Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

The Effectiveness of Transcranial Magnetic Stimulation in Treating Apraxia

Author(s): Asma AlRuwaili, Rida Fatima, Amal Hussain, Mohammad Uzair, Turki Abualait, Kaleem Imdad and Shahid Bashir*

Volume 23, Issue 8, 2024

Published on: 13 October, 2023

Page: [1030 - 1039] Pages: 10

DOI: 10.2174/0118715273249412231010171926

Price: $65

Abstract

Apraxia can be detected when engaging in mental motor envisioning exercises. The nonverbal skills of manufacturing, representation, strategizing, arithmetic, visual sensitivity, and motor skills are all related to apraxia. Limb apraxia also negatively affects communication gestures and linguistic skills. The impairment of brain regions related to motion patterns is the primary cause of apraxia. People with apraxia may struggle to complete a variety of tasks because they are unable to focus on various movements. Apraxia can result from injury to the premotor cortex since it has a role in the left hemisphere-dependent selection of movements. Cognitive and complicated motor system deficits are hallmarks of the corticobasal syndrome. Apraxia of the limbs and visuospatial abnormalities are typical clinical types. TMS was used to study these problems; however, no research was done on the relationship between TMS parameters and clinical types. It is possible for changes in brain activity to last a long time when repetitive TMS (rTMS) is utilized. Electromyography shows that noninvasive TMS of the motor cortex causes target muscle spasms (MEP). The human motor cortex is a part of the cerebral cortex that is involved in the organization, management, and execution of voluntary movements. TMS and other neuroimaging techniques are frequently used to identify changes in this region. Cortical motor excitability varies among different diagnoses; therefore, it is important to determine the effectiveness of TMS. Therefore, this study aims to review the causes and neurophysiological simulation of apraxia along with the principles and effects of TMS on apraxia.

[1]
Vasileva NC, Jekov JD. Dynamics of Praxis Functions in the Context of Maturation of the Parietal and Frontal Brain Regions in the Period 4-6 Years of Age.Cerebral and Cerebellar Cortex–Interaction and Dynamics in Health and Disease. IntechOpen 2020.
[2]
Rosenzopf H, Wiesen D, Basilakos A, et al. Mapping the human praxis network: an investigation of white matter disconnection in limb apraxia of gesture production. Brain Commun 2022; 4(1): fcac004.
[http://dx.doi.org/10.1093/braincomms/fcac004]
[3]
Park JE. Apraxia: Review and Update. J Clin Neurol 2017; 13(4): 317-24.
[http://dx.doi.org/10.3988/jcn.2017.13.4.317] [PMID: 29057628]
[4]
Gross RG, Grossman M. Update on apraxia. Curr Neurol Neurosci Rep 2008; 8(6): 490-6.
[http://dx.doi.org/10.1007/s11910-008-0078-y] [PMID: 18957186]
[5]
Petreska B, Adriani M, Blanke O, Billard AG. Apraxia: A review. Prog Brain Res 2007; 164: 61-83.
[http://dx.doi.org/10.1016/S0079-6123(07)64004-7]] [PMID: 17920426]
[6]
Haaland KY, Harrington DL, Knight RT. Neural representations of skilled movement. Brain 2000; 123(11): 2306-13.
[http://dx.doi.org/10.1093/brain/123.11.2306] [PMID: 11050030]
[7]
Mulder T. Motor imagery and action observation: Cognitive tools for rehabilitation. Journal of neural transmission 2007; 114(10): 1265-78.
[8]
Jeannerod M, Decety J. Mental motor imagery: A window into the representational stages of action. Curr Opin Neurobiol 1995; 5(6): 727-32.
[http://dx.doi.org/10.1016/0959-4388(95)80099-9] [PMID: 8805419]
[9]
Foundas AL. Apraxia. Handb Clin Neurol 2013; 110: 335-45.
[http://dx.doi.org/10.1016/B978-0-444-52901-5.00028-9] [PMID: 23312653]
[10]
Hong Z, Zheng H, Luo J, et al. Effects of low-frequency repetitive transcranial magnetic stimulation on language recovery in poststroke survivors with aphasia: An updated meta-analysis. Neurorehabil Neural Repair 2021; 35(8): 680-91.
[http://dx.doi.org/10.1177/15459683211011230] [PMID: 34032160]
[11]
Heilman KM. Upper limb apraxia. Continuum (N Y) 2021; 27(6): 1602-23.
[http://dx.doi.org/10.1212/CON.0000000000001014] [PMID: 34881728]
[12]
Armstrong MJ, Litvan I, Lang AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013; 80(5): 496-503.
[http://dx.doi.org/10.1212/WNL.0b013e31827f0fd1] [PMID: 23359374]
[13]
Spires-Jones TL. Brain Communications early career researcher paper prize. Brain Commun 2022; 5(1): fcac328.
[http://dx.doi.org/10.1093/braincomms/fcac328] [PMID: 36643000]
[14]
Ziegler W. Apraxia of speech. Handb Clin Neurol 2008; 88: 269-85.
[http://dx.doi.org/10.1016/S0072-9752(07)88013-4] [PMID: 18631696]
[15]
Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985; 325(8437): 1106-7.
[http://dx.doi.org/10.1016/S0140-6736(85)92413-4] [PMID: 2860322]
[16]
Toth C, King Johnson ML, Heinzerling A, Trapp N. Response to TMS treatment for depression associated with higher levels of psychological well-being. J Psychiatr Res 2022; 150: 142-6.
[http://dx.doi.org/10.1016/j.jpsychires.2022.03.030] [PMID: 35378486]
[17]
Georgiou AM, Kambanaros M. The effectiveness of transcranial magnetic stimulation (TMS) paradigms as treatment options for recovery of language deficits in chronic poststroke aphasia. Behav Neurol 2022; 2022: 1-25.
[http://dx.doi.org/10.1155/2022/7274115] [PMID: 35069929]
[18]
Mizutani-Tiebel Y, Tik M, Chang KY, et al. Concurrent TMS-fMRI: Technical challenges, developments, and overview of previous studies. Front Psychiatry 2022; 13: 825205.
[http://dx.doi.org/10.3389/fpsyt.2022.825205] [PMID: 35530029]
[19]
Hernandez-Pavon JC, Veniero D, Bergmann TO, et al. TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimul 2023; 16(2): 567-93.
[http://dx.doi.org/10.1016/j.brs.2023.02.009] [PMID: 36828303]
[20]
Romero MC, Davare M, Armendariz M, Janssen P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat Commun 2019; 10(1): 2642.
[http://dx.doi.org/10.1038/s41467-019-10638-7] [PMID: 31201331]
[21]
Apraxia LiepmannH. Ergebn Ges Med 1920; 1: 516-23.
[22]
Leiguarda RC, Marsden CD. Limb apraxias. Brain 2000; 123(5): 860-79.
[http://dx.doi.org/10.1093/brain/123.5.860] [PMID: 10775533]
[23]
Soliveri P, Piacentini S, Girotti F. Limb apraxia in corticobasal degeneration and progressive supranuclear palsy. Neurology 2005; 64(3): 448-53.
[http://dx.doi.org/10.1212/01.WNL.0000150732.92567.BA] [PMID: 15699373]
[24]
Vanbellingen T, Hofmänner D, Kübel S, Bohlhalter S. Limb kinetic apraxia is an independent predictor for quality of life in Parkinson’s disease. Mov Disord Clin Pract 2018; 5(2): 156-9.
[http://dx.doi.org/10.1002/mdc3.12572] [PMID: 30363441]
[25]
Randerath J. Syndromes of limb apraxia: Developmental and acquired disorders of skilled movements. APA handbook of neuropsychology, Volume 1: Neurobehavioral disorders and conditions: Accepted science and open questions,. US: American Psychological Association: Washington, DC 2023; pp. 159-84.
[26]
Zadikoff C, Lang AE. Apraxia in movement disorders. Brain 2005; 128(7): 1480-97.
[http://dx.doi.org/10.1093/brain/awh560] [PMID: 15930045]
[27]
Wilson D, Le Heron C, Anderson T. Corticobasal syndrome: A practical guide. Pract Neurol 2021; 21(4): 276-85.
[http://dx.doi.org/10.1136/practneurol-2020-002835]
[28]
Hanna-Pladdy B, Daniels SK, Fieselman MA, et al. Praxis lateralization: Errors in right and left hemisphere stroke. Cortex 2001; 37(2): 219-30.
[http://dx.doi.org/10.1016/S0010-9452(08)70569-0] [PMID: 11394722]
[29]
Króliczak G, Frey SH. A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cereb Cortex 2009; 19(10): 2396-410.
[http://dx.doi.org/10.1093/cercor/bhn261] [PMID: 19181695]
[30]
Merrick CM, Dixon TC, Breska A, et al. Left hemisphere dominance for bilateral kinematic encoding in the human brain. eLife 2022; 11: e69977.
[http://dx.doi.org/10.7554/eLife.69977] [PMID: 35227374]
[31]
Goldenberg G, Randerath J. Shared neural substrates of apraxia and aphasia. Neuropsychologia 2015; 75: 40-9.
[http://dx.doi.org/10.1016/j.neuropsychologia.2015.05.017] [PMID: 26004063]
[32]
Buxbaum LJ, Randerath J. Limb apraxia and the left parietal lobe. Handb Clin Neurol 2018; 151: 349-63.
[http://dx.doi.org/10.1016/B978-0-444-63622-5.00017-6] [PMID: 29519468]
[33]
Sperber C, Wiesen D, Karnath HO. An empirical evaluation of multivariate lesion behaviour mapping using support vector regression. Hum Brain Mapp 2019; 40(5): 1381-90.
[PMID: 30549154]
[34]
Baumard J, Le Gall D. The challenge of apraxia: Toward an operational definition? Cortex 2021; 141: 66-80.
[http://dx.doi.org/10.1016/j.cortex.2021.04.001] [PMID: 34033988]
[35]
Goldenberg G. The neuropsychological assessment and treatment of disorders of voluntary movement. The Handbook of Clinical Neuropsychology. 2010.
[36]
Peigneux P, Van der Linden M, Garraux G, et al. Imaging a cognitive model of apraxia: The neural substrate of gesture-specific cognitive processes. Hum Brain Mapp 2004; 21(3): 119-42.
[http://dx.doi.org/10.1002/hbm.10161] [PMID: 14755833]
[37]
Leiguarda R, Merello M, Balej J, Starkstein S, Nogues M, Marsden CD. Disruption of spatial organization and interjoint coordination in Parkinson’s disease, progressive supranuclear palsy, and multiple system atrophy. Mov Disord 2000; 15(4): 627-40.
[http://dx.doi.org/10.1002/1531-8257(200007)15:4<627:AID-MDS1006>3.0.CO;2-5] [PMID: 10928572]
[38]
Merello M, Balej J, Leiguarda R. Three-dimensional motion analysis of gestural and repetitive self-paced single joint rapid arm movements in Parkinson’s disease before and after posteroventral pallidotomy. Mov Disord 2000; 15 (Suppl. 3): 55.
[39]
Olsson C, Arvidsson P, Blom Johansson M. Relations between executive function, language, and functional communication in severe aphasia. Aphasiology 2019; 33(7): 821-45.
[http://dx.doi.org/10.1080/02687038.2019.1602813]
[40]
Whiteside SP, Dyson L, Cowell PE, Varley RA. The relationship between apraxia of speech and oral apraxia: Association or dissociation? Arch Clin Neuropsychol 2015; 30(7): 670-82.
[http://dx.doi.org/10.1093/arclin/acv051] [PMID: 26275812]
[41]
Sunderland A, Shinner C. Ideomotor apraxia and functional ability. Cortex 2007; 43(3): 359-67.
[http://dx.doi.org/10.1016/S0010-9452(08)70461-1] [PMID: 17533759]
[42]
Sheikhany AR, Othman DM, Elshebl OZ, Abdelhady AF. Language profile in different kinds of apraxia in post-stroke patients. Egypt J Otolaryngol 2022; 38(1): 123.
[http://dx.doi.org/10.1186/s43163-022-00309-8]
[43]
Scandola M, Gobbetto V, Bertagnoli S, et al. Gesture errors in left and right hemisphere damaged patients: A behavioural and anatomical study. Neuropsychologia 2021; 162: 108027.
[http://dx.doi.org/10.1016/j.neuropsychologia.2021.108027] [PMID: 34560143]
[44]
Heilman KM, Meador KJ, Loring DW. Hemispheric asymmetries of limb-kinetic apraxia: A loss of deftness. Neurology 2000; 55(4): 523-6.
[http://dx.doi.org/10.1212/WNL.55.4.523] [PMID: 10953184]
[45]
Pyun SB, Hwang YM, Jo SY, Ha JW. Reliability and validity of the comprehensive limb and oral apraxia test: Standardization and clinical application in Korean patients with stroke. Ann Rehabil Med 2019; 43(5): 544-54.
[http://dx.doi.org/10.5535/arm.2019.43.5.544] [PMID: 31693844]
[46]
Mantovani-Nagaoka J, Ortiz KZ. The influence of age, gender and education on the performance of healthy individuals on a battery for assessing limb apraxia. Dement Neuropsychol 2016; 10(3): 232-6.
[http://dx.doi.org/10.1590/S1980-5764-2016DN1003010] [PMID: 29213460]
[47]
Cubelli R, Marchetti C, Boscolo G, Della Sala S. Cognition in action: Testing a model of limb apraxia. Brain Cogn 2000; 44(2): 144-65.
[http://dx.doi.org/10.1006/brcg.2000.1226] [PMID: 11041987]
[48]
Schlaug G, Marchina S, Wan CY. The use of non-invasive brain stimulation techniques to facilitate recovery from post-stroke aphasia. Neuropsychol Rev 2011; 21(3): 288-301.
[http://dx.doi.org/10.1007/s11065-011-9181-y] [PMID: 21842404]
[49]
Park JE. Repetitive transcranial magnetic stimulation for limb-kinetic apraxia in Parkinson’s Disease. J Clin Neurol 2018; 14(1): 110-1.
[http://dx.doi.org/10.3988/jcn.2018.14.1.110] [PMID: 29141285]
[50]
Hameed MQ, Dhamne SC, Gersner R, et al. Transcranial magnetic and direct current stimulation in children. Curr Neurol Neurosci Rep 2017; 17(2): 11-.
[http://dx.doi.org/10.1007/s11910-017-0719-0] [PMID: 28229395]
[51]
Terranova C, Rizzo V, Cacciola A, et al. Is there a future for non-invasive brain stimulation as a therapeutic tool? Front Neurol 2019; 9: 1146.
[http://dx.doi.org/10.3389/fneur.2018.01146] [PMID: 30733704]
[52]
Esposito S, Trojsi F, Cirillo G, et al. Repetitive transcranial magnetic stimulation (rTMS) of dorsolateral prefrontal cortex may influence semantic fluency and functional connectivity in fronto-parietal network in mild cognitive impairment (MCI). Biomedicines 2022; 10(5): 994.
[http://dx.doi.org/10.3390/biomedicines10050994] [PMID: 35625731]
[53]
Zhao X, Ding J, Pan H, et al. Anodal and cathodal tDCS modulate neural activity and selectively affect GABA and glutamate syntheses in the visual cortex of cats. J Physiol 2020; 598(17): 3727-45.
[http://dx.doi.org/10.1113/JP279340] [PMID: 32506434]
[54]
Huang YZ, Rothwell JC, Chen RS, Lu CS, Chuang WL. The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin Neurophysiol 2011; 122(5): 1011-8.
[http://dx.doi.org/10.1016/j.clinph.2010.08.016] [PMID: 20869307]
[55]
Silverstein J, Cortes M, Tsagaris KZ, et al. Paired associative stimulation as a tool to assess plasticity enhancers in chronic stroke. Front Neurosci 2019; 13: 792-2.
[http://dx.doi.org/10.3389/fnins.2019.00792] [PMID: 31427918]
[56]
Vahabzadeh-Hagh AM, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A. Measures of cortical inhibition by paired-pulse transcranial magnetic stimulation in anesthetized rats. J Neurophysiol 2011; 105(2): 615-24.
[http://dx.doi.org/10.1152/jn.00660.2010] [PMID: 21160011]
[57]
Amandusson Å, Flink R, Axelson HW. Comparison between adaptive and fixed stimulus paired-pulse transcranial magnetic stimulation (ppTMS) in normal subjects. Clin Neurophysiol Pract 2017; 2: 91-7.
[http://dx.doi.org/10.1016/j.cnp.2017.04.001] [PMID: 30214978]
[58]
Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med 2015; 58(4): 208-13.
[http://dx.doi.org/10.1016/j.rehab.2015.05.005] [PMID: 26319963]
[59]
Bashir S, Uzair M, Abualait T, et al. Transcranial magnetic stimulation in animal models of neurodegeneration. Neural Regen Res 2022; 17(2): 251-65.
[http://dx.doi.org/10.4103/1673-5374.317962] [PMID: 34269184]
[60]
El Nahas N, Sami S, Aref H, et al. High frequency suprathreshold rTMS to Cz can improve gait apraxia and reduce inflammatory markers in patients with incidental cerebral small vessel disease. 2022. Available from https://ssrn.com/abstract=4148100
[61]
Gilio F, Iacovelli E, Conte A, et al. Asymmetric responses to repetitive transcranial magnetic stimulation (rTMS) over the left and right primary motor cortex in a patient with lateralized progressive limb-kinetic apraxia. Neurosci Lett 2008; 437(2): 125-9.
[http://dx.doi.org/10.1016/j.neulet.2008.03.072] [PMID: 18450379]
[62]
Rushworth MFS, Johansen-Berg H, Göbel SM, Devlin JT. The left parietal and premotor cortices: motor attention and selection. Neuroimage 2003; 20 (Suppl. 1): S89-S100.
[http://dx.doi.org/10.1016/j.neuroimage.2003.09.011] [PMID: 14597301]
[63]
Mani S, Mutha PK, Przybyla A, Haaland KY, Good DC, Sainburg RL. Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms. Brain 2013; 136(4): 1288-303.
[http://dx.doi.org/10.1093/brain/aws283] [PMID: 23358602]
[64]
Jang SH. Motor recovery by improvement of limb-kinetic apraxia in a chronic stroke patient. NeuroRehabilitation 2013; 33(2): 195-200.
[http://dx.doi.org/10.3233/NRE-130945] [PMID: 23949047]
[65]
Burrell JR, Hornberger M, Vucic S, Kiernan MC, Hodges JR. Apraxia and motor dysfunction in corticobasal syndrome. PLoS One 2014; 9(3): e92944.
[http://dx.doi.org/10.1371/journal.pone.0092944] [PMID: 24664085]
[66]
Chun MH, Chang MC. Right lower limb apraxia in a patient with left supplementary motor area infarction: intactness of the corticospinal tract confirmed by transcranial magnetic stimulation. Neural Regen Res 2015; 10(2): 325-7.
[http://dx.doi.org/10.4103/1673-5374.152389] [PMID: 25883636]
[67]
Pazzaglia M, Galli G. Action observation for neurorehabilitation in apraxia. Front Neurol 2019; 10: 309.
[http://dx.doi.org/10.3389/fneur.2019.00309] [PMID: 31001194]
[68]
Martin PI. Transcranial magnetic stimulation as a complementary treatment for aphasia. Semin Speech Lang 2004; 25(2): 181-91.
[69]
Malfitano C, Banco E, Rossetti A, et al. rTMS can improve post-stroke apraxia of speech. A case study. Brain Stimul 2018; 12.
[PMID: 30559001]
[70]
Naeser MA, Martin PI, Nicholas M, et al. Improved naming after TMS treatments in a chronic, global aphasia patient-case report. Neurocase 2005; 11(3): 182-93.
[http://dx.doi.org/10.1080/13554790590944663] [PMID: 16006338]
[71]
Chieffo R, Ferrari F, Battista P, et al. Excitatory deep transcranial magnetic stimulation with H-coil over the right homologous Broca’s region improves naming in chronic post-stroke aphasia. Neurorehabil Neural Repair 2014; 28(3): 291-8.
[http://dx.doi.org/10.1177/1545968313508471] [PMID: 24243918]
[72]
Harvey DY, Mass JA, Shah-Basak PP, et al. Continuous theta burst stimulation over right pars triangularis facilitates naming abilities in chronic post-stroke aphasia by enhancing phonological access. Brain Lang 2019; 192: 25-34.
[http://dx.doi.org/10.1016/j.bandl.2019.02.005] [PMID: 30870740]
[73]
Heikkinen PH, Pulvermüller F, Mäkelä JP, et al. Combining rTMS with intensive language-action therapy in chronic aphasia: A randomized controlled trial. Front Neurosci 2019; 12: 1036.
[http://dx.doi.org/10.3389/fnins.2018.01036] [PMID: 30778280]
[74]
Cotelli M, Manenti R, Alberici A, et al. Prefrontal cortex rTMS enhances action naming in progressive non-fluent aphasia. Eur J Neurol 2012; 19(11): 1404-12.
[http://dx.doi.org/10.1111/j.1468-1331.2012.03699.x] [PMID: 22435956]
[75]
Mendoza JA, Silva FA, Pachón M, Rueda L, Lopez Romero L, Pérez M. Repetitive transcranial magnetic stimulation in aphasia and communication impairment in post-stroke: systematic review of literature. J Neurol Transl Neurosci 2016; 4: 2333-7087.
[76]
Hara T, Abo M, Kobayashi K, Watanabe M, Kakuda W, Senoo A. Effects of low-frequency repetitive transcranial magnetic stimulation combined with intensive speech therapy on cerebral blood flow in post-stroke aphasia. Transl Stroke Res 2015; 6(5): 365-74.
[http://dx.doi.org/10.1007/s12975-015-0417-7] [PMID: 26245774]
[77]
Khedr EM, Abo El-Fetoh N, Ali AM, et al. Dual-hemisphere repetitive transcranial magnetic stimulation for rehabilitation of poststroke aphasia: A randomized, double-blind clinical trial. Neurorehabil Neural Repair 2014; 28(8): 740-50.
[http://dx.doi.org/10.1177/1545968314521009] [PMID: 24503205]
[78]
Tsai PY, Wang CP, Ko JS, Chung YM, Chang YW, Wang JX. The persistent and broadly modulating effect of inhibitory rTMS in nonfluent aphasic patients: A sham-controlled, double-blind study. Neurorehabil Neural Repair 2014; 28(8): 779-87.
[http://dx.doi.org/10.1177/1545968314522710] [PMID: 24526709]
[79]
Rawji V, Latorre A, Sharma N, Rothwell JC, Rocchi L. On the Use of TMS to investigate the pathophysiology of neurodegenerative diseases. Front Neurol 2020; 11: 584664.
[http://dx.doi.org/10.3389/fneur.2020.584664] [PMID: 33224098]
[80]
Opie GM, Sasaki R, Hand BJ, Semmler JG. Modulation of motor cortex plasticity by repetitive paired-pulse TMS at late I-wave intervals is influenced by intracortical excitability. Brain Sci 2021; 11(1): 121.
[http://dx.doi.org/10.3390/brainsci11010121] [PMID: 33477434]
[81]
Valero-Cabré A, Amengual JL, Stengel C, Pascual-Leone A, Coubard OA. Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neurosci Biobehav Rev 2017; 83: 381-404.
[http://dx.doi.org/10.1016/j.neubiorev.2017.10.006] [PMID: 29032089]
[82]
Moscatelli F, Messina A, Valenzano A, et al. Transcranial magnetic stimulation as a tool to investigate motor cortex excitability in sport. Brain Sci 2021; 11(4): 432.
[http://dx.doi.org/10.3390/brainsci11040432] [PMID: 33800662]
[83]
Facchini S, Muellbacher W, Battaglia F, Boroojerdi B, Hallett M. Focal enhancement of motor cortex excitability during motor imagery: A transcranial magnetic stimulation study. Acta Neurol Scand 2002; 105(3): 146-51.
[http://dx.doi.org/10.1034/j.1600-0404.2002.1o004.x] [PMID: 11886355]
[84]
Schluter N, Rushworth MF, Passingham RE, Mills KR. Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. Brain 1998; 121(5): 785-99.
[http://dx.doi.org/10.1093/brain/121.5.785] [PMID: 9619185]
[85]
Wang J, Wu D, Cheng Y, et al. Effects of transcranial direct current stimulation on apraxia of speech and cortical activation in patients with stroke: A randomized sham-controlled study. Am J Speech Lang Pathol 2019; 28(4): 1625-37.
[http://dx.doi.org/10.1044/2019_AJSLP-19-0069] [PMID: 31618056]
[86]
Zhao J, Li Y, Zhang X, et al. Alteration of network connectivity in stroke patients with apraxia of speech after tDCS: A randomized controlled study. Front Neurol 2022; 13: 969786.
[http://dx.doi.org/10.3389/fneur.2022.969786] [PMID: 36188376]
[87]
Zanette G, Bonato C, Polo A, Tinazzi M, Manganotti P, Fiaschi A. Long-lasting depression of motor-evoked potentials to transcranial magnetic stimulation following exercise. Exp Brain Res 1995; 107(1): 80-6.
[http://dx.doi.org/10.1007/BF00228019] [PMID: 8751065]
[88]
Cotovio G, Oliveira-Maia AJ, Paul C, et al. Day-to-day variability in motor threshold during rTMS treatment for depression: Clinical implications. Brain Stimul 2021; 14(5): 1118-25.
[http://dx.doi.org/10.1016/j.brs.2021.07.013] [PMID: 34329797]
[89]
Somaa FA, de Graaf TA, Sack AT. Transcranial magnetic stimulation in the treatment of neurological diseases. Front Neurol 2022; 13: 793253.
[http://dx.doi.org/10.3389/fneur.2022.793253] [PMID: 35669870]
[90]
López-Alonso V, Cheeran B, Río-Rodríguez D, Fernández-del-Olmo M. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul 2014; 7(3): 372-80.
[http://dx.doi.org/10.1016/j.brs.2014.02.004] [PMID: 24630849]
[91]
Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC. The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 2013; 23(7): 1593-605.
[http://dx.doi.org/10.1093/cercor/bhs147] [PMID: 22661405]
[92]
Du J, Tian L, Liu W, et al. Effects of repetitive transcranial magnetic stimulation on motor recovery and motor cortex excitability in patients with stroke: A randomized controlled trial. Eur J Neurol 2016; 23(11): 1666-72.
[http://dx.doi.org/10.1111/ene.13105] [PMID: 27425785]
[93]
Vanbellingen T, Pastore-Wapp M, Kübel S, et al. Interhemispheric facilitation of gesturing: A combined theta burst stimulation and diffusion tensor imaging study. Brain Stimul 2020; 13(2): 457-63.
[http://dx.doi.org/10.1016/j.brs.2019.12.013] [PMID: 31911072]
[94]
Harita S, Momi D, Mazza F, Griffiths JD. Mapping Inter-individual functional connectivity variability in TMS targets for major depressive disorder. Front Psychiatry 2022; 13: 902089.
[http://dx.doi.org/10.3389/fpsyt.2022.902089] [PMID: 35815008]
[95]
Stenroos M, Koponen LM. Real-time computation of the TMS-induced electric field in a realistic head model. Neuroimage 2019; 203: 116159.
[http://dx.doi.org/10.1016/j.neuroimage.2019.116159] [PMID: 31494248]
[96]
Zong X, Gu J, Zhou S, et al. Continuous theta-burst stimulation enhances and sustains neurogenesis following ischemic stroke. Theranostics 2022; 12(13): 5710-26.
[http://dx.doi.org/10.7150/thno.71832] [PMID: 35966576]
[97]
Murteira A, Sowman PF, Nickels L. Does TMS disruption of the left primary motor cortex affect verb retrieval following exposure to pantomimed gestures? Front Neurosci 2018; 12: 920.
[http://dx.doi.org/10.3389/fnins.2018.00920] [PMID: 30618552]
[98]
Okuma Y, Urabe T, Mochizuki H, et al. Asymmetric cortico-cortical inhibition in patients with progressive limb-kinetic apraxia. Acta Neurol Scand 2000; 102(4): 244-8.
[http://dx.doi.org/10.1034/j.1600-0404.2000.102004244.x] [PMID: 11071110]
[99]
Kühn AA, Grosse P, Holtz K, Brown P, Meyer BU, Kupsch A. Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes. Clin Neurophysiol 2004; 115(8): 1786-95.
[http://dx.doi.org/10.1016/j.clinph.2004.03.020] [PMID: 15261857]
[100]
Leiguarda RC, Merello M, Nouzeilles MI, Balej J, Rivero A, Nogués M. Limb-kinetic apraxia in corticobasal degeneration: Clinical and kinematic features. Mov Disord 2003; 18(1): 49-59.
[http://dx.doi.org/10.1002/mds.10303] [PMID: 12518300]
[101]
Sivaramakrishnan A, Madhavan S. Stimulus intensity affects variability of motor evoked responses of the non-paretic, but not paretic tibialis anterior muscle in stroke. Brain Sci 2020; 10(5): 297.
[http://dx.doi.org/10.3390/brainsci10050297] [PMID: 32429115]
[102]
Darling WG, Wolf SL, Butler AJ. Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation. Exp Brain Res 2006; 174(2): 376-85.
[http://dx.doi.org/10.1007/s00221-006-0468-9] [PMID: 16636787]
[103]
Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci 2015; 9: 181.
[http://dx.doi.org/10.3389/fncel.2015.00181] [PMID: 26029052]
[104]
Bogdanov M, Schwabe L. Transcranial stimulation of the dorsolateral prefrontal cortex prevents stress-induced working memory deficits. J Neurosci 2016; 36(4): 1429-37.
[http://dx.doi.org/10.1523/JNEUROSCI.3687-15.2016] [PMID: 26818528]
[105]
Kim JH, Kim DW, Chang WH, Kim YH, Kim K, Im CH. Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: Electric field simulation using individual MRI data. Neurosci Lett 2014; 564: 6-10.
[http://dx.doi.org/10.1016/j.neulet.2014.01.054] [PMID: 24508704]
[106]
Nettekoven C, Volz LJ, Leimbach M, et al. Inter-individual variability in cortical excitability and motor network connectivity following multiple blocks of rTMS. Neuroimage 2015; 118: 209-18.
[http://dx.doi.org/10.1016/j.neuroimage.2015.06.004] [PMID: 26052083]
[107]
Gibson BC, Sanguinetti JL, Badran BW, et al. Increased excitability induced in the primary motor cortex by transcranial ultrasound stimulation. Front Neurol 2018; 9: 1007.
[http://dx.doi.org/10.3389/fneur.2018.01007] [PMID: 30546342]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy