Research Article

MicroRNA Expression Profile in Early-Stage Breast Cancers

Author(s): Krishna Patel, Deva Magendhra Rao, Shirley Sundersingh, Sridevi Velusami, Thangarajan Rajkumar, Bipin Nair, Akhilesh Pandey, Aditi Chatterjee, Samson Mani* and Harsha Gowda*

Volume 13, Issue 1, 2024

Published on: 16 October, 2023

Page: [71 - 81] Pages: 11

DOI: 10.2174/0122115366256479231003064842

Price: $65

Abstract

Background: Breast cancer is one of the leading causes of cancer deaths in women. Early diagnosis offers the best hope for a cure. Ductal carcinoma in situ is considered a precursor of invasive ductal carcinoma of the breast. In this study, we carried out microRNA sequencing from 7 ductal carcinoma in situ (DCIS), 6 infiltrating ductal carcinomas (IDC Stage IIA) with paired normal, and 5 unpaired normal breast tissue samples.

Methods: We have deployed miRge for microRNA analysis, DESeq for differential expression analysis, and Cytoscape for competing endogenous RNA network investigation.

Results: Here, we identified 76 miRNAs that were differentially expressed in DCIS and IDC. Additionally, we provide preliminary evidence of miR-365b-3p and miR-7-1-3p being overexpressed, and miR-6507-5p, miR-487b-3p, and miR-654-3p being downregulated in DCIS relative to normal breast tissue. We also identified a miRNA miR-766-3p that was overexpressed in earlystage IDCs. The overexpression of miR-301a-3p in DCIS and IDC was confirmed in 32 independent breast cancer tissue samples.

Conclusion: Higher expression of miR-301a-3p is associated with poor overall survival in The Cancer Genome Atlas Breast Cancer (TCGA-BRCA) dataset, indicating that it may be associated with DCIS at high risk of progressing to IDC and warrants deeper investigation.

« Previous
Graphical Abstract

[1]
Malvia S, Bagadi SA, Dubey US, Saxena S. Epidemiology of breast cancer in Indian women. Asia Pac J Clin Oncol 2017; 13(4): 289-95.
[http://dx.doi.org/10.1111/ajco.12661] [PMID: 28181405]
[2]
Mathur P, Sathishkumar K, Chaturvedi M, et al. Cancer Statistics, 2020: Report from national cancer registry programme, India. JCO Glob Oncol 2020; 6(6): 1063-75.
[http://dx.doi.org/10.1200/GO.20.00122] [PMID: 32673076]
[3]
Hannafon BN, Ding WQ. miRNAs as biomarkers for predicting the progression of ductal carcinoma in situ. Am J Pathol 2018; 188(3): 542-9.
[http://dx.doi.org/10.1016/j.ajpath.2017.11.003] [PMID: 29246496]
[4]
Schultz S, Bartsch H, Sotlar K, et al. Progression-specific genes identified in microdissected formalin-fixed and paraffin-embedded tissue containing matched ductal carcinoma in situ and invasive ductal breast cancers. BMC Med Genomics 2018; 11(1): 80.
[http://dx.doi.org/10.1186/s12920-018-0403-5] [PMID: 30236106]
[5]
Xiong DD, Lv J, Wei KL, et al. A nine-miRNA signature as a potential diagnostic marker for breast carcinoma: An integrated study of 1,110 cases. Oncol Rep 2017; 37(6): 3297-304.
[http://dx.doi.org/10.3892/or.2017.5600] [PMID: 28440475]
[6]
Wang F, Zheng Z, Guo J, Ding X. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol 2010; 119(3): 586-93.
[http://dx.doi.org/10.1016/j.ygyno.2010.07.021] [PMID: 20801493]
[7]
Jiang S, Zhang HW, Lu MH, et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 2010; 70(8): 3119-27.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4250] [PMID: 20354188]
[8]
Chiang CH, Hou MF, Hung WC. Up-regulation of miR-182 by β-catenin in breast cancer increases tumorigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor RECK. Biochim Biophys Acta, Gen Subj 2013; 1830(4): 3067-76.
[http://dx.doi.org/10.1016/j.bbagen.2013.01.009] [PMID: 23333633]
[9]
Hu X, Guo J, Zheng L, et al. The heterochronic microRNA let-7 inhibits cell motility by regulating the genes in the actin cytoskeleton pathway in breast cancer. Mol Cancer Res 2013; 11(3): 240-50.
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0432] [PMID: 23339187]
[10]
Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res 2010; 70(1): 378-87.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2021] [PMID: 19996288]
[11]
Li X, Roslan S, Johnstone CN, et al. MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene 2014; 33(31): 4077-88.
[http://dx.doi.org/10.1038/onc.2013.370] [PMID: 24037528]
[12]
Blenkiron C, Goldstein LD, Thorne NP, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 2007; 8(10): R214.
[http://dx.doi.org/10.1186/gb-2007-8-10-r214] [PMID: 17922911]
[13]
Kurozumi S, Yamaguchi Y, Kurosumi M, Ohira M, Matsumoto H, Horiguchi J. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet 2017; 62(1): 15-24.
[http://dx.doi.org/10.1038/jhg.2016.89] [PMID: 27439682]
[14]
Zhang K, Wang YW, Wang YY, et al. Identification of microRNA biomarkers in the blood of breast cancer patients based on microRNA profiling. Gene 2017; 619: 10-20.
[http://dx.doi.org/10.1016/j.gene.2017.03.038] [PMID: 28359916]
[15]
Kodahl AR, Lyng MB, Binder H, et al. Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: A case control study. Mol Oncol 2014; 8(5): 874-83.
[http://dx.doi.org/10.1016/j.molonc.2014.03.002] [PMID: 24694649]
[16]
Ng EKO, Li R, Shin VY, et al. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One 2013; 8(1): e53141.
[http://dx.doi.org/10.1371/journal.pone.0053141] [PMID: 23301032]
[17]
Yoshikawa M, Iinuma H, Umemoto Y, Yanagisawa T, Matsumoto A, Jinno H. Exosome encapsulated microRNA 223 3p as a minimally invasive biomarker for the early detection of invasive breast cancer. Oncol Lett 2018; 15(6): 9584-92.
[http://dx.doi.org/10.3892/ol.2018.8457] [PMID: 29805680]
[18]
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16(3): 203-22.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[19]
Shimomura A, Shiino S, Kawauchi J, et al. Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer Sci 2016; 107(3): 326-34.
[http://dx.doi.org/10.1111/cas.12880] [PMID: 26749252]
[20]
Yerukala Sathipati S, Ho SY. Identifying a miRNA signature for predicting the stage of breast cancer. Sci Rep 2018; 8(1): 16138.
[http://dx.doi.org/10.1038/s41598-018-34604-3] [PMID: 30382159]
[21]
Volinia S, Bertagnolo V, Grassilli S, et al. Levels of miR-126 and miR-218 are elevated in ductal carcinoma in situ (DCIS) and inhibit malignant potential of DCIS derived cells. Oncotarget 2018; 9(34): 23543-53.
[http://dx.doi.org/10.18632/oncotarget.25261] [PMID: 29805754]
[22]
Deva Magendhra Rao AK, Patel K, Korivi Jyothiraj S, et al. Identification of lnc RNA s associated with early-stage breast cancer and their prognostic implications. Mol Oncol 2019; 13(6): 1342-55.
[http://dx.doi.org/10.1002/1878-0261.12489] [PMID: 30959550]
[23]
Babraham bioinformatics - FastQC A quality control tool for high throughput sequence data. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (cited 2023 Mar 22).
[24]
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res 2019; 47(D1): D155-62.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[25]
Baras AS, Mitchell CJ, Myers JR, et al. miRge: A multiplexed method of processing small rna-seq data to determine MicroRNA entropy. PLoS One 2015; 10(11): e0143066.
[http://dx.doi.org/10.1371/journal.pone.0143066] [PMID: 26571139]
[26]
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17(1): 10-2.
[http://dx.doi.org/10.14806/ej.17.1.200]
[27]
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9(4): 357-9.
[http://dx.doi.org/10.1038/nmeth.1923] [PMID: 22388286]
[28]
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010; 11(10): R106.
[http://dx.doi.org/10.1186/gb-2010-11-10-r106] [PMID: 20979621]
[29]
Cho S, Jang I, Jun Y, et al. MiRGator v3.0: A microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res 2013; 41(Database issue): D252-7.
[PMID: 23193297]
[30]
Lánczky A, Nagy Á, Bottai G, et al. miRpower: A web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res Treat 2016; 160(3): 439-46.
[http://dx.doi.org/10.1007/s10549-016-4013-7] [PMID: 27744485]
[31]
Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012; 40(1): 37-52.
[http://dx.doi.org/10.1093/nar/gkr688] [PMID: 21911355]
[32]
Chung IF, Chang SJ, Chen CY, et al. YM500v3: A database for small RNA sequencing in human cancer research. Nucleic Acids Res 2017; 45(D1): D925-31.
[http://dx.doi.org/10.1093/nar/gkw1084] [PMID: 27899625]
[33]
Kent WJ. BLAT:The blast-like alignment tool. Genome Res 2002; 12(4): 656-64.
[PMID: 11932250]
[34]
Paraskevopoulou MD, Vlachos IS, Karagkouni D, et al. DIANA-LncBase v2: Indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 2016; 44(D1): D231-8.
[http://dx.doi.org/10.1093/nar/gkv1270] [PMID: 26612864]
[35]
Teng X, Chen X, Xue H, et al. NPInter v4.0: An integrated database of ncRNA interactions. Nucleic Acids Res 2020; 48(D1): D160-5.
[PMID: 31670377]
[36]
Li JH, Liu S, Zhou H, Qu LH, Yang JH. StarBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42(D1): D92-7.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[37]
Chou CH, Chang NW, Shrestha S, et al. miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 2016; 44(D1): D239-47.
[http://dx.doi.org/10.1093/nar/gkv1258] [PMID: 26590260]
[38]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[39]
Haakensen VD, Nygaard V, Greger L, et al. Subtype-specific micro-RNA expression signatures in breast cancer progression. Int J Cancer 2016; 139(5): 1117-28.
[http://dx.doi.org/10.1002/ijc.30142] [PMID: 27082076]
[40]
Li S, Pu T, Xiao L, et al. Screening of recurrence related MicroRNA in Ductal Carcinoma in Situ and functional study of MicroRNA-654-5p. J Breast Cancer 2019; 22(1): 52-66.
[http://dx.doi.org/10.4048/jbc.2019.22.e4] [PMID: 30941233]
[41]
Gao J, Li L, Wu M, et al. MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS One 2013; 8(6): e65138.
[http://dx.doi.org/10.1371/journal.pone.0065138] [PMID: 23750239]
[42]
Han S, Zou H, Lee JW, et al. miR-1307-3p stimulates breast cancer development and progression by targeting SMYD4. J Cancer 2019; 10(2): 441-8.
[http://dx.doi.org/10.7150/jca.30041] [PMID: 30719138]
[43]
Chang YY, Kuo WH, Hung JH, et al. Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing. Mol Cancer 2015; 14(1): 36.
[http://dx.doi.org/10.1186/s12943-015-0301-9] [PMID: 25888956]
[44]
Shi W, Bruce J, Lee M, et al. MiR-449a promotes breast cancer progression by targeting CRIP2. Oncotarget 2016; 7(14): 18906-18.
[http://dx.doi.org/10.18632/oncotarget.7753] [PMID: 26934316]
[45]
Ernster VL, Ballard-Barbash R, Barlow WE, et al. Detection of ductal carcinoma in situ in women undergoing screening mammography. J Natl Cancer Inst 2002; 94(20): 1546-54.
[http://dx.doi.org/10.1093/jnci/94.20.1546] [PMID: 12381707]
[46]
Farazi TA, Horlings HM, ten Hoeve JJ, et al. MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res 2011; 71(13): 4443-53.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0608] [PMID: 21586611]
[47]
Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017; 19(8): 649-58.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[48]
Lettlova S, Brynychova V, Blecha J, et al. MiR-301a-3p Suppresses estrogen signaling by directly inhibiting ESR1 in ERα positive breast cancer. Cell Physiol Biochem 2018; 46(6): 2601-15.
[http://dx.doi.org/10.1159/000489687] [PMID: 29763890]
[49]
Ramirez-Ardila DE, Ruigrok-Ritstier K, Helmijr JC, et al. LRG1 mRNA expression in breast cancer associates with PIK3CA genotype and with aromatase inhibitor therapy outcome. Mol Oncol 2016; 10(8): 1363-73.
[http://dx.doi.org/10.1016/j.molonc.2016.07.004] [PMID: 27491861]
[50]
Giannoudis A, Clarke K, Zakaria R, et al. A novel panel of differentially-expressed microRNAs in breast cancer brain metastasis may predict patient survival. Sci Rep 2019; 9(1): 18518.
[http://dx.doi.org/10.1038/s41598-019-55084-z] [PMID: 31811234]
[51]
Nygaard S, Jacobsen A, Lindow M, et al. Identification and analysis of miRNAs in human breast cancer and teratoma samples using deep sequencing. BMC Med Genomics 2009; 2(1): 35.
[http://dx.doi.org/10.1186/1755-8794-2-35] [PMID: 19508715]
[52]
Yuan C, Zhou L, Zhang L, et al. Identification and integrated analysis of key differentially expressed circular RNAs in ER-positive subtype breast cancer. Epigenomics 2019; 11(3): 297-321.
[http://dx.doi.org/10.2217/epi-2018-0147] [PMID: 30417652]
[53]
Romero-Cordoba S, Rodriguez-Cuevas S, Rebollar-Vega R, et al. Identification and pathway analysis of microRNAs with no previous involvement in breast cancer. PLoS One 2012; 7(3): e31904.
[http://dx.doi.org/10.1371/journal.pone.0031904] [PMID: 22438871]
[54]
Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W. ceRNA in cancer: Possible functions and clinical implications. J Med Genet 2015; 52(10): 710-8.
[http://dx.doi.org/10.1136/jmedgenet-2015-103334] [PMID: 26358722]
[55]
Lv M, Xu P, Wu Y, et al. LncRNAs as new biomarkers to differentiate triple negative breast cancer from non-triple negative breast cancer. Oncotarget 2016; 7(11): 13047-59.
[http://dx.doi.org/10.18632/oncotarget.7509] [PMID: 26910840]
[56]
Yang Y, Yang H, Xu M, et al. Long non-coding RNA (lncRNA) MAGI2-AS3 inhibits breast cancer cell growth by targeting the Fas/FasL signalling pathway. Hum Cell 2018; 31(3): 232-41.
[http://dx.doi.org/10.1007/s13577-018-0206-1] [PMID: 29679339]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy