoparticles catalyzed synthesis of poly-substituted quinolines via Friedlander hetero-annulation reaction. Chin. Chem. Lett., 2014, 25(12), 1595-1600.
[http://dx.doi.org/10.1016/j.cclet.2014.06.026]
[82]
Dadhania, H.; Raval, D.; Dadhania, A. A highly efficient and solvent-free approach for the synthesis of quinolines and fused polycyclic quinolines catalyzed by magnetite nanoparticle-supported acidic ionic liquid. Polycycl. Aromat. Compd., 2021, 41(2), 440-453.
[http://dx.doi.org/10.1080/10406638.2019.1595057]
[83]
Sun, L.; Lv, H.; Feng, J.; Guselnikova, O.; Wang, Y.; Yamauchi, Y.; Liu, B. Noble‐metal‐based hollow mesoporous nanoparticles: Synthesis strategies and applications. Adv. Mater., 2022, 34(31), 2201954.
[http://dx.doi.org/10.1002/adma.202201954] [PMID: 35695354]
[84]
Ghobadi, M. Based on copper ferrite nanoparticles (CuFe2O4 NPs): Catalysis in synthesis of heterocycles. J. Synth. Chem., 2022, 1(2), 84-96.
[http://dx.doi.org/10.22034/jsc.2022.155234]
[85]
Jafarzadeh, M.; Soleimani, E.; Norouzi, P.; Adnan, R.; Sepahvand, H. Preparation of trifluoroacetic acid-immobilized Fe3O4@SiO2–APTES nanocatalyst for synthesis of quinolines. J. Fluor. Chem., 2015, 178, 219-224.
[http://dx.doi.org/10.1016/j.jfluchem.2015.08.007]
[86]
Godino-Ojer, M.; Morales-Torres, S.; Pérez-Mayoral, E.; Maldonado-Hódar, F.J. Enhanced catalytic performance of ZnO/carbon materials in the green synthesis of poly-substituted quinolines. J. Environ. Chem. Eng., 2022, 10(1), 106879.
[http://dx.doi.org/10.1016/j.jece.2021.106879]
[87]
Patel, A.; Patel, S.; Mehta, M.; Patel, Y.; Patel, R.; Shah, D.; Patel, D.; Shah, U.; Patel, M.; Patel, S.; Solanki, N.; Bambharoliya, T.; Patel, S.; Nagani, A.; Patel, H.; Vaghasiya, J.; Shah, H.; Prajapati, B.; Rathod, M.; Bhimani, B.; Patel, R.; Bhavsar, V.; Rakholiya, B.; Patel, M.; Patel, P. A review on synthetic investigation for quinoline-recent green approaches. Green Chem. Lett. Rev., 2022, 15(2), 337-372.
[http://dx.doi.org/10.1080/17518253.2022.2064194]
[88]
Tople, M.S.; Patel, N.B.; Patel, P.P. Microwave irradiation for the synthesis of quinoline scaffolds: A review. J. Indian Chem. Soc., 2023, 20(1), 1-28.
[http://dx.doi.org/10.1007/s13738-022-02648-y]
[89]
Mashaii, N.; Balouch, M.; Mobedi, I. A Report about Helminth. Ar Ch Of., 2008, 33(4), 9-13.
[90]
Kanaani, E.; Nasr-Esfahani, M. A green eco approach toward the synthesis of novel 4-iminoquinoline derivatives using Brønsted acid nanocatalysts. Monatsh. Chem., 2018, 149(3), 543-550.
[http://dx.doi.org/10.1007/s00706-017-2069-7]
[91]
Varma, R.S.; States, U.; Protection, E. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediat. Green Chem., 2015, 16(4), 2027-2041.
[http://dx.doi.org/10.1039/c3gc42640h]
[92]
Torres, F.G.; De-la-Torre, G.E. Synthesis, characteristics, and applications of modified starch nanoparticles: A review. Int. J. Biol. Macromol., 2022, 194(194), 289-305.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.187] [PMID: 34863968]
[93]
Tripolitsiotis, N.P.; Thomaidi, M.; Neochoritis, C.G. The ugi three‐component reaction; A valuable tool in modern organic synthesis. Eur. J. Org. Chem., 2020, 2020(42), 6525-6554.
[http://dx.doi.org/10.1002/ejoc.202001157]
[94]
Subba Reddy, B.V.; Venkateswarlu, A.; Madan, C.; Vinu, A. Cellulose-SO3H: An efficient and biodegradable solid acid for the synthesis of quinazolin-4(1H)-ones. Tetrahedron Lett., 2011, 52(16), 1891-1894.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.030]
[95]
Shaabani, A.; Rahmati, A.; Badri, Z. Sulfonated cellulose and starch: New biodegradable and renewable solid acid catalysts for efficient synthesis of quinolines. Catal. Commun., 2008, 9(1), 13-16.
[http://dx.doi.org/10.1016/j.catcom.2007.05.021]
[96]
Jiang, H.; An, X.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Visible-light-promoted iminyl-radical formation from acyl oximes: A unified approach to pyridines, quinolines, and phenanthridines. Angew. Chem. Int. Ed., 2015, 54(13), 4055-4059.
[http://dx.doi.org/10.1002/anie.201411342] [PMID: 25650356]
[97]
Davies, J.; Booth, S.G.; Essafi, S.; Dryfe, R.A.W.; Leonori, D. Visible-light-mediated generation of nitrogen-centered radicals: Metal-free hydroimination and iminohydroxylation cyclization reactions. Angew. Chem. Int. Ed., 2015, 54(47), 14017-14021.
[http://dx.doi.org/10.1002/anie.201507641] [PMID: 26412046]
[98]
Dauncey, E.M.; Morcillo, S.P.; Douglas, J.J.; Sheikh, N.S.; Leonori, D. Photoinduced remote functionalisations by iminyl radical promoted C−C and C−H bond cleavage cascades. Angew. Chem. Int. Ed., 2018, 57(3), 744-748.
[http://dx.doi.org/10.1002/anie.201710790] [PMID: 29114978]
[99]
Davies, J.; Morcillo, S.P.; Douglas, J.J.; Leonori, D. Hydroxylamine derivatives as nitrogen‐radical precursors in visible‐light photochemistry. Chemistry, 2018, 24(47), 12154-12163.
[http://dx.doi.org/10.1002/chem.201801655] [PMID: 29787627]
[100]
Serhan, M.; Sprowls, M.; Jackemeyer, D.; Long, M.; Perez, I.D.; Maret, W.; Tao, N.; Forzani, E. Total iron measurement in human serum with a novel smartphone-based assay. IEEE J. Transl. Eng. Health Med., 2020, 8, 1-9.
[101]
Javanshir, S.; Sharifi, S.; Maleki, A.; Sohrabi, B.; Kiasadegh, M. p-toluenesulfonic acid-catalyzed synthesis of polysubstituted quinolines via Friedländer reaction under ball-milling conditions at room temperature and theoretical study on the mechanism using a density functional theory method. J. Phys. Org. Chem., 2014, 27(7), 589-596.
[http://dx.doi.org/10.1002/poc.3305]
[102]
Javanshir, S.; Saghiran Pourshiri, N.; Dolatkhah, Z.; Farhadnia, M. Caspian Isinglass, a versatile and sustainable biocatalyst for domino synthesis of spirooxindoles and spiroacenaphthylenes in water. Monatsh. Chem., 2017, 148(4), 703-710.
[http://dx.doi.org/10.1007/s00706-016-1779-6]
[103]
Tireli, M.; Maračić, S.; Lukin, S.; Kulcsár, M.J.; Žilić, D.; Cetina, M.; Halasz, I.; Raić-Malić, S.; Užarević, K. Solvent-free copper-catalyzed click chemistry for the synthesis of N-heterocyclic hybrids based on quinoline and 1,2,3-triazole. Beilstein J. Org. Chem., 2017, 13, 2352-2363.
[http://dx.doi.org/10.3762/bjoc.13.232] [PMID: 29181115]
[104]
Wang, Z.; Shen, G.; Huang, X.; Gong, S.; Yang, B.; Sun, Z.; Zhang, Z.; Liu, W. Ball-milling synthesis of tetrahydroquinolines via ‘One-pot’ three-component diels-alder reaction catalyzed by phosphotungstic acid. Chem. Res. Chin. Univ., 2020, 36(5), 835-842.
[http://dx.doi.org/10.1007/s40242-020-9019-3]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy