Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Artesunate Alleviates Chronic Hyperoxia-induced Bronchopulmonary Dysplasia by Suppressing NF-κB Pathway in Neonatal Mice

Author(s): Wenbo Weng, Xiaoying Wang and Yifei Cui*

Volume 27, Issue 18, 2024

Published on: 11 October, 2023

Page: [2681 - 2690] Pages: 10

DOI: 10.2174/0113862073246710231002042239

Price: $65

Abstract

Background: Bronchopulmonary dysplasia (BPD) is a chronic lung condition that occurs in premature infants who undergo prolonged mechanical ventilation and oxygen therapy. Existing treatment methods have shown limited efficacy, highlighting the urgent need for new therapeutic strategies. Artesunate (AS) is a compound known for its potential anti-inflammatory properties, and studies have shown its protective effects against acute lung injury. However, its impact on BPD and the underlying mechanisms remain unclear.

Objective: To investigate the effect and underlying mechanism of AS on chronic hyperoxiainduced BPD in neonatal mice.

Method: Full-term C57BL/6J mice were randomly assigned to the Air+lactate Ringer's solution (L/R) group, O2 + L/R group, and O2 + AS group. Analysis was performed using assay methods such as ELISA, RT-qPCR, hematoxylin-eosin staining, and Western blotting.

Results: Compared with the O2+L/R group, the expression of inflammatory factors in the serum, tissue, and BALF of the O2+AS group was significantly reduced, the lung function of the mice was improved, and the inflammatory infiltrates were significantly alleviated. AS inhibited the mRNA expression of inflammatory factors in mice. We found that the expression of nuclear p65 and cytoplasmic p-IκBα in the NF-κB pathway was inhibited after adding AS.

Conclusion: AS ameliorated chronic hyperoxia-induced BPD in neonatal mice probably by inhibiting the expression of NF-κB pathway and inflammatory factors.

[1]
Pierro, M.; Thebaud, B.; Soll, R. Mesenchymal stem cells for the prevention and treatment of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst. Rev., 2017, 11, CD011932.
[http://dx.doi.org/10.1002/14651858.CD011932.pub2]
[2]
Gilfillan, M.; Bhandari, A.; Bhandari, V. Diagnosis and management of bronchopulmonary dysplasia. BMJ, 2021, 375, n1974.
[http://dx.doi.org/10.1136/bmj.n1974] [PMID: 34670756]
[3]
Gough, A.; Linden, M.; Spence, D.; Patterson, C.C.; Halliday, H.L.; McGarvey, L.P.A. Impaired lung function and health status in adult survivors of bronchopulmonary dysplasia. Eur. Respir. J., 2014, 43(3), 808-816.
[http://dx.doi.org/10.1183/09031936.00039513] [PMID: 23900988]
[4]
McGlynn, J.R.; Aoyama, B.C.; Martin, A.; Collaco, J.M.; McGrath-Morrow, S.A. Outpatient respiratory outcomes in children with BPD on supplemental oxygen. Pediatr. Pulmonol., 2023, 58(5), 1535-1541.
[http://dx.doi.org/10.1002/ppul.26356]
[5]
Omar, S.A.; Abdul-Hafez, A.; Ibrahim, S.; Pillai, N.; Abdulmageed, M.; Thiruvenkataramani, R.P. Stem-cell therapy for Bronchopulmonary Dysplasia (BPD) in newborns. Cells, 2022, 11(8), 1275.
[http://dx.doi.org/10.3390/cells11081275]
[6]
Sinclair, K.; Yerkovich, S.T.; Chambers, D.C. Mesenchymal stem cells and the lung. Respirology, 2013, 18(3), 397-411.
[http://dx.doi.org/10.1111/resp.12050] [PMID: 23316733]
[7]
Lesage, F.; Jimenez, J.; Toelen, J.; Deprest, J. Preclinical evaluation of cell-based strategies to prevent or treat bronchopulmonary dysplasia in animal models: A systematic review. J. Matern. Fetal Neonatal Med., 2018, 31(7), 958-966.
[http://dx.doi.org/10.1080/14767058.2017.1301927] [PMID: 28277906]
[8]
Nold, M.F.; Mangan, N.E.; Rudloff, I.; Cho, S.X.; Shariatian, N.; Samarasinghe, T.D. Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Proc. Natl. Acad. Sci., 2013, 110(35), 14384-14389.
[http://dx.doi.org/10.1073/pnas.1306859110]
[9]
Jobe, A. Mechanisms of lung injury and bronchopulmonary dysplasia. Am. J. Perinatol., 2016, 33(11), 1076-1078.
[http://dx.doi.org/10.1055/s-0036-1586107] [PMID: 27603539]
[10]
Hsiao, C.C.; Chang, J.C.; Tsao, L.Y.; Yang, R.C.; Chen, H.N.; Lee, C.H.; Lin, C.Y.; Tsai, Y.G. Correlates of elevated interleukin-6 and 8-Hydroxy-2′-Deoxyguanosine levels in tracheal aspirates from very low birth weight infants who develop bronchopulmonary dysplasia. Pediatr. Neonatol., 2017, 58(1), 63-69.
[http://dx.doi.org/10.1016/j.pedneo.2016.01.004] [PMID: 27321203]
[11]
Tian, X.Y.; Zhang, X.D.; Li, Q.L.; Shen, Y.; Zheng, J. Biological markers in cord blood for prediction of bronchopulmonary dysplasia in premature infants. Clin. Exp. Obstet. Gynecol., 2014, 41(3), 313-318.
[http://dx.doi.org/10.12891/ceog16292014] [PMID: 24992784]
[12]
Jiang, W.; Li, B.; Zheng, X.; Liu, X.; Cen, Y.; Li, J.; Pan, X.; Cao, H.; Zheng, J.; Zhou, H. Artesunate in combination with oxacillin protect sepsis model mice challenged with lethal live methicillin-resistant Staphylococcus aureus (MRSA) via its inhibition on proinflammatory cytokines release and enhancement on antibacterial activity of oxacillin. Int. Immunopharmacol., 2011, 11(8), 1065-1073.
[http://dx.doi.org/10.1016/j.intimp.2011.02.028] [PMID: 21396483]
[13]
Meng, L.; Li, L.; Lu, S.; Li, K.; Su, Z.; Wang, Y.; Fan, X.; Li, X.; Zhao, G. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways. Mol. Immunol., 2018, 94, 7-17.
[http://dx.doi.org/10.1016/j.molimm.2017.12.008] [PMID: 29241031]
[14]
Wang, Z.; Wang, Q.; He, T.; Li, W.; Liu, Y.; Fan, Y.; Wang, Y.; Wang, Q.; Chen, J. The combination of artesunate and carboplatin exerts a synergistic anti‐tumour effect on non‐small cell lung cancer. Clin. Exp. Pharmacol. Physiol., 2020, 47(6), 1083-1091.
[http://dx.doi.org/10.1111/1440-1681.13287] [PMID: 32072678]
[15]
Roussel, C.; Caumes, E.; Thellier, M.; Ndour, P.A.; Buffet, P.A.; Jauréguiberry, S. Artesunate to treat severe malaria in travellers: Review of efficacy and safety and practical implications. J. Travel Med., 2017, 24(2)
[http://dx.doi.org/10.1093/jtm/taw093] [PMID: 28395097]
[16]
Wang, R.Y.; Li, H.W.; Zhang, Q.; Lin, J.T. Effect of artesunate on airway responsiveness and airway inflammation in asthmatic mice. Zhonghua Yi Xue Za Zhi, 2019, 99(32), 2536-2541.
[http://dx.doi.org/10.3760/cma.j.issn.0376-2491.2019.32.014] [PMID: 31484283]
[17]
Xie, B.; Li, S.; Bai, W.; Li, Z.; Lou, F. Artesunate alleviates hyperoxia-induced lung injury in neonatal mice by inhibiting NLRP3 inflammasome activation. Evid. Based Complement. Alternat. Med., 2023, 2023, 7603943.
[http://dx.doi.org/10.1155/2023/7603943]
[18]
Liu, Y.; Dang, W.; Zhang, S.; Wang, L.; Zhang, X. Artesunate attenuates inflammatory injury and inhibits the NF-kappaB pathway in a mouse model of cerebral ischemia. J. Int. Med. Res., 2021, 49(11), 3000605211053549.
[http://dx.doi.org/10.1177/03000605211053549]
[19]
Chen, S.; Wu, Q.; Zhong, D.; Li, C.; Du, L. Caffeine prevents hyperoxia-induced lung injury in neonatal mice through NLRP3 inflammasome and NF-kappaB pathway. Respir. Res., 2020, 21(1), 140.
[http://dx.doi.org/10.1186/s12931-020-01403-2]
[20]
Zhang, E.; Wang, J.; Chen, Q.; Wang, Z.; Li, D.; Jiang, N.; Ju, X. Artesunate ameliorates sepsis-induced acute lung injury by activating the mTOR/AKT/PI3K axis. Gene, 2020, 759, 144969.
[http://dx.doi.org/10.1016/j.gene.2020.144969] [PMID: 32712064]
[21]
Deng, S.; Zhang, H.; Han, W.; Guo, C.; Deng, C. Transforming growth Factor-β-Neutralizing antibodies improve alveolarization in the oxygen-exposed newborn mouse lung. J. Interferon Cytokine Res., 2019, 39(2), 106-116.
[http://dx.doi.org/10.1089/jir.2018.0080] [PMID: 30657417]
[22]
Zeng, X.Z.; Zhang, Y.Y.; Yang, Q.; Wang, S.; Zou, B.H.; Tan, Y.H. Artesunate attenuates LPS-induced osteoclastogenesis by suppressing TLR4/TRAF6 and PLCgamma1-Ca(2+)-NFATc1 signaling pathway. Acta Pharmacol. Sin., 2020, 41(2), 229-236.
[http://dx.doi.org/10.1038/s41401-019-0289-6]
[23]
Kumar, V.L.; Verma, S.; Das, P. Artesunate suppresses inflammation and oxidative stress in a rat model of colorectal cancer. Drug Dev. Res., 2019, 80(8), 1089-1097.
[http://dx.doi.org/10.1002/ddr.21590] [PMID: 31471932]
[24]
Feng, F.B.; Qiu, H.Y. RETRACTED: Effects of Artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis. Biomed. Pharmacother., 2018, 102, 1209-1220.
[http://dx.doi.org/10.1016/j.biopha.2018.03.142] [PMID: 29710540]
[25]
Liu, Z.; Zhang, J.; Li, S.; Jiang, J. Artesunate inhibits renal ischemia reperfusion-stimulated lung inflammation in rats by activating HO-1 pathway. Inflammation, 2018, 41(1), 114-121.
[http://dx.doi.org/10.1007/s10753-017-0669-3] [PMID: 28921399]
[26]
Zhou, Z.; Hou, J.; Li, Q. Artesunate attenuates traumatic brain injury-induced impairments in rats. Transl. Neurosci., 2020, 11(1), 309-318.
[http://dx.doi.org/10.1515/tnsci-2020-0136]
[27]
Speer, C.P. Inflammation and bronchopulmonary dysplasia. Semin. Neonatol., 2003, 8(1), 29-38.
[http://dx.doi.org/10.1016/S1084-2756(02)00190-2] [PMID: 12667828]
[28]
Li, K.; Zhang, F.; Wei, L.; Han, Z.; Liu, X.; Pan, Y.; Guo, C.; Han, W. Recombinant human Elafin ameliorates chronic hyperoxia-induced lung injury by inhibiting nuclear factor-Kappa B signaling in neonatal mice. J. Interferon Cytokine Res., 2020, 40(6), 320-330.
[http://dx.doi.org/10.1089/jir.2019.0241] [PMID: 32460595]
[29]
Russell, D.W.; Gaggar, A.; Solomon, G.M. Neutrophil fates in bronchiectasis and alpha-1 antitrypsin deficiency. Ann. Am. Thorac. Soc., 2016, 13(Suppl. 2), S123-S129.
[http://dx.doi.org/10.1513/AnnalsATS.201512-805KV] [PMID: 27115946]
[30]
Zhang, T.; Wang, J.; Wang, S.; Ma, C. Timosaponin B-II inhibits lipopolysaccharide-induced acute lung toxicity via TLR/NF-κB pathway. Toxicol. Mech. Methods, 2015, 25(9), 665-671.
[http://dx.doi.org/10.3109/15376516.2015.1045652] [PMID: 26540118]
[31]
Notarte, K.I.R.; Quimque, M.T.J.; Macaranas, I.T.; Khan, A.; Pastrana, A.M.; Villaflores, O.B. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-kappaB pathway and the increased NRF2 level by a flavonol-enriched n-butanol fraction from Uvaria alba. ACS Omega., 2023, 8(6), 5377-5392.
[http://dx.doi.org/10.1021/acsomega.2c06451]
[32]
Ali, S.; Hirschfeld, A.F.; Mayer, M.L.; Fortuno, E.S., III; Corbett, N.; Kaplan, M.; Wang, S.; Schneiderman, J.; Fjell, C.D.; Yan, J.; Akhabir, L.; Aminuddin, F.; Marr, N.; Lacaze-Masmonteil, T.; Hegele, R.G.; Becker, A.; Chan-Yeung, M.; Hancock, R.E.W.; Kollmann, T.R.; Daley, D.; Sandford, A.J.; Lavoie, P.M.; Turvey, S.E. Functional genetic variation in NFKBIA and susceptibility to childhood asthma, bronchiolitis, and bronchopulmonary dysplasia. J. Immunol., 2013, 190(8), 3949-3958.
[http://dx.doi.org/10.4049/jimmunol.1201015] [PMID: 23487427]
[33]
Liu, D.; Wang, Y.; Li, L.; Zhao, H.; Li, L.; Liu, Y. Celecoxib protects hyperoxia-induced lung injury via NF-kappaB and AQP1. Front Pediatr., 2019, 7, 228.
[http://dx.doi.org/10.3389/fped.2019.00228]
[34]
Wang, X.H.; Jia, H.L.; Deng, L.; Huang, W.M. Astragalus polysaccharides mediated preventive effects on bronchopulmonary dysplasia in rats. Pediatr. Res., 2014, 76(4), 347-354.
[http://dx.doi.org/10.1038/pr.2014.107] [PMID: 25029259]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy