[1]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[2]
Manandhar S, Sjöholm E, Bobacka J, Rosenholm JM, Bansal KK. Polymer-drug conjugates as nanotheranostic agents. J Nanotheranostics 2021; 2(1): 63-81.
[http://dx.doi.org/10.3390/jnt2010005]
[http://dx.doi.org/10.3390/jnt2010005]
[3]
Younis NK, Yassine HM, Eid AH. Nanomedicine for cancer. Curr Med Chem 2023; 30(23): 2592-4.
[http://dx.doi.org/10.2174/0929867330666221228121947] [PMID: 36579388]
[http://dx.doi.org/10.2174/0929867330666221228121947] [PMID: 36579388]
[4]
Bansal KK, Rosenholm JM. Synthetic polymers from renewable feedstocks: An alternative to fossil-based materials in biomedical applications. Ther Deliv 2020; 11(5): 297-300.
[http://dx.doi.org/10.4155/tde-2020-0033] [PMID: 32295473]
[http://dx.doi.org/10.4155/tde-2020-0033] [PMID: 32295473]
[5]
Bansal KK, Özliseli E, Rosling A, Rosenholm JM. Synthesis and evaluation of novel functional polymers derived from renewable jasmine lactone for stimuli‐responsive drug delivery. Adv Funct Mater 2021; 31(33)2101998
[http://dx.doi.org/10.1002/adfm.202101998]
[http://dx.doi.org/10.1002/adfm.202101998]
[6]
Bansal K, Sasso L, Makwana H, Awwad S, Brocchini S, Alexander C. Nanopharmacy: Exploratory Methods for Polymeric Materials. Hoboken, New Jersey: John Wiley & Sons 2017; p. 1.
[7]
Halwani AA. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics 2022; 14(1): 106.
[http://dx.doi.org/10.3390/pharmaceutics14010106] [PMID: 35057002]
[http://dx.doi.org/10.3390/pharmaceutics14010106] [PMID: 35057002]
[8]
Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomater Res 2020; 24(1): 12.
[http://dx.doi.org/10.1186/s40824-020-00190-7] [PMID: 32537239]
[http://dx.doi.org/10.1186/s40824-020-00190-7] [PMID: 32537239]
[9]
Đorđević S, Gonzalez MM, Conejos-Sánchez I, et al. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res 2022; 12(3): 500-25.
[http://dx.doi.org/10.1007/s13346-021-01024-2] [PMID: 34302274]
[http://dx.doi.org/10.1007/s13346-021-01024-2] [PMID: 34302274]
[10]
Sun D, Zhou S, Gao W. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano 2020; 14(10): 12281-90.
[http://dx.doi.org/10.1021/acsnano.9b09713] [PMID: 33021091]
[http://dx.doi.org/10.1021/acsnano.9b09713] [PMID: 33021091]
[11]
Imai K, Taniguchi H. Therapeutic siRNA targeting the cancer cell stemness regulator PRDI-BF1 and RIZ domain zinc finger protein 14. Proc Jpn Acad, Ser B, Phys Biol Sci 2022; 98(7): 325-35.
[http://dx.doi.org/10.2183/pjab.98.017] [PMID: 35908955]
[http://dx.doi.org/10.2183/pjab.98.017] [PMID: 35908955]
[12]
Jia Y, Jiang Y, He Y, et al. Approved nanomedicine against diseases. Pharmaceutics 2023; 15(3): 774.
[http://dx.doi.org/10.3390/pharmaceutics15030774] [PMID: 36986635]
[http://dx.doi.org/10.3390/pharmaceutics15030774] [PMID: 36986635]
[13]
Thapa RK, Kim JO. Nanomedicine-based commercial formulations: Current developments and future prospects. J Pharm Investig 2023; 53(1): 19-33.
[http://dx.doi.org/10.1007/s40005-022-00607-6] [PMID: 36568502]
[http://dx.doi.org/10.1007/s40005-022-00607-6] [PMID: 36568502]
[14]
Kim GY, Son JY, Lee SJ, et al. 592 Enhancing the therapeutic potential of oncolytic adenoviruses with vSENSTM technology. J Immunother Cancer 2020; 8 (Suppl. 3): 1-2.
[15]
Lee S, Park JY, Kim GY, et al. 708 Application of a novel mSENS drug delivery technology for mRNA therapeutics. J Immunother Cancer 2020; 8 (Suppl. 3): 1.
[16]
Hu Q, Rijcken CJ, Bansal R, Hennink WE, Storm G, Prakash J. Complete regression of breast tumour with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles. Biomaterials 2015; 53: 370-8.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.085] [PMID: 25890735]
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.085] [PMID: 25890735]
[17]
Hu Q, Rijcken CJF, van Gaal E, et al. Tailoring the physicochemical properties of core-crosslinked polymeric micelles for pharmaceutical applications. J Control Release 2016; 244(Pt B): 314-25.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.012] [PMID: 27401327]
[http://dx.doi.org/10.1016/j.jconrel.2016.07.012] [PMID: 27401327]
[18]
Harris JM, Bentley MD, Moreadith RW, et al. Tuning drug release from polyoxazoline-drug conjugates. Eur Polym J 2019; 120109241
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109241]
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109241]
[19]
Olanow CW, Standaert DG, Kieburtz K, Viegas TX, Moreadith R. Once-weekly subcutaneous delivery of polymer-linked rotigotine (SER-214) provides continuous plasma levels in Parkinson’s disease patients. Mov Disord 2020; 35(6): 1055-61.
[http://dx.doi.org/10.1002/mds.28027] [PMID: 32251552]
[http://dx.doi.org/10.1002/mds.28027] [PMID: 32251552]
[20]
Cornelius P, Salomon N, Browning D, et al. The Amelia-1 study: A phase 1b/2 trial of evexomostat (SDX-7320) plus fulvestrant and alpelisib in patients with advanced breast cancer at risk for alpelisib-induced hyperglycemia. J Clin Oncol 2023; 41(16_suppl Suppl.): TPS1129-9.
[http://dx.doi.org/10.1200/JCO.2023.41.16_suppl.TPS1129]
[http://dx.doi.org/10.1200/JCO.2023.41.16_suppl.TPS1129]
[21]
Shen S, Solomon V, Williams D, et al. The ARETHA study: A phase 2 randomized control trial of eribulin with evexomostat (SDX-7320) or placebo for patients with metastatic triple-negative breast cancer (TNBC) and metabolic dysfunction. J Clin Oncol 2023; 41(16_suppl Suppl.): TPS1131-1.
[http://dx.doi.org/10.1200/JCO.2023.41.16_suppl.TPS1131]
[http://dx.doi.org/10.1200/JCO.2023.41.16_suppl.TPS1131]
[22]
Aleksov J, Lokot I. Drug delivery system for administration of poorly water soluble pharmaceutically active substances. WO Patent 078754A1, 2009.
[23]
Chowdhury P, Ghosh U, Samanta K, Jaggi M, Chauhan SC, Yallapu MM. Bioactive nanotherapeutic trends to combat triple negative breast cancer. Bioact Mater 2021; 6(10): 3269-87.
[http://dx.doi.org/10.1016/j.bioactmat.2021.02.037] [PMID: 33778204]
[http://dx.doi.org/10.1016/j.bioactmat.2021.02.037] [PMID: 33778204]
[24]
Castor TP. Polymer microspheres/nanospheres and encapsulating therapeutic proteins therein. US Patent 8440614B2, 2013.
[25]
Bansal KK, Kakde D, Gupta U, Jain NK. Development and characterization of triazine based dendrimers for delivery of antitumor agent. J Nanosci Nanotechnol 2010; 10(12): 8395-404.
[http://dx.doi.org/10.1166/jnn.2010.3003] [PMID: 21121345]
[http://dx.doi.org/10.1166/jnn.2010.3003] [PMID: 21121345]
[26]
Kelly BD, McLeod V, Walker R, et al. Abstract 1716: Anticancer activity of the taxane nanoparticles, DEP® docetaxel and DEP® cabazitaxel. Cancer Res 2020; 80(16_Supplement Suppl.): 1716.
[http://dx.doi.org/10.1158/1538-7445.AM2020-1716]
[http://dx.doi.org/10.1158/1538-7445.AM2020-1716]
[27]
Jones RH, Pinato DJ, Joshua A, et al. 1403P Efficacy and safety of dendrimer-enhanced (DEP) cabazitaxel (CTX-SPL9111) in men with metastatic castration-resistant prostate cancer (mCRPC) in a phase I/II trial. Ann Oncol 2022; 33: S1186-7.
[http://dx.doi.org/10.1016/j.annonc.2022.07.1889]
[http://dx.doi.org/10.1016/j.annonc.2022.07.1889]
[29]
Bansal KK, Ali AA, Rahman M, Sjöholm E, Wilén CE, Rosenholm JM. Evaluation of solubilizing potential of functional poly(jasmine lactone) micelles for hydrophobic drugs: A comparison with commercially available polymers. Int J Polym Mater Polym Biomater 2023; 72(16): 1272-80.
[30]
Ali A, Bhadane R, Asl AA, et al. Functional block copolymer micelles based on poly (jasmine lactone) for improving the loading efficiency of weakly basic drugs. RSC Advances 2022; 12(41): 26763-75.
[http://dx.doi.org/10.1039/D2RA03962A] [PMID: 36320859]
[http://dx.doi.org/10.1039/D2RA03962A] [PMID: 36320859]