Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Recent Progress in the Composites of Perovskite Nanocrystals and II-VI Quantum Dots: Their Synthesis, Applications, and Prospects

Author(s): Qiaoyun Wu, Rongrong Hu*, Bobo Yang, Wenfang Peng, Mingming Shi, Yuefeng Li, Lin Cheng, Pan Liang and Jun Zou*

Volume 20, Issue 3, 2024

Published on: 10 October, 2023

Page: [373 - 389] Pages: 17

DOI: 10.2174/0115734137269553230919171016

Price: $65

Abstract

The remarkable photoelectric characteristics of perovskite nanocrystals (NCs), including high fault tolerance, tunable photoluminescence (PL) emission, and high carrier mobility, contribute to making them especially attractive for photonic and optoelectronic applications. Unfortunately, the poor environmental thermal and light stability set obstacles to their industrial applications. Over the past 40 years, II-VI semiconductor quantum dots (QDs) have achieved many important photophysics findings and optoelectronic applications. Compared with perovskite NCs, II-VI semiconductor QDs still have a relatively weaker molar absorbance coefficient. Whereas, significant enhancement of both the stability and the optical performance of the composites of perovskite NCs and II-VI QDs are of interest for photovoltaic and optoelectronic devices. The composites of perovskite NCs and II-VI QDs come in two primary types: core/shell structures and heterojunction structures. To better understand the composites of perovskite NCs and II-VI QDs, the approaches of synthesis methods, their optoelectronic properties, carrier dynamics and potential applications in solar cells, light emitting diodes (LEDs) and photodetectors are summarized. Furthermore, the unmet problems and the potential applications are also presented.

Graphical Abstract

[1]
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17), 6050-6051.
[http://dx.doi.org/10.1021/ja809598r] [PMID: 19366264]
[2]
Bati, A.S.R.; Zhong, Y.L.; Burn, P.L.; Nazeeruddin, M.K.; Shaw, P.E.; Batmunkh, M. Next-generation applications for integrated perovskite solar cells. Communications Materials, 2023, 4(1), 2.
[http://dx.doi.org/10.1038/s43246-022-00325-4]
[3]
Saleem, M.I.; Choi, R.; Lee, J.H. Light outcoupling strategies in oriented perovskite light-emitting-diodes: recent trends, opportunities, and challenges toward innovation. Mater. Chem. Front., 2023, 7(12), 2316-2336.
[http://dx.doi.org/10.1039/D2QM01365G]
[4]
Manser, J.S.; Kamat, P.V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics, 2014, 8(9), 737-743.
[http://dx.doi.org/10.1038/nphoton.2014.171]
[5]
Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev., 2019, 119(5), 3036-3103.
[http://dx.doi.org/10.1021/acs.chemrev.8b00539] [PMID: 30821144]
[6]
Wu, X.; Ji, H.; Yan, X.; Zhong, H. Industry outlook of perovskite quantum dots for display applications. Nat. Nanotechnol., 2022, 17(8), 813-816.
[http://dx.doi.org/10.1038/s41565-022-01163-8] [PMID: 35869367]
[7]
Etgar, L.; Gao, P.; Qin, P.; Graetzel, M.; Nazeeruddin, M.K. A hybrid lead iodide perovskite and lead sulfide QD heterojunction solar cell to obtain a panchromatic response. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(30), 11586-11590.
[http://dx.doi.org/10.1039/C4TA02711F]
[8]
Sukhovatkin, V.; Hinds, S.; Brzozowski, L.; Sargent, E.H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science, 2009, 324(5934), 1542-1544.
[http://dx.doi.org/10.1126/science.1173812] [PMID: 19541992]
[9]
Yang, Z.; Janmohamed, A.; Lan, X.; García de Arquer, F.P.; Voznyy, O.; Yassitepe, E.; Kim, G.H.; Ning, Z.; Gong, X.; Comin, R.; Sargent, E.H. Colloidal quantum dot photovoltaics enhanced by perovskite shelling. Nano Lett., 2015, 15(11), 7539-7543.
[http://dx.doi.org/10.1021/acs.nanolett.5b03271] [PMID: 26439147]
[10]
Moon, J.; Mehta, Y.; Gundogdu, K.; So, F.; Gu, Q. Metal‐halide perovskite lasers: Cavity formation and emission characteristics. Adv. Mater., 2023, 2211284, 2211284.
[http://dx.doi.org/10.1002/adma.202211284] [PMID: 36841548]
[11]
Peng, J.; Chen, Y.; Zhang, X.; Dong, A.; Liang, Z. Solid‐state ligand‐exchange fabrication of CH3NH3PbI3 capped PbS quantum dot solar cells. Adv. Sci., 2016, 3(6), 1500432.
[http://dx.doi.org/10.1002/advs.201500432] [PMID: 27812473]
[12]
Allen, T.G.; Bullock, J.; Yang, X.; Javey, A.; De Wolf, S. Passivating contacts for crystalline silicon solar cells. Nat. Energy, 2019, 4(11), 914-928.
[http://dx.doi.org/10.1038/s41560-019-0463-6]
[13]
Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 2015, 15(6), 3692-3696.
[http://dx.doi.org/10.1021/nl5048779] [PMID: 25633588]
[14]
Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J.; D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; Angelis, F.D.; Boyen, H.G. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater., 2015, 5(15), 1500477.
[http://dx.doi.org/10.1002/aenm.201500477]
[15]
Zhou, Y.; Yong, Z.J.; Zhang, K.C.; Liu, B.M.; Wang, Z.W.; Hou, J.S.; Fang, Y.Z.; Zhou, Y.; Sun, H.T.; Song, B. Ultrabroad photoluminescence and electroluminescence at new wavelengths from doped organometal halide perovskites. J. Phys. Chem. Lett., 2016, 7(14), 2735-2741.
[http://dx.doi.org/10.1021/acs.jpclett.6b01147] [PMID: 27377481]
[16]
Pan, A.; He, B.; Fan, X.; Liu, Z.; Urban, J.J.; Alivisatos, A.P.; He, L.; Liu, Y. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors. ACS Nano, 2016, 10(8), 7943-7954.
[http://dx.doi.org/10.1021/acsnano.6b03863] [PMID: 27479080]
[17]
Ahmed, G.H.; Yin, J.; Bose, R.; Sinatra, L.; Alarousu, E.; Yengel, E.; AlYami, N.M.; Saidaminov, M.I.; Zhang, Y.; Hedhili, M.N.; Bakr, O.M.; Brédas, J.L.; Mohammed, O.F. Pyridine-induced dimensionality change in hybrid perovskite nanocrystals. Chem. Mater., 2017, 29(10), 4393-4400.
[http://dx.doi.org/10.1021/acs.chemmater.7b00872]
[18]
Peng, M.; Wen, Z.; Sun, X. Recent progress of flexible photodetectors based on low-dimensional II–VI semiconductors and their application in wearable electronics. Adv. Funct. Mater., 2023, 33(11), 2211548.
[http://dx.doi.org/10.1002/adfm.202211548]
[19]
Al-Douri, Y.; Khan, M.M.; Jennings, J.R. Synthesis and optical properties of II–VI semiconductor quantum dots: A review. J. Mater. Sci. Mater. Electron., 2023, 34(11), 993.
[http://dx.doi.org/10.1007/s10854-023-10435-5]
[20]
Guo, R.; Bao, C.; Gao, F.; Tian, J. Double active layers constructed with halide perovskite and quantum dots for broadband photodetection. Adv. Opt. Mater., 2020, 8(17), 2000557.
[http://dx.doi.org/10.1002/adom.202000557]
[21]
Kagan, C.R.; Lifshitz, E.; Sargent, E.H.; Talapin, D.V. Building devices from colloidal quantum dots. Science, 2016, 353(6302), aac5523.
[http://dx.doi.org/10.1126/science.aac5523] [PMID: 27563099]
[22]
Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 2014, 515(7525), 96-99.
[http://dx.doi.org/10.1038/nature13829] [PMID: 25363773]
[23]
Xia, M.; Liu, C.; Zhao, Z.; Wang, J.; Lin, C.; Xu, Y.; Heo, J.; Dai, S.; Han, J.; Zhao, X. Surface passivation of CdSe quantum dots in all inorganic amorphous solid by forming Cd1−xZnxSe shell. Sci. Rep., 2017, 7(1), 42359.
[http://dx.doi.org/10.1038/srep42359] [PMID: 28169376]
[24]
Xuan, W.; Zheng, L.; Cao, L.; Miao, S.; Hu, D.; Zhu, L.; Zhao, Y.; Qiang, Y.; Gu, X.; Huang, S. Machine learning-assisted sensor based on CsPbBr3@ZnO nanocrystals for identifying methanol in mixed environments. ACS Sens., 2023, 8(3), 1252-1260.
[http://dx.doi.org/10.1021/acssensors.2c02656] [PMID: 36897934]
[25]
Ravikumar, H.C.; Maroli, N.; Kulkarni, B.; Kolandaivel, P.; Balakrishna, R.G. Heterostructure of CsPbBr3-CdS perovskite quantum dots for enhanced stability and charge transfer. Mater. Sci. Eng. B, 2022, 275, 115513.
[http://dx.doi.org/10.1016/j.mseb.2021.115513]
[26]
Ouslimane, T.; Et-taya, L.; Elmaimouni, L.; Benami, A. Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material. Heliyon, 2021, 7(3), e06379.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06379] [PMID: 33732928]
[27]
Lv, W.; Li, L.; Xu, M.; Hong, J.; Tang, X.; Xu, L.; Wu, Y.; Zhu, R.; Chen, R.; Huang, W. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv. Mater., 2019, 31(28), 1900682.
[http://dx.doi.org/10.1002/adma.201900682] [PMID: 31090977]
[28]
Zhang, C.; Li, T.; Wen, W.; Luo, X.; Zhao, L. Highly enhanced photoluminescence from perovskite-semiconductor composites formed by CsPbBr3 nanocrystals embedded in ZnSe microsphere. J. Lumin., 2020, 221, 117081.
[http://dx.doi.org/10.1016/j.jlumin.2020.117081]
[29]
Shi, J.; Ge, W.; Zhu, J.; Saruyama, M.; Teranishi, T. Core–shell CsPbBr3@CdS quantum dots with enhanced stability and photoluminescence quantum yields for optoelectronic devices. ACS Appl. Nano Mater., 2020, 3(8), 7563-7571.
[http://dx.doi.org/10.1021/acsanm.0c01204]
[30]
Ahmed, G.H.; Yin, J.; Bakr, O.M.; Mohammed, O.F. Successes and challenges of core/shell lead halide perovskite nanocrystals. ACS Energy Lett., 2021, 6(4), 1340-1357.
[http://dx.doi.org/10.1021/acsenergylett.1c00076]
[31]
Kipkorir, A.; DuBose, J.; Cho, J.; Kamat, P.V. CsPbBr3 –CdS heterostructure: Stabilizing perovskite nanocrystals for photocatalysis. Chem. Sci., 2021, 12(44), 14815-14825.
[http://dx.doi.org/10.1039/D1SC04305F] [PMID: 34820097]
[32]
Wang, P.; Wu, Z.; Wu, M.; Wei, J.; Sun, Y.; Zhao, Z. All-solution-processed, highly efficient and stable green light-emitting devices based on Zn-doped CsPbBr3/ZnS heterojunction quantum dots. J. Mater. Sci., 2021, 56(6), 4161-4171.
[http://dx.doi.org/10.1007/s10853-020-05527-0]
[33]
Son, D.; Moon, B.J.; Lee, A.; Rho, H.; Lee, H.J.; Kim, T.W.; Ha, J.S.; Lee, S.H. Polarity effects of ZnO on charge recombination at CsPbBr3 nanoparticles/ZnO interfaces. Appl. Surf. Sci., 2019, 483, 165-169.
[http://dx.doi.org/10.1016/j.apsusc.2019.03.300]
[34]
Ravi, V.K.; Saikia, S.; Yadav, S.; Nawale, V.V.; Nag, A. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability. ACS Energy Lett., 2020, 5(6), 1794-1796.
[http://dx.doi.org/10.1021/acsenergylett.0c00858]
[35]
Chen, H.; Pina, J.M.; Hou, Y.; Sargent, E.H. Synthesis, applications, and prospects of quantum‐dot‐in‐perovskite solids. Adv. Energy Mater., 2022, 12(4), 2100774.
[http://dx.doi.org/10.1002/aenm.202100774]
[36]
Ning, Z.; Gong, X.; Comin, R.; Walters, G.; Fan, F.; Voznyy, O.; Yassitepe, E.; Buin, A.; Hoogland, S.; Sargent, E.H. Quantum-dot-in-perovskite solids. Nature, 2015, 523(7560), 324-328.
[http://dx.doi.org/10.1038/nature14563] [PMID: 26178963]
[37]
Bao, Z.; Chiu, H.D.; Wang, W.; Su, Q.; Yamada, T.; Chang, Y.C.; Chen, S.; Kanemitsu, Y.; Chung, R.J.; Liu, R.S. Highly luminescent CsPbBr3@Cs4PbBr6 nanocrystals and their application in electroluminescent emitters. J. Phys. Chem. Lett., 2020, 11(23), 10196-10202.
[http://dx.doi.org/10.1021/acs.jpclett.0c03142] [PMID: 33205976]
[38]
Zhao, L.; Sun, C.; Tian, G.; Pang, Q. Multiple-shell ZnSe core-shell spheres and their improved photocatalytic activity. J. Colloid Interface Sci., 2017, 502, 1-7.
[http://dx.doi.org/10.1016/j.jcis.2017.04.056] [PMID: 28463683]
[39]
Zhang, C.; Li, T.; Pu, L.; Wen, W.; Luo, X.; Zhao, L. Enhanced photoluminescence and stability of ZnSe microspheres/Cs4PbBr6 microcrystals/CsPbBr3 nanocrystals composites. Chin. Chem. Lett., 2020, 31(9), 2499-2502.
[http://dx.doi.org/10.1016/j.cclet.2020.01.013]
[40]
Jin, B.; Zuo, N.; Hu, Z.Y.; Cui, W.; Wang, R.; Van Tendeloo, G.; Zhou, X.; Zhai, T. Excellent excitonic photovoltaic effect in 2D CsPbBr3/CdS heterostructures. Adv. Funct. Mater., 2020, 30(49), 2006166.
[http://dx.doi.org/10.1002/adfm.202006166]
[41]
Wang, Y.; Yang, F.; Li, X.; Ru, F.; Liu, P.; Wang, L.; Ji, W.; Xia, J.; Meng, X. Epitaxial growth of large‐scale orthorhombic CsPbBr3 perovskite thin films with anisotropic photoresponse property. Adv. Funct. Mater., 2019, 29(43), 1904913.
[http://dx.doi.org/10.1002/adfm.201904913]
[42]
Fan, C.; Yang, K.; Xu, X.; Qi, Z.; Jiang, S.; Xia, M.; Zhang, Q. Controllable vapor growth of CsPbBr3/CdS 1D heterostructures with type-II band alignment for high-performance self-powered photodetector. CrystEngComm, 2022, 24(2), 275-283.
[http://dx.doi.org/10.1039/D1CE01409A]
[43]
Hernandez Ruiz, K.; Wang, Z.; Ciprian, M.; Zhu, M.; Tu, R.; Zhang, L.; Luo, W.; Fan, Y.; Jiang, W. Chemical vapor deposition mediated phase engineering for 2D transition metal dichalcogenides: strategies and applications. Small Sci., 2022, 2(1), 2100047.
[http://dx.doi.org/10.1002/smsc.202100047]
[44]
Qiu, L.; Si, G.; Bao, X.; Liu, J.; Guan, M.; Wu, Y.; Qi, X.; Xing, G.; Dai, Z.; Bao, Q.; Li, G. Interfacial engineering of halide perovskites and two-dimensional materials. Chem. Soc. Rev., 2023, 52(1), 212-247.
[http://dx.doi.org/10.1039/D2CS00218C] [PMID: 36468561]
[45]
Khurana, S.; Hassan, M.S.; Yadav, P.; Ghosh, D.; Sapra, S. Impact of bifunctional ligands on charge transfer kinetics in CsPbBr3–CdSe/CdS/ZnS nanohybrids. J. Phys. Chem. Lett., 2022, 13(11), 2591-2599.
[http://dx.doi.org/10.1021/acs.jpclett.2c00067] [PMID: 35290065]
[46]
Yu, W.; Sun, X.; Xiao, M.; Hou, T.; Liu, X.; Zheng, B.; Yu, H.; Zhang, M.; Huang, Y.; Hao, X. Recent advances on interface engineering of perovskite solar cells. Nano Res., 2022, 15(1), 85-103.
[http://dx.doi.org/10.1007/s12274-021-3488-7]
[47]
Selopal, G.S.; Zhao, H.; Wang, Z.M.; Rosei, F. Core/shell quantum dots solar cells. Adv. Funct. Mater., 2020, 30(13), 1908762.
[http://dx.doi.org/10.1002/adfm.201908762]
[48]
Galar, P.; Piatkowski, P.; Ngo, T.T.; Gutiérrez, M.; Mora-Seró, I.; Douhal, A. Perovskite-quantum dots interface: Deciphering its ultrafast charge carrier dynamics. Nano Energy, 2018, 49, 471-480.
[http://dx.doi.org/10.1016/j.nanoen.2018.04.069]
[49]
Cao, F.; Yu, D.; Ma, W.; Xu, X.; Cai, B.; Yang, Y.M.; Liu, S.; He, L.; Ke, Y.; Lan, S.; Choy, K.L.; Zeng, H. Shining emitter in a stable host: Design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano, 2020, 14(5), 5183-5193.
[http://dx.doi.org/10.1021/acsnano.9b06114] [PMID: 31774652]
[50]
García de Arquer, F.P.; Gong, X.; Sabatini, R.P.; Liu, M.; Kim, G.H.; Sutherland, B.R.; Voznyy, O.; Xu, J.; Pang, Y.; Hoogland, S.; Sinton, D.; Sargent, E. Field-emission from quantum-dot-in-perovskite solids. Nat. Commun., 2017, 8(1), 14757.
[http://dx.doi.org/10.1038/ncomms14757] [PMID: 28337981]
[51]
Kaur, G.; Saha, R.; Babu, K.J.; Shukla, A.; Ghosh, H.N. Unravelling the underlying hot carrier transfer and relaxation pathways in type-1 CsPbBr3-PbS system. J. Phys. Chem. C, 2021, 125(19), 10516-10525.
[http://dx.doi.org/10.1021/acs.jpcc.1c02233]
[52]
Kim, T.J.; Lee, S.; Lee, E.; Seo, C.; Kim, J.; Joo, J. Far-red interlayer excitons of perovskite/quantum-dot heterostructures. Adv. Sci., 2023, 10(14), 2207653.
[http://dx.doi.org/10.1002/advs.202207653] [PMID: 36938849]
[53]
Chen, W.; Hao, J.; Hu, W.; Zang, Z.; Tang, X.; Fang, L.; Niu, T.; Zhou, M. Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure. Small, 2017, 13(21), 1604085.
[http://dx.doi.org/10.1002/smll.201604085] [PMID: 28407459]
[54]
Wang, Y.; Fan, H.; Liu, X.; Cao, J.; Liu, H.; Li, X.; Yang, L.; Wei, M. 3D ZnO hollow spheres-dispersed CsPbBr3 quantum dots S-scheme heterojunctions for high-efficient CO2 photoreduction. J. Alloys Compd., 2023, 945, 169197.
[http://dx.doi.org/10.1016/j.jallcom.2023.169197]
[55]
Song, X.; Liu, X.; Yu, D.; Huo, C.; Ji, J.; Li, X.; Zhang, S.; Zou, Y.; Zhu, G.; Wang, Y.; Wu, M.; Xie, A.; Zeng, H. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces, 2018, 10(3), 2801-2809.
[http://dx.doi.org/10.1021/acsami.7b14745] [PMID: 29280382]
[56]
Zhao, L.; Wang, X.; Zhang, Z.; Yang, P.; Chen, J.; Chen, Y.; Wang, H.; Shang, Q.; Zhang, Y.; Zhang, Y.; Liu, X.; Leng, J.; Liu, Z.; Zhang, Q. Surface state mediated interlayer excitons in a 2D nonlayered-layered semiconductor heterojunction. Adv. Electron. Mater., 2017, 3(12), 1700373.
[http://dx.doi.org/10.1002/aelm.201700373]
[57]
Dey, S.; Cohen, H.; Pinkas, I.; Lin, H.; Kazes, M.; Oron, D. Band alignment and charge transfer in CsPbBr3–CdSe nanoplatelet hybrids coupled by molecular linkers. J. Chem. Phys., 2019, 151(17), 174704.
[http://dx.doi.org/10.1063/1.5124552] [PMID: 31703516]
[58]
Xu, X.; Wang, X.; Liu, W.; Wang, S.; Jiang, H.; Ma, S.; Yuan, F.; Ma, N. Ambient stable CsPbBr3/ZnO nanostructures for ethanolamine sensing. ACS Appl. Nano Mater., 2022, 5(10), 15030-15041.
[http://dx.doi.org/10.1021/acsanm.2c03227]
[59]
Younis, A.; Hu, L.; Sharma, P.; Lin, C.H.; Mi, Y.; Guan, X.; Zhang, D.; Wang, Y.; He, T.; Liu, X.; Shabbir, B.; Huang, S.; Seidel, J.; Wu, T. Enhancing resistive switching performance and ambient stability of hybrid perovskite single crystals via embedding colloidal quantum dots. Adv. Funct. Mater., 2020, 30(31), 2002948.
[http://dx.doi.org/10.1002/adfm.202002948]
[60]
Dai, G.; Xiang, Y.; Mo, X.; Xiao, Z.; Yuan, H.; Wan, J.; Liu, B.; Yang, J. High-performance CdS@CsPbBr 3 core–shell microwire heterostructure photodetector. J. Phys. D Appl. Phys., 2022, 55(19), 194002.
[http://dx.doi.org/10.1088/1361-6463/ac520b]
[61]
Yao, H.; Lu, A.; Bai, Z.; Jiang, J.; Qin, S. Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots. Chin. Phys. B, 2022, 31(4), 046106.
[http://dx.doi.org/10.1088/1674-1056/ac5978]
[62]
Liu, J.; Liu, F.; Liu, H.; Yue, J.; Jin, J.; Impundu, J.; Liu, H.; Yang, Z.; Peng, Z.; Wei, H.; Jiang, C.; Li, Y.J.; Xie, L.; Sun, L. Mixed-dimensional CsPbBr3@ZnO heterostructures for high-performance p-n diodes and photodetectors. Nano Today, 2021, 36, 101055.
[http://dx.doi.org/10.1016/j.nantod.2020.101055]
[63]
Ge, J.; Li, W.; He, X.; Chen, H.; Fang, W.; Du, X.; Li, Y.; Zhao, L. Hybrid CdSe/CsPbI 3 quantum dots for interface engineering in perovskite solar cells. Sustain. Energy Fuels, 2020, 4(4), 1837-1843.
[http://dx.doi.org/10.1039/C9SE01205B]
[64]
Deng, W.; Li, J.; Jin, J.; Mishra, D.D.; Xin, J.; Lin, L.; Guo, S.; Xiao, B.; Wilson, G.J.; Wang, X. Fast and low temperature processed CsPbI3 perovskite solar cells with ZnO as electron transport layer. J. Power Sources, 2020, 480, 229134.
[http://dx.doi.org/10.1016/j.jpowsour.2020.229134]
[65]
Li, Z.; Li, H.; Jiang, K.; Ding, D.; Li, J.; Ma, C.; Jiang, S.; Wang, Y.; Anthopoulos, T.D.; Shi, Y. Self-powered perovskite/CdS heterostructure photodetectors. ACS Appl. Mater. Interfaces, 2019, 11(43), 40204-40213.
[http://dx.doi.org/10.1021/acsami.9b11835] [PMID: 31599148]
[66]
Li, X.; Yang, J.; Jiang, Q.; Lai, H.; Li, S.; Xin, J.; Chu, W.; Hou, J. Low-temperature solution-processed ZnSe electron transport layer for efficient planar perovskite solar cells with negligible hysteresis and improved photostability. ACS Nano, 2018, 12(6), 5605-5614.
[http://dx.doi.org/10.1021/acsnano.8b01351] [PMID: 29741863]
[67]
Yan, J.; Li, Y.; Gao, F.; Gong, W.; Tian, Y.; Li, L. Reconfigurable self-powered imaging photodetectors by reassembling and disassembling ZnO/perovskite heterojunctions. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2022, 10(23), 8922-8930.
[http://dx.doi.org/10.1039/D2TC01419J]
[68]
Chen, F.; Shi, Z.; Chen, J.; Cui, Q.; Jian, A.; Zhu, Y.; Xu, Q.; Lou, Z.; Xu, C. Dynamics of interfacial carriers and negative photoconductance in CH3NH3PbBr3-ZnO heterostructure. Appl. Phys. Lett., 2021, 118(17), 171901.
[http://dx.doi.org/10.1063/5.0047122]
[69]
Liu, X.; Zhang, X.; Li, L.; Xu, J.; Yu, S.; Gong, X.; Zhang, J.; Yin, H. Stable luminescence of CsPbBr3/nCdS core/shell perovskite quantum dots with Al self-passivation layer modification. ACS Appl. Mater. Interfaces, 2019, 11(43), 40923-40931.
[http://dx.doi.org/10.1021/acsami.9b14967] [PMID: 31588719]
[70]
Hosokawa, H.; Tamaki, R.; Sawada, T.; Okonogi, A.; Sato, H.; Ogomi, Y.; Hayase, S.; Okada, Y.; Yano, T. Solution-processed intermediate-band solar cells with lead sulfide quantum dots and lead halide perovskites. Nat. Commun., 2019, 10(1), 43.
[http://dx.doi.org/10.1038/s41467-018-07655-3] [PMID: 30626874]
[71]
Hong, Y.; Yu, C.; Je, H.; Park, J.Y.; Kim, T.; Baik, H.; Tomboc, G.M.; Kim, Y.; Ha, J.M.; Joo, J.; Kim, C.W.; Woo, H.Y.; Park, S.; Choi, D.H.; Lee, K. Perovskite nanocrystals protected by hermetically sealing for highly bright and stable deep‐blue light‐emitting diodes. Adv. Sci. (Weinh.), 2023, 10(23), 2302906.
[http://dx.doi.org/10.1002/advs.202302906] [PMID: 37271888]
[72]
Tan, C.; Chen, J.; Wu, X.J.; Zhang, H. Epitaxial growth of hybrid nanostructures. Nat. Rev. Mater., 2018, 3(2), 17089.
[http://dx.doi.org/10.1038/natrevmats.2017.89]
[73]
Qiu, H.; Li, F.; He, S.; Shi, R.; Han, Y.; Abudukeremu, H.; Zhang, L.; Zhang, Y.; Wang, S.; Liu, W.; Ma, C.; Fang, H.; Long, R.; Wu, K.; Zhang, H.; Li, J. Epitaxial CsPbBr3/CdS Janus nanocrystal heterostructures for efficient charge separation. Adv. Sci., 2023, 10(13), 2206560.
[http://dx.doi.org/10.1002/advs.202206560] [PMID: 36840658]
[74]
Zhou, X.; Hu, X.; Zhou, S.; Song, H.; Zhang, Q.; Pi, L.; Li, L.; Li, H.; Lü, J.; Zhai, T. Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv. Mater., 2018, 30(7), 1703286.
[http://dx.doi.org/10.1002/adma.201703286] [PMID: 29315847]
[75]
Bae, W.K.; Padilha, L.A.; Park, Y.S.; McDaniel, H.; Robel, I.; Pietryga, J.M.; Klimov, V.I. Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. ACS Nano, 2013, 7(4), 3411-3419.
[http://dx.doi.org/10.1021/nn4002825] [PMID: 23521208]
[76]
Sowers, K.L.; Hou, Z.; Peterson, J.J.; Swartz, B.; Pal, S.; Prezhdo, O.; Krauss, T.D. Photophysical Properties of CdSe/CdS core/shell quantum dots with tunable surface composition. Chem. Phys., 2016, 471, 24-31.
[http://dx.doi.org/10.1016/j.chemphys.2015.09.010]
[77]
Lian, H.; Li, Y.; Sharafudeen, K.; Zhao, W.; Krishnan, G.R.; Zhang, S.; Qiu, J.; Huang, K.; Han, G. Highly thermotolerant metal halide perovskite solids. Adv. Mater., 2020, 32(28), 2002495.
[http://dx.doi.org/10.1002/adma.202002495] [PMID: 32462669]
[78]
Kwak, J.; Lim, J.; Park, M.; Lee, S.; Char, K.; Lee, C. High-power genuine ultraviolet light-emitting diodes based on colloidal nanocrystal quantum dots. Nano Lett., 2015, 15(6), 3793-3799.
[http://dx.doi.org/10.1021/acs.nanolett.5b00392] [PMID: 25961530]
[79]
Chi, W.; Banerjee, S.K. Performance improvement of perovskite solar cells by interactions between nano-sized quantum dots and perovskite. Adv. Funct. Mater., 2022, 32(28), 2200029.
[http://dx.doi.org/10.1002/adfm.202200029]
[80]
Gull, S.; Li, G. Deep red emission from Cs4PbI6/CsPbI3/ZnS heterostructure for enhanced stability and photoluminescence quantum yield. Ceram. Int., 2023, 49(4), 5915-5921.
[http://dx.doi.org/10.1016/j.ceramint.2022.10.092]
[81]
Tang, X.; Yang, J.; Li, S.; Liu, Z.; Hu, Z.; Hao, J.; Du, J.; Leng, Y.; Qin, H.; Lin, X.; Lin, Y.; Tian, Y.; Zhou, M.; Xiong, Q. Single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties. Adv. Sci., 2019, 6(18), 1900412.
[http://dx.doi.org/10.1002/advs.201900412] [PMID: 31559125]
[82]
Yin, G.; Qi, X.; Chen, Y.; Peng, Q.; Jiang, X.; Wang, Q.; Zhang, W.; Gong, X. Constructing an all zero-dimensional CsPbBr 3/CdSe heterojunction for highly efficient photocatalytic CO 2 reduction. J. Mater. Chem. A Mater. Energy Sustain., 2022, 10(42), 22468-22476.
[http://dx.doi.org/10.1039/D2TA05186A]
[83]
Cheng, R.; Shen, H.; Chen, Z.; Li, F.; Li, G.; Wang, C.F.; Chen, S. Preparation of heterostructure quantum dots towards wide-colour-gamut display. Mater. Lett., 2019, 254, 171-174.
[http://dx.doi.org/10.1016/j.matlet.2019.07.021]
[84]
Jiang, T.; Shao, Z.; Fang, H.; Wang, W.; Zhang, Q.; Wu, D.; Zhang, X.; Jie, J. High-performance nanofloating gate memory based on lead halide perovskite nanocrystals. ACS Appl. Mater. Interfaces, 2019, 11(27), 24367-24376.
[http://dx.doi.org/10.1021/acsami.9b03474] [PMID: 31187623]
[85]
Liu, M.; Chen, Y.; Tan, C.S.; Quintero-Bermudez, R.; Proppe, A.H.; Munir, R.; Tan, H.; Voznyy, O.; Scheffel, B.; Walters, G.; Kam, A.P.T.; Sun, B.; Choi, M.J.; Hoogland, S.; Amassian, A.; Kelley, S.O.; García de Arquer, F.P.; Sargent, E.H. Lattice anchoring stabilizes solution-processed semiconductors. Nature, 2019, 570(7759), 96-101.
[http://dx.doi.org/10.1038/s41586-019-1239-7] [PMID: 31118515]
[86]
Dana, J.; Maity, P.; Jana, B.; Maiti, S.; Ghosh, H.N. Concurrent ultrafast electron- and hole-transfer dynamics in CsPbBr3 perovskite and quantum dots. ACS Omega, 2018, 3(3), 2706-2714.
[http://dx.doi.org/10.1021/acsomega.8b00276] [PMID: 31458549]
[87]
Lintangpradipto, M.N.; Tsevtkov, N.; Moon, B.C.; Kang, J.K. Size-controlled CdSe quantum dots to boost light harvesting capability and stability of perovskite photovoltaic cells. Nanoscale, 2017, 9(28), 10075-10083.
[http://dx.doi.org/10.1039/C7NR03487C] [PMID: 28686265]
[88]
Ghosh, G.; Dutta, A.; Ghosh, A.; Ghosh, S.; Patra, A. Ultrafast carrier dynamics in 2D CdSe nanoplatelets−CsPbX3 composites: influence of the halide composition. J. Phys. Chem. C, 2020, 124(18), 10252-10260.
[http://dx.doi.org/10.1021/acs.jpcc.0c03206]
[89]
Qi, J.; Xiong, H.; Wang, G.; Xie, H.; Jia, W.; Zhang, Q.; Li, Y.; Wang, H. High-performance solar cells with induced crystallization of perovskite by an evenly distributed CdSe quantum dots seed-mediated underlayer. J. Power Sources, 2018, 376, 46-54.
[http://dx.doi.org/10.1016/j.jpowsour.2017.11.062]
[90]
Mondal, N.; De, A.; Samanta, A. All-inorganic perovskite nanocrystal assisted extraction of hot electrons and biexcitons from photoexcited CdTe quantum dots. Nanoscale, 2018, 10(2), 639-645.
[http://dx.doi.org/10.1039/C7NR07830G] [PMID: 29238789]
[91]
Loiudice, A.; Saris, S.; Buonsanti, R. Tunable metal oxide shell as a spacer to study energy transfer in semiconductor nanocrystals. J. Phys. Chem. Lett., 2020, 11(9), 3430-3435.
[http://dx.doi.org/10.1021/acs.jpclett.0c00820] [PMID: 32290660]
[92]
Cao, F.; Meng, L.; Wang, M.; Tian, W.; Li, L. Gradient energy band driven high‐performance self‐powered perovskite/CdS photodetector. Adv. Mater., 2019, 31(12), 1806725.
[http://dx.doi.org/10.1002/adma.201806725] [PMID: 30697825]
[93]
Kar, M.R.; Ray, S.; Patra, B.K.; Bhaumik, S. State of the art and prospects of metal halide perovskite core@shell nanocrystals and nanocomposites. Mater. Today Chem., 2021, 20, 100424.
[http://dx.doi.org/10.1016/j.mtchem.2021.100424]
[94]
Bässler, H.; Köhler, A. “Hot or cold”: How do charge transfer states at the donor–acceptor interface of an organic solar cell dissociate? Phys. Chem. Chem. Phys., 2015, 17(43), 28451-28462.
[http://dx.doi.org/10.1039/C5CP04110D] [PMID: 26456722]
[95]
Ren, Y.; Nie, Z.; Deng, F.; Wang, Z.; Xia, S.; Wang, Y. Deciphering the excited-state dynamics and multicarrier interactions in perovskite core–shell type hetero-nanocrystals. Nanoscale, 2021, 13(1), 292-299.
[http://dx.doi.org/10.1039/D0NR06884E] [PMID: 33336674]
[96]
Chung, H.; Jung, S.I.; Kim, H.J.; Cha, W.; Sim, E.; Kim, D.; Koh, W.K.; Kim, J. Composition-dependent hot carrier relaxation dynamics in cesium lead halide (CsPbX3, X = Br and I) perovskite nanocrystals. Angew. Chem. Int. Ed., 2017, 56(15), 4160-4164.
[http://dx.doi.org/10.1002/anie.201611916] [PMID: 28319340]
[97]
Piatkowski, P.; Masi, S.; Galar, P.; Gutiérrez, M.; Ngo, T.T.; Mora-Seró, I.; Douhal, A. Deciphering the role of quantum dot size in the ultrafast charge carrier dynamics at the perovskite–quantum dot interface. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(42), 14834-14844.
[http://dx.doi.org/10.1039/D0TC03835K]
[98]
Lee, J.; Sundar, V.C.; Heine, J.R.; Bawendi, M.G.; Jensen, K.F. Full color emission from II–VI semiconductor quantum dot–polymer composites. Adv. Mater., 2000, 12(15), 1102-1105.
[http://dx.doi.org/10.1002/1521-4095(200008)12:15<1102:AID-ADMA1102>3.0.CO;2-J]
[99]
Schreder, B.; Dem, C.; Schmitt, M.; Materny, A.; Kiefer, W.; Winkler, U.; Umbach, E. Raman spectroscopy of II-VI semiconductor nanostructures: CdS quantum dots. J. Raman Spectrosc., 2003, 34(2), 100-103.
[http://dx.doi.org/10.1002/jrs.959]
[100]
Das Adhikari, S.; Gualdrón Reyes, A.F.; Paul, S.; Torres, J.; Escuder, B.; Mora-Seró, I.; Masi, S. Impact of core–shell perovskite nanocrystals for LED applications: Successes, challenges, and prospects. Chem. Sci., 2023.
[http://dx.doi.org/10.1039/D3SC02955G]
[101]
Tang, X.; Yang, J.; Li, S.; Chen, W.; Hu, Z.; Qiu, J. CsPbBr3/CdS core/shell structure quantum dots for inverted light-emitting diodes application. Front Chem., 2019, 7, 499.
[http://dx.doi.org/10.3389/fchem.2019.00499] [PMID: 31355189]
[102]
Liu, X.; Zhang, X.; Yu, S.; Li, L.; Xu, J.; Gong, X.; Ding, R.; Zhang, J.; Yin, H. Epitaxial growth of highly stable perovskite CsPbBr 3/nZnS/Al core/multi-shell quantum dots with aluminium self-passivation. Nanotechnology, 2020, 31(37), 375703.
[http://dx.doi.org/10.1088/1361-6528/ab9868] [PMID: 32480393]
[103]
Yin, Y.; Hu, Z.; Ali, M.U.; Duan, M.; Gao, L.; Liu, M.; Peng, W.; Geng, J.; Pan, S.; Wu, Y.; Hou, J.; Fan, J.; Li, D.; Zhang, X.; Meng, H. Full‐color micro‐LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers. Adv. Mater. Technol., 2020, 5(8), 2000251.
[http://dx.doi.org/10.1002/admt.202000251]
[104]
Zhao, P.; Qin, T.; Mu, G.; Zhang, S.; Luo, Y.; Chen, M.; Tang, X. Band-engineered dual-band visible and short-wave infrared photodetector with metal chalcogenide colloidal quantum dots. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2023, 11(8), 2842-2850.
[http://dx.doi.org/10.1039/D3TC00066D]
[105]
Li, C.; Wang, H.; Wang, F.; Li, T.; Xu, M.; Wang, H.; Wang, Z.; Zhan, X.; Hu, W.; Shen, L. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light Sci. Appl., 2020, 9(1), 31.
[http://dx.doi.org/10.1038/s41377-020-0264-5] [PMID: 32194945]
[106]
Zhou, Y.; Chen, J.; Bakr, O.M.; Mohammed, O.F. Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett., 2021, 6(2), 739-768.
[http://dx.doi.org/10.1021/acsenergylett.0c02430]
[107]
Bao, C.; Chen, Z.; Fang, Y.; Wei, H.; Deng, Y.; Xiao, X.; Li, L.; Huang, J. Low‐noise and large‐linear‐dynamic‐range photodetectors based on hybrid‐perovskite thin‐single‐crystals. Adv. Mater., 2017, 29(39), 1703209.
[http://dx.doi.org/10.1002/adma.201703209] [PMID: 28846818]
[108]
Hu, X.; Zhang, X.; Liang, L.; Bao, J.; Li, S.; Yang, W.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater., 2014, 24(46), 7373-7380.
[http://dx.doi.org/10.1002/adfm.201402020]
[109]
Li, H.; Lin, W.; Ma, L.; Liu, Y.; Wang, Y.; Li, A.; Jin, X.; Xiong, L. High-performance broadband photodetectors based on all-inorganic perovskite CsPb(Br/I) 3 nanocrystal/CdS-microwire heterostructures. RSC Advances, 2021, 11(19), 11663-11671.
[http://dx.doi.org/10.1039/D1RA00890K] [PMID: 35423608]
[110]
Wang, J.; Liu, L.; Liu, S.; Yang, L.; Zhang, B.; Feng, S.; Yang, J.; Meng, X.; Fu, W.; Yang, H. Influence of a compact CdS layer on the photovoltaic performance of perovskite-based solar cells. Sustain. Energy Fuels, 2017, 1(3), 504-509.
[http://dx.doi.org/10.1039/C6SE00070C]
[111]
Aamir, M.; Adhikari, T.; Sher, M.; Revaprasadu, N.; Khalid, W.; Akhtar, J.; Nunzi, J.M. Fabrication of planar heterojunction CsPbBr 2 I perovskite solar cells using ZnO as an electron transport layer and improved solar energy conversion efficiency. New J. Chem., 2018, 42(17), 14104-14110.
[http://dx.doi.org/10.1039/C8NJ02238K]
[112]
Gu, Z.; Chen, F.; Zhang, X.; Liu, Y.; Fan, C.; Wu, G.; Li, H.; Chen, H. Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer. Sol. Energy Mater. Sol. Cells, 2015, 140, 396-404.
[http://dx.doi.org/10.1016/j.solmat.2015.04.015]
[113]
Tong, G.; Song, Z.; Li, C.; Zhao, Y.; Yu, L.; Xu, J.; Jiang, Y.; Sheng, Y.; Shi, Y.; Chen, K. Cadmium-doped flexible perovskite solar cells with a low-cost and low-temperature-processed CdS electron transport layer. RSC Advances, 2017, 7(32), 19457-19463.
[http://dx.doi.org/10.1039/C7RA01110E]
[114]
He, Z.; Zhou, Y.; Liu, A.; Gao, L.; Zhang, C.; Wei, G.; Ma, T. Recent progress in metal sulfide-based electron transport layers in perovskite solar cells. Nanoscale, 2021, 13(41), 17272-17289.
[http://dx.doi.org/10.1039/D1NR04170C] [PMID: 34643634]
[115]
Chen, C.; Zhai, Y.; Li, F.; Tan, F.; Yue, G.; Zhang, W.; Wang, M. High efficiency CH3NH3PbI3:CdS perovskite solar cells with CuInS2 as the hole transporting layer. J. Power Sources, 2017, 341, 396-403.
[http://dx.doi.org/10.1016/j.jpowsour.2016.12.027]
[116]
Xiao, J.W.; Ma, S.; Yu, S.; Zhou, C.; Liu, P.; Chen, Y.; Zhou, H.; Li, Y.; Chen, Q. Ligand engineering on CdTe quantum dots in perovskite solar cells for suppressed hysteresis. Nano Energy, 2018, 46, 45-53.
[http://dx.doi.org/10.1016/j.nanoen.2018.01.035]
[117]
Sivaprakasam, A.; Elangovan, N.K. Effect of CdS thin film on the performance of methylammonium lead iodide perovskite solar cell. J. Mater. Sci. Mater. Electron., 2021, 32(13), 17612-17619.
[http://dx.doi.org/10.1007/s10854-021-06294-7]
[118]
Abbas, H.; Ahmad, S.; Parvaz, M.; Khan, M.B.; Khan, M.S.; Khan, A.; Alshahrie, A.; Khan, Z.H. Surface optimization of metal halide perovskite solar cells using ZnS nanorods. J. Mater. Sci. Mater. Electron., 2022, 33(27), 21576-21587.
[http://dx.doi.org/10.1007/s10854-022-08947-7]
[119]
Vu, T.K.O.; Cho, I.W.; Oh, J.; Lee, D.U.; Ryu, M.Y.; Kim, E.K. Defect suppression and photoresponsivity enhancement in methylammonium lead halide perovskites by CdSe/ZnS quantum dots. J. Colloid Interface Sci., 2021, 590, 19-27.
[http://dx.doi.org/10.1016/j.jcis.2021.01.037] [PMID: 33524717]
[120]
Lee, D.; Kim, K.H.; Kim, H.D. Thickness optimization of charge transport layers on perovskite solar cells for aerospace applications. Nanomaterials, 2023, 13(12), 1848.
[http://dx.doi.org/10.3390/nano13121848] [PMID: 37368278]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy