Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Mini-Review Article

Bioleaching Extraction of Valuable Metal From E-Wastes: A Mini Review

Author(s): Mingjun Jiang, Siyu He and Yongkui Zhang*

Volume 16, Issue 5, 2023

Published on: 11 October, 2023

Page: [306 - 323] Pages: 18

DOI: 10.2174/0124055204271800230926111857

Price: $65

Abstract

Electrical waste (E-waste) is a significant global issue, with an annual generation of over 50 million tons, causing detrimental effects on both the environment and human health. However, E-waste is also known as a secondary valuable metal resource. Although hydrometallurgy and pyrometallurgy are still the preferred methods for metal recovery from E-wastes, bioleaching has gained significant attention as a promising alternative for metal recovery from E-wastes due to its sustainability, environmental friendliness, and cost efficiency. In this review, different chemical principles of bioleaching were first discussed. Major bacterial groups that can be applied in bioleaching were then introduced. The bioleaching procedures and applications have been summarized and analyzed. Finally, a few perspectives were made on potential future research on bioleaching.

Graphical Abstract

[1]
Dutta D, Rautela R, Gujjala LKS, et al. A review on recovery processes of metals from E-waste: A green perspective. Sci Total Environ 2023; 859(Pt 2): 160391.
[http://dx.doi.org/10.1016/j.scitotenv.2022.160391] [PMID: 36423849]
[2]
Kumari R, Samadder SR. A critical review of the pre-processing and metals recovery methods from e-wastes. J Environ Manage 2022; 320: 115887.
[http://dx.doi.org/10.1016/j.jenvman.2022.115887] [PMID: 35933880]
[3]
Işıldar A, van Hullebusch ED, Lenz M, et al. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – A review. J Hazard Mater 2019; 362: 467-81.
[http://dx.doi.org/10.1016/j.jhazmat.2018.08.050] [PMID: 30268020]
[4]
Dixit R, Kumar S, Pandey G. Biological approaches for E-waste management: A green-go to boost circular economy. Chemosphere 2023; 336: 139177.
[http://dx.doi.org/10.1016/j.chemosphere.2023.139177] [PMID: 37307925]
[5]
Awasthi AK, Zeng X, Li J. Environmental pollution of electronic waste recycling in India: A critical review. Environ Pollut 2016; 211: 259-70.
[http://dx.doi.org/10.1016/j.envpol.2015.11.027] [PMID: 26774773]
[6]
Islam A, Swaraz AM, Teo SH, et al. Advances in physiochemical and biotechnological approaches for sustainable metal recovery from e-waste: A critical review. J Clean Prod 2021; 323: 129015.
[http://dx.doi.org/10.1016/j.jclepro.2021.129015]
[7]
Ramprasad C, Gwenzi W, Chaukura N, et al. Strategies and options for the sustainable recovery of rare earth elements from electrical and electronic waste. Chem Eng J 2022; 442: 135992.
[http://dx.doi.org/10.1016/j.cej.2022.135992]
[8]
Awasthi AK, Hasan M, Mishra YK, et al. Environmentally sound system for E-waste: Biotechnological perspectives. Curr Res Biotechnol 2019; 1: 58-64.
[http://dx.doi.org/10.1016/j.crbiot.2019.10.002]
[9]
Charpentier NM, Maurice AA, Xia D, et al. Urban mining of unexploited spent critical metals from E-waste made possible using advanced sorting. Resour Conserv Recycling 2023; 196: 107033.
[http://dx.doi.org/10.1016/j.resconrec.2023.107033]
[10]
Baniasadi M, Vakilchap F, Bahaloo-Horeh N, Mousavi SM, Farnaud S. Advances in bioleaching as a sustainable method for metal recovery from e-waste: A review. J Ind Eng Chem 2019; 76: 75-90.
[http://dx.doi.org/10.1016/j.jiec.2019.03.047]
[11]
Huang T, Zhu J, Huang X, Ruan J, Xu Z. Assessment of precious metals positioning in waste printed circuit boards and the economic benefits of recycling. Waste Manag 2022; 139: 105-15.
[http://dx.doi.org/10.1016/j.wasman.2021.12.030] [PMID: 34959086]
[12]
Rajesh R, Kanakadhurga D, Prabaharan N. Electronic waste: A critical assessment on the unimaginable growing pollutant, legislations and environmental impacts. Environmen. Challenges 2022; 7: 100507.
[13]
Ahirwar R, Tripathi AK. E-waste management: A review of recycling process, environmental and occupational health hazards, and potential solutions. Environ Nanotechnol Monit Manag 2021; 15: 100409.
[http://dx.doi.org/10.1016/j.enmm.2020.100409]
[14]
Priya A, Hait S. Biometallurgical recovery of metals from waste printed circuit boards using pure and mixed strains of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum. Process Saf Environ Prot 2020; 143: 262-72.
[http://dx.doi.org/10.1016/j.psep.2020.06.042]
[15]
Nigam S, Jha R, Singh RP. A different approach to the electronic waste handling – A review. Mater Today Proc 2021; 46: 1519-25.
[http://dx.doi.org/10.1016/j.matpr.2021.01.081]
[16]
Udayakumar S, Razak MIBA, Ismail S. Recovering valuable metals from Waste Printed Circuit Boards (WPCB): A short review. Mater Today Proc 2022; 66: 3062-70.
[http://dx.doi.org/10.1016/j.matpr.2022.07.364]
[17]
Jagannath A, Shetty KV, Saidutta MB. Bioleaching of copper from electronic waste using Acinetobacter sp. Cr B2 in a pulsed plate column operated in batch and sequential batch mode. J Environ Chem Eng 2017; 5(2): 1599-607.
[http://dx.doi.org/10.1016/j.jece.2017.02.023]
[18]
Hubau A, Minier M, Chagnes A, Joulian C, Silvente C, Guezennec AG. Recovery of metals in a double-stage continuous bioreactor for acidic bioleaching of printed circuit boards (PCBs). Separ Purif Tech 2020; 238: 116481.
[http://dx.doi.org/10.1016/j.seppur.2019.116481]
[19]
Roy JJ, Madhavi S, Cao B. Metal extraction from spent lithium-ion batteries (LIBs) at high pulp density by environmentally friendly bioleaching process. J Clean Prod 2021; 280: 124242.
[http://dx.doi.org/10.1016/j.jclepro.2020.124242]
[20]
Jowkar MJ, Bahaloo-Horeh N, Mousavi SM, Pourhossein F. Bioleaching of indium from discarded liquid crystal displays. J Clean Prod 2018; 180: 417-29.
[http://dx.doi.org/10.1016/j.jclepro.2018.01.136]
[21]
Mandal S, Binti Bakaruddin BR, Jeon S, Lee Y, Kim KW. Assessment of the recycling potential of valuable metals by mapping the elemental composition in discarded light-emitting diodes (LEDs). J Environ Manage 2023; 328: 116900.
[http://dx.doi.org/10.1016/j.jenvman.2022.116900] [PMID: 36512948]
[22]
Ueberschaar M, Rotter VS. Enabling the recycling of rare earth elements through product design and trend analyses of hard disk drives. J Mater Cycles Waste Manag 2015; 17(2): 266-81.
[http://dx.doi.org/10.1007/s10163-014-0347-6]
[23]
Rene ER, Sethurajan M, Kumar Ponnusamy V, et al. Electronic waste generation, recycling and resource recovery: Technological perspectives and trends. J Hazard Mater 2021; 416: 125664.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125664] [PMID: 33838506]
[24]
Shahbaz A. A systematic review on leaching of rare earth metals from primary and secondary sources. Miner Eng 2022; 184: 107632.
[http://dx.doi.org/10.1016/j.mineng.2022.107632]
[25]
Islam A, Ahmed T, Awual MR, et al. Advances in sustainable approaches to recover metals from e-waste-A review. J Clean Prod 2020; 244: 118815.
[http://dx.doi.org/10.1016/j.jclepro.2019.118815]
[26]
Wu C, Awasthi AK, Qin W, Liu W, Yang C. Recycling value materials from waste PCBs focus on electronic components: Technologies, obstruction and prospects. J Environ Chem Eng 2022; 10(5): 108516.
[http://dx.doi.org/10.1016/j.jece.2022.108516]
[27]
Vera M, Schippers A, Hedrich S, Sand W. Progress in bioleaching: Fundamentals and mechanisms of microbial metal sulfide oxidation – part A. Appl Microbiol Biotechnol 2022; 106(21): 6933-52.
[http://dx.doi.org/10.1007/s00253-022-12168-7] [PMID: 36194263]
[28]
Roberto FF, Schippers A. Progress in bioleaching: Part B, applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 2022; 106(18): 5913-28.
[http://dx.doi.org/10.1007/s00253-022-12085-9] [PMID: 36038754]
[29]
Trivedi A, Vishwakarma A, Saawarn B, Mahanty B, Hait S. Fungal biotechnology for urban mining of metals from waste printed circuit boards: A review. J Environ Manage 2022; 323: 116133.
[http://dx.doi.org/10.1016/j.jenvman.2022.116133] [PMID: 36099867]
[30]
Naseri T, Bahaloo-Horeh N, Mousavi SM. Bacterial leaching as a green approach for typical metals recovery from end-of-life coin cells batteries. J Clean Prod 2019; 220: 483-92.
[http://dx.doi.org/10.1016/j.jclepro.2019.02.177]
[31]
Nayak NP. Microorganisms and their application in mining and allied industries. Mater Today Proc 2023; 72: 2886-91.
[http://dx.doi.org/10.1016/j.matpr.2022.07.392]
[32]
Zhang R, Schippers A. Stirred-tank bioleaching of copper and cobalt from mine tailings in Chile. Miner Eng 2022; 180: 107514.
[http://dx.doi.org/10.1016/j.mineng.2022.107514]
[33]
Hosseini SM, Vakilchap F, Baniasadi M, Mousavi SM, Khodadadi DA, Farnaud S. Green recovery of cerium and strontium from gold mine tailings using an adapted acidophilic bacterium in one-step bioleaching approach. J Taiwan Inst Chem Eng 2022; 138: 104482.
[http://dx.doi.org/10.1016/j.jtice.2022.104482]
[34]
Sur IM, Micle V, Hegyi A. Lăzărescu AV. Extraction of metals from polluted soils by bioleaching in relation to environmental risk assessment. Materials 2022; 15(11): 3973.
[http://dx.doi.org/10.3390/ma15113973] [PMID: 35683266]
[35]
Sánchez-Rojas T, Espinoza-Culupú A, Ramírez P, et al. Proteomic study of response to copper, cadmium, and chrome ion stress in Yarrowia lipolytica strains isolated from andean mine tailings in Peru. Microorganisms 2022; 10(10): 2002.
[http://dx.doi.org/10.3390/microorganisms10102002] [PMID: 36296278]
[36]
Kumar V, Rout C, Singh J, et al. A review on the clean-up technologies for heavy metal ions contaminated soil samples. Heliyon 2023; 9(5): e15472.
[http://dx.doi.org/10.1016/j.heliyon.2023.e15472] [PMID: 37180942]
[37]
Potysz A, van Hullebusch ED, Kierczak J. Perspectives regarding the use of metallurgical slags as secondary metal resources – A review of bioleaching approaches. J Environ Manage 2018; 219: 138-52.
[http://dx.doi.org/10.1016/j.jenvman.2018.04.083] [PMID: 29738933]
[38]
Gomes HI, Funari V, Mayes WM, Rogerson M, Prior TJ. Recovery of Al, Cr and V from steel slag by bioleaching: Batch and column experiments. J Environ Manage 2018; 222: 30-6.
[http://dx.doi.org/10.1016/j.jenvman.2018.05.056] [PMID: 29800862]
[39]
Pathak A, Kothari R, Vinoba M, Habibi N, Tyagi VV. Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions. J Environ Manage 2021; 280: 111789.
[http://dx.doi.org/10.1016/j.jenvman.2020.111789] [PMID: 33370668]
[40]
Asghari I, Mousavi SM, Amiri F, Tavassoli S. Bioleaching of spent refinery catalysts: A review. J Ind Eng Chem 2013; 19(4): 1069-81.
[http://dx.doi.org/10.1016/j.jiec.2012.12.005]
[41]
Yang W, Song W, Li J, Zhang X. Bioleaching of heavy metals from wastewater sludge with the aim of land application. Chemosphere 2020; 249: 126134.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126134] [PMID: 32058136]
[42]
Geng H, Xu Y, Zheng L, Gong H, Dai L, Dai X. An overview of removing heavy metals from sewage sludge: Achievements and perspectives. Environ Pollut 2020; 266(Pt 2): 115375.
[http://dx.doi.org/10.1016/j.envpol.2020.115375] [PMID: 32827986]
[43]
Seidel A, Zimmels Y, Armon R. Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans. Chem Eng J 2001; 83(2): 123-30.
[http://dx.doi.org/10.1016/S1385-8947(00)00256-4]
[44]
Wu HY, Ting YP. Metal extraction from municipal solid waste (MSW) incinerator fly ash—Chemical leaching and fungal bioleaching. Enzyme Microb Technol 2006; 38(6): 839-47.
[http://dx.doi.org/10.1016/j.enzmictec.2005.08.012]
[45]
Srichandan H, Mohapatra RK, Singh PK, Mishra S, Parhi PK, Naik K. Column bioleaching applications, process development, mechanism, parametric effect and modelling: A review. J Ind Eng Chem 2020; 90: 1-16.
[http://dx.doi.org/10.1016/j.jiec.2020.07.012]
[46]
Yaashikaa PR, Priyanka B, Senthil Kumar P, Karishma S, Jeevanantham S, Indraganti S. A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach. Chemosphere 2022; 287(Pt 2): 132230.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132230] [PMID: 34826922]
[47]
Srichandan H, Mohapatra RK, Parhi PK, Mishra S. Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review. Hydrometallurgy 2019; 189: 105122.
[http://dx.doi.org/10.1016/j.hydromet.2019.105122]
[48]
Roy JJ, Cao B, Madhavi S. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere 2021; 282: 130944.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130944] [PMID: 34087562]
[49]
Dev S, Sachan A, Dehghani F, Ghosh T, Briggs BR, Aggarwal S. Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: A review. Chem Eng J 2020; 397: 124596.
[http://dx.doi.org/10.1016/j.cej.2020.124596]
[50]
Desmarais M, Pirade F, Zhang J, Rene ER. Biohydrometallurgical processes for the recovery of precious and base metals from waste electrical and electronic equipments: Current trends and perspectives. Bioresour Technol Rep 2020; 11: 100526.
[http://dx.doi.org/10.1016/j.biteb.2020.100526]
[51]
Nili S, Arshadi M, Yaghmaei S. Fungal bioleaching of e-waste utilizing molasses as the carbon source in a bubble column bioreactor. J Environ Manage 2022; 307: 114524.
[http://dx.doi.org/10.1016/j.jenvman.2022.114524] [PMID: 35085974]
[52]
Rizki IN, Tanaka Y, Okibe N. Thiourea bioleaching for gold recycling from e-waste. Waste Manag 2019; 84: 158-65.
[http://dx.doi.org/10.1016/j.wasman.2018.11.021] [PMID: 30691888]
[53]
Faraji F, Golmohammadzadeh R, Rashchi F, Alimardani N. Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics. J Environ Manage 2018; 217: 775-87.
[http://dx.doi.org/10.1016/j.jenvman.2018.04.043] [PMID: 29660703]
[54]
Horeh NB, Mousavi SM, Shojaosadati SA. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. J Power Sources 2016; 320: 257-66.
[http://dx.doi.org/10.1016/j.jpowsour.2016.04.104]
[55]
Moazzam P, Boroumand Y, Rabiei P, et al. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. Chemosphere 2021; 277: 130196.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130196] [PMID: 33784558]
[56]
Gu T, Rastegar SO, Mousavi SM, Li M, Zhou M. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresour Technol 2018; 261: 428-40.
[http://dx.doi.org/10.1016/j.biortech.2018.04.033] [PMID: 29703427]
[57]
Pourhossein F, Mousavi SM. A novel rapid and selective microbially thiosulfate bioleaching of precious metals from discarded telecommunication printed circuited boards (TPCBs). Resour Conserv Recycling 2022; 187: 106599.
[http://dx.doi.org/10.1016/j.resconrec.2022.106599]
[58]
Jung H, Inaba Y, Banta S. Genetic engineering of the acidophilic chemolithoautotroph Acidithiobacillus ferrooxidans. Trends Biotechnol 2022; 40(6): 677-92.
[http://dx.doi.org/10.1016/j.tibtech.2021.10.004] [PMID: 34794837]
[59]
Nguyen TH, Won S, Ha MG, Nguyen DD, Kang HY. Bioleaching for environmental remediation of toxic metals and metalloids: A review on soils, sediments, and mine tailings. Chemosphere 2021; 282: 131108.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131108] [PMID: 34119723]
[60]
Becci A, Amato A, Fonti V, Karaj D, Beolchini F. An innovative biotechnology for metal recovery from printed circuit boards. Resour Conserv Recycling 2020; 153: 104549.
[http://dx.doi.org/10.1016/j.resconrec.2019.104549]
[61]
Chen S, Yang Y, Liu C, Dong F, Liu B. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chemosphere 2015; 141: 162-8.
[http://dx.doi.org/10.1016/j.chemosphere.2015.06.082] [PMID: 26196406]
[62]
Hong Y, Valix M. Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. J Clean Prod 2014; 65: 465-72.
[http://dx.doi.org/10.1016/j.jclepro.2013.08.043]
[63]
Lee J, Pandey BD. Bio-processing of solid wastes and secondary resources for metal extraction – A review. Waste Manag 2012; 32(1): 3-18.
[http://dx.doi.org/10.1016/j.wasman.2011.08.010] [PMID: 21925857]
[64]
Xia MC, Bao P, Liu AJ, et al. Isolation and identification of Penicillium chrysogenum strain Y5 and its copper extraction characterization from waste printed circuit boards. J Biosci Bioeng 2018; 126(1): 78-87.
[http://dx.doi.org/10.1016/j.jbiosc.2018.02.001] [PMID: 29573983]
[65]
Smith SL, Johnson DB. Growth of Leptospirillum ferriphilum in sulfur medium in co-culture with Acidithiobacillus caldus. Extremophiles 2018; 22(2): 327-33.
[http://dx.doi.org/10.1007/s00792-018-1001-3] [PMID: 29330649]
[66]
Xia J, Yang Y, He H, et al. Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans. Int J Miner Process 2010; 94(1-2): 52-7.
[http://dx.doi.org/10.1016/j.minpro.2009.11.005]
[67]
Coram NJ, Rawlings DE. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 degrees °C. Appl Environ Microbiol 2002; 68(2): 838-45.
[http://dx.doi.org/10.1128/AEM.68.2.838-845.2002] [PMID: 11823226]
[68]
Zhu P, Liu X, Chen A, et al. Comparative study on chalcopyrite bioleaching with assistance of different carbon materials by mixed moderate thermophiles. Trans Nonferrous Met Soc China 2019; 29(6): 1294-303.
[http://dx.doi.org/10.1016/S1003-6326(19)65036-3]
[69]
Xia MC, Wang YP, Peng TJ, et al. Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture. J Biosci Bioeng 2017; 123(6): 714-21.
[http://dx.doi.org/10.1016/j.jbiosc.2016.12.017] [PMID: 28319019]
[70]
Ilyas S, Anwar MA, Niazi SB, Afzal Ghauri M. Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 2007; 88(1-4): 180-8.
[http://dx.doi.org/10.1016/j.hydromet.2007.04.007]
[71]
Bosecker K. Bioleaching: Metal solubilization by microorganisms. FEMS Microbiol Rev 1997; 20(3-4): 591-604.
[http://dx.doi.org/10.1111/j.1574-6976.1997.tb00340.x]
[72]
Li S, Zhong H, Hu Y, Zhao J, He Z, Gu G. Bioleaching of a low-grade nickel–copper sulfide by mixture of four thermophiles. Bioresour Technol 2014; 153: 300-6.
[http://dx.doi.org/10.1016/j.biortech.2013.12.018] [PMID: 24374030]
[73]
Liang CL, Xia JL, Zhao XJ, et al. Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis. Hydrometallurgy 2010; 105(1-2): 179-85.
[http://dx.doi.org/10.1016/j.hydromet.2010.07.012]
[74]
Priya A, Hait S. Extraction of metals from high grade waste printed circuit board by conventional and hybrid bioleaching using Acidithiobacillus ferrooxidans. Hydrometallurgy 2018; 177: 132-9.
[http://dx.doi.org/10.1016/j.hydromet.2018.03.005]
[75]
Faramarzi MA, Mogharabi-Manzari M, Brandl H. Bioleaching of metals from wastes and low-grade sources by HCN-forming microorganisms. Hydrometallurgy 2020; 191: 105228.
[http://dx.doi.org/10.1016/j.hydromet.2019.105228]
[76]
Dusengemungu L, Kasali G, Gwanama C, Mubemba B. Overview of fungal bioleaching of metals. Environ Adv 2021; 5: 100083.
[77]
Xia M, Bao P, Liu A, et al. Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resour Conserv Recycling 2018; 136: 267-75.
[http://dx.doi.org/10.1016/j.resconrec.2018.05.001]
[78]
Rasoulnia P, Mousavi SM. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments. Bioresour Technol 2016; 216: 729-36.
[http://dx.doi.org/10.1016/j.biortech.2016.05.114] [PMID: 27295250]
[79]
Ilyas S, Chi R, Lee JC, Bhatti HN. One step bioleaching of sulphide ore with low concentration of arsenic by aspergillus niger and taguchi orthogonal array optimization. Chin J Chem Eng 2012; 20(5): 923-9.
[http://dx.doi.org/10.1016/S1004-9541(12)60419-4]
[80]
Behera SK, Sukla LB. Microbial extraction of nickel from chromite overburdens in the presence of surfactant. Trans Nonferrous Met Soc China 2012; 22(11): 2840-5.
[http://dx.doi.org/10.1016/S1003-6326(11)61540-9]
[81]
Amiri F, Mousavi SM, Yaghmaei S. Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum. Separ Purif Tech 2011; 80(3): 566-76.
[http://dx.doi.org/10.1016/j.seppur.2011.06.012]
[82]
Mohapatra S, Pradhan N, Mohanty S, Sukla LB. Recovery of nickel from lateritic nickel ore using Aspergillus niger and optimization of parameters. Miner Eng 2009; 22(3): 311-3.
[http://dx.doi.org/10.1016/j.mineng.2008.08.002]
[83]
Brandl H, Bosshard R, Wegmann M. Computer-munching microbes: Metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 2001; 59(2-3): 319-26.
[http://dx.doi.org/10.1016/S0304-386X(00)00188-2]
[84]
Alireza Esmaeili MA. Simultaneous leaching of Cu, Al, and Ni from computer printed circuit boards using Penicillium simplicissimum. Resour Conserv Recycling 2022; 177: 105976.
[85]
Cui J, Zhu N, Mao F, Wu P, Dang Z. Bioleaching of indium from waste LCD panels by Aspergillus niger: Method optimization and mechanism analysis. Sci Total Environ 2021; 790: 148151.
[http://dx.doi.org/10.1016/j.scitotenv.2021.148151] [PMID: 34111782]
[86]
Kim MJ, Seo JY, Choi YS, Kim GH. Bioleaching of spent Zn–Mn or Ni–Cd batteries by Aspergillus species. Waste Manag 2016; 51: 168-73.
[http://dx.doi.org/10.1016/j.wasman.2015.11.001] [PMID: 26584557]
[87]
Motaghed M, Mousavi SM, Rastegar SO, Shojaosadati SA. Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: Statistical modeling and process optimization. Bioresour Technol 2014; 171: 401-9.
[http://dx.doi.org/10.1016/j.biortech.2014.08.032] [PMID: 25226056]
[88]
Chi TD, Lee J, Pandey BD, Yoo K, Jeong J. Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium. Miner Eng 2011; 24(11): 1219-22.
[http://dx.doi.org/10.1016/j.mineng.2011.05.009]
[89]
Arab B, Hassanpour F, Arshadi M, Yaghmaei S, Hamedi J. Optimized bioleaching of copper by indigenous cyanogenic bacteria isolated from the landfill of e-waste. J Environ Manage 2020; 261: 110124.
[http://dx.doi.org/10.1016/j.jenvman.2020.110124] [PMID: 31999614]
[90]
Merli G, Becci A, Amato A. Recovery of precious metals from printed circuit boards by cyanogenic bacteria: Optimization of cyanide production by statistical analysis. J Environ Chem Eng 2022; 10(3): 107495.
[http://dx.doi.org/10.1016/j.jece.2022.107495]
[91]
Li J, Wen J, Guo Y, An N, Liang C, Ge Z. Bioleaching of gold from waste printed circuit boards by alkali-tolerant Pseudomonas fluorescens. Hydrometallurgy 2020; 194: 105260.
[http://dx.doi.org/10.1016/j.hydromet.2020.105260]
[92]
Kaur P, Sharma S, Albarakaty FM, Kalia A, Hassan MM, Abd-Elsalam KA. Biosorption and bioleaching of heavy metals from electronic waste varied with microbial genera. Sustainability 2022; 14(2): 935.
[http://dx.doi.org/10.3390/su14020935]
[93]
Wang J, Bai J, Xu J, Liang B. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. J Hazard Mater 2009; 172(2-3): 1100-5.
[http://dx.doi.org/10.1016/j.jhazmat.2009.07.102] [PMID: 19699031]
[94]
Naseri T, Bahaloo-Horeh N, Mousavi SM. Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using acidithiobacillus thiooxidans. J Environ Manage 2019; 235: 357-67.
[http://dx.doi.org/10.1016/j.jenvman.2019.01.086] [PMID: 30708273]
[95]
Heydarian A, Mousavi SM, Vakilchap F, Baniasadi M. Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. J Power Sources 2018; 378: 19-30.
[http://dx.doi.org/10.1016/j.jpowsour.2017.12.009]
[96]
Marra A, Cesaro A, Rene ER, Belgiorno V, Lens PNL. Bioleaching of metals from WEEE shredding dust. J Environ Manage 2018; 210: 180-90.
[http://dx.doi.org/10.1016/j.jenvman.2017.12.066] [PMID: 29353112]
[97]
Sodha AB, Tipre DR, Dave SR. Optimisation of biohydrometallurgical batch reactor process for copper extraction and recovery from non-pulverized waste printed circuit boards. Hydrometallurgy 2020; 191: 105170.
[http://dx.doi.org/10.1016/j.hydromet.2019.105170]
[98]
Ilyas S, Srivastava RR, Kim H, Ilyas N. Biotechnological recycling of hazardous waste PCBs using Sulfobacillus thermosulfidooxidans through pretreatment of toxicant metals: Process optimization and kinetic studies. Chemosphere 2022; 286(Pt 3): 131978.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131978] [PMID: 34426287]
[99]
Natarajan G, Ting YP. Pretreatment of e-waste and mutation of alkali-tolerant cyanogenic bacteria promote gold biorecovery. Bioresour Technol 2014; 152: 80-5.
[http://dx.doi.org/10.1016/j.biortech.2013.10.108] [PMID: 24291311]
[100]
Pourhossein F, Mousavi SM, Beolchini F, Lo Martire M. Novel green hybrid acidic-cyanide bioleaching applied for high recovery of precious and critical metals from spent light emitting diode lamps. J Clean Prod 2021; 298: 126714.
[http://dx.doi.org/10.1016/j.jclepro.2021.126714]
[101]
Van Yken J, Cheng KY, Boxall NJ, et al. Potential of metals leaching from printed circuit boards with biological and chemical lixiviants. Hydrometallurgy 2020; 196: 105433.
[http://dx.doi.org/10.1016/j.hydromet.2020.105433]
[102]
Velgosová O, Kaduková J. Marcinčáková R, Palfy P, Trpčevská J. Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni–Cd batteries. Waste Manag 2013; 33(2): 456-61.
[http://dx.doi.org/10.1016/j.wasman.2012.10.007] [PMID: 23131752]
[103]
Xin Y, Guo X, Chen S, Wang J, Wu F, Xin B. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. J Clean Prod 2016; 116: 249-58.
[http://dx.doi.org/10.1016/j.jclepro.2016.01.001]
[104]
Zhao Q, Tong L, Kamali AR, Sand W, Yang H. Role of humic acid in bioleaching of copper from waste computer motherboards. Hydrometallurgy 2020; 197: 105437.
[http://dx.doi.org/10.1016/j.hydromet.2020.105437]
[105]
Moosakazemi F, Ghassa S, Jafari M, Chelgani SC. Bioleaching for recovery of metals from spent batteries – a review. Miner Process Extr Metall Rev 2022; 1-11.
[http://dx.doi.org/10.1080/08827508.2022.2095376]
[106]
Wang X, Xie Y, Chen K, Yi L, Wang Y, Zhang Y. Bioleaching assisted conversion of refractory low-grade ferruginous rhodochrosite to Mn-Fe based catalysts for sulfathiazole degradation. Chem Eng J 2022; 427: 130804.
[http://dx.doi.org/10.1016/j.cej.2021.130804]
[107]
Gu W, Bai J, Dong B, et al. Catalytic effect of graphene in bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 2017; 171: 172-8.
[http://dx.doi.org/10.1016/j.hydromet.2017.05.012]
[108]
Kadivar S, Pourhossein F, Mousavi SM. Recovery of valuable metals from spent mobile phone printed circuit boards using biochar in indirect bioleaching. J Environ Manage 2021; 280: 111642.
[http://dx.doi.org/10.1016/j.jenvman.2020.111642] [PMID: 33293166]
[109]
Wang S, Zheng Y, Yan W, Chen L, Dummi MG, Zhao F. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar. J Hazard Mater 2016; 320: 393-400.
[http://dx.doi.org/10.1016/j.jhazmat.2016.08.054] [PMID: 27585271]
[110]
Zeng G, Luo S, Deng X, Li L, Au C. Influence of silver ions on bioleaching of cobalt from spent lithium batteries. Miner Eng 2013; 49: 40-4.
[http://dx.doi.org/10.1016/j.mineng.2013.04.021]
[111]
Niu Z, Huang Q, Wang J, Yang Y, Xin B, Chen S. Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10%. J Hazard Mater 2015; 298: 170-7.
[http://dx.doi.org/10.1016/j.jhazmat.2015.05.038] [PMID: 26057441]
[112]
Arya S, Kumar S. Bioleaching: Urban mining option to curb the menace of E-waste challenge. Bioengineered 2020; 11(1): 640-60.
[http://dx.doi.org/10.1080/21655979.2020.1775988] [PMID: 32538256]
[113]
Xiang Y, Wu P, Zhu N, et al. Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. J Hazard Mater 2010; 184(1-3): 812-8.
[http://dx.doi.org/10.1016/j.jhazmat.2010.08.113] [PMID: 20869807]
[114]
Liang G, Tang J, Liu W, Zhou Q. Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). J Hazard Mater 2013; 250-251: 238-45.
[http://dx.doi.org/10.1016/j.jhazmat.2013.01.077] [PMID: 23454463]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy