Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

The Biological Function of POLA2 in Hepatocellular Carcinoma

Author(s): Zhen Yang, Xingyuan Shen, Zhihuai Wang, Renzhi Li, Wenqiang Hou, Zengyuan Liu, Yuan Gao, Chunfu Zhu* and Xihu Qin*

Volume 27, Issue 12, 2024

Published on: 10 October, 2023

Page: [1758 - 1775] Pages: 18

DOI: 10.2174/0113862073254083231002052550

Price: $65

Abstract

Introduction: The role and prognostic value of POLA2 in liver cancer were comprehensively analyzed through TCGA, GEO, and ICGC databases, and the role of POLA2 in liver cancer cells and the regulatory mechanism involved were further verified through cell experiments. Hepatocellular carcinoma (HCC) is the most prevalent malignancy with high morbidity and mortality. Consequently, it is critical to identify robust and reliable predictive biomarkers and therapeutic targets for HCC patients. POLA2 is involved in the regulation of various tumors, but the specific role of POLA2 in HCC has not been reported. The regulatory role and prognostic value of POLA2 in HCC were determined by bioinformatics techniques and cell experiments.

Methods: The specific role and prognostic value of POLA2 in HCC were comprehensively analyzed by combining the expression data of POLA2 in TCGA, GEO, and ICGC databases and clinical data. In clinical samples, the expression of POLA2 in liver cancer was verified by QPCR. Further, the regulatory role of POLA2 in HCC was explored through cell experiments such as CCK-8, clonal formation experiment, EDU cell proliferation experiment, and flow cytometry. In terms of mechanism exploration, western blot was used to verify the specific regulatory mechanism that POLA2 participated in. Finally, the relationship between POLA2 and immune invasion of HCC was analyzed by using the TIMER database.

Results: A POLA2 expression and prognosis analysis of HCC patients was conducted using the TCGA, GEO, and ICGC databases. We hypothesized that POLA2 might be one of the key factors contributing to the HCC progression. According to a combined analysis of TCGA, ICGC, and GEO databases, POLA2 was highly expressed in HCC. This was further confirmed in clinical samples using the qPCR. POLA2 knockdown was also performed in vitro on HCC cell lines to study the changes in their biological behavior. We confirmed that POLA2 was associated with HCC proliferation by CCK-8, Colony Formation, and EDU assay. We verified the POLA2's involvement in cell cycle regulation using flow techniques. The relationship between POLA2 and PI3K/AKT/mTOR pathway was explored using Western Blotting experiments regarding its mechanism. Further analysis revealed that the POLA2 expression was significantly associated with HCC immune infiltration.

Conclusion: Our study demonstrated POLA2's importance in HCC development and progression and its potential role as a biomarker for disease progression on multiple levels. POLA2 has an important role in regulating the cell cycle and cell proliferation. By interfering with the cell cycle and proliferation, HCC cell growth is inhibited. Furthermore, POLA2 expression was significantly associated with immune infiltration. POLA2 may play a role in HCC immunotherapy based on its correlation with several immune cell types' genetic markers. The findings of this study are expected to lead to new anticancer strategies for HCC.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever‐increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030.
[http://dx.doi.org/10.1002/cncr.33587] [PMID: 34086348]
[3]
Suresh, D.; Srinivas, A.N.; Kumar, D.P. Etiology of hepatocellular carcinoma: Special focus on fatty liver disease. Front. Oncol., 2020, 10, 601710.
[http://dx.doi.org/10.3389/fonc.2020.601710] [PMID: 33330100]
[4]
Cervello, M.; Emma, M.R.; Augello, G.; Cusimano, A.; Giannitrapani, L.; Soresi, M.; Akula, S.M.; Abrams, S.L.; Steelman, L.S.; Gulino, A.; Belmonte, B.; Montalto, G.; McCubrey, J.A. New landscapes and horizons in hepatocellular carcinoma therapy. Aging, 2020, 12(3), 3053-3094.
[http://dx.doi.org/10.18632/aging.102777] [PMID: 32018226]
[5]
Rebouissou, S.; Nault, J.C. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J. Hepatol., 2020, 72(2), 215-229.
[http://dx.doi.org/10.1016/j.jhep.2019.08.017] [PMID: 31954487]
[6]
Dhanasekaran, R.; Nault, J.C.; Roberts, L.R.; Zucman-Rossi, J. Genomic medicine and implications for hepatocellular carcinoma prevention and therapy. Gastroenterology, 2019, 156(2), 492-509.
[http://dx.doi.org/10.1053/j.gastro.2018.11.001] [PMID: 30404026]
[7]
Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(10), 589-604.
[http://dx.doi.org/10.1038/s41575-019-0186-y] [PMID: 31439937]
[8]
Collins, K.L.; Russo, A.A.R.; Tseng’, B.Y.; Kelly, T.J. The role of the 70 kDa subunit of human DNA polymerase alpha in DNA replication. EMBO J., 1993, 12(12), 4555-4566.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb06144.x]
[9]
Foiani, M.; Marini, F.; Gamba, D.; Lucchini, G.; Plevani, P. The B subunit of the DNA polymerase alpha-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replication. Mol. Cell. Biol., 1994, 14(2), 923-933.
[http://dx.doi.org/10.1128/MCB.14.2.923] [PMID: 8289832]
[10]
Flotho, C.; Coustan-Smith, E.; Pei, D.; Cheng, C.; Song, G.; Pui, C.H.; Downing, J.R.; Campana, D. A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood, 2007, 110(4), 1271-1277.
[http://dx.doi.org/10.1182/blood-2007-01-068478] [PMID: 17456722]
[11]
Røe, O.D.; Szulkin, A.; Anderssen, E.; Flatberg, A.; Sandeck, H.; Amundsen, T.; Erlandsen, S.E.; Dobra, K.; Sundstrøm, S.H. Molecular resistance fingerprint of pemetrexed and platinum in a long-term survivor of mesothelioma. PLoS One, 2012, 7(8), e40521.
[http://dx.doi.org/10.1371/journal.pone.0040521] [PMID: 22905093]
[12]
Dang, T.T.; Morales, J.C. Involvement of POLA2 in double strand break repair and genotoxic stress. Int. J. Mol. Sci., 2020, 21(12), 4245.
[http://dx.doi.org/10.3390/ijms21124245] [PMID: 32549188]
[13]
Willis, S.; Villalobos, V.M.; Gevaert, O.; Abramovitz, M.; Williams, C.; Sikic, B.I.; Leyland-Jones, B. Single gene prognostic biomarkers in ovarian cancer: A meta-analysis. PLoS One, 2016, 11(2), e0149183.
[http://dx.doi.org/10.1371/journal.pone.0149183] [PMID: 26886260]
[14]
Kang, G.; Yun, H.; Sun, C.H.; Park, I.; Lee, S.; Kwon, J.; Do, I.; Hong, M.E.; Van Vrancken, M.; Lee, J.; Park, J.O.; Cho, J.; Kim, K.M.; Sohn, T.S. Integrated genomic analyses identify frequent gene fusion events and VHL inactivation in gastrointestinal stromal tumors. Oncotarget, 2016, 7(6), 6538-6551.
[http://dx.doi.org/10.18632/oncotarget.3731] [PMID: 25987131]
[15]
Koh, V.; Kwan, H.Y.; Tan, W.L.; Mah, T.L.; Yong, W.P. Knockdown of POLA2 increases gemcitabine resistance in lung cancer cells. BMC Genomics, 2016, 17(S13), 1029.
[http://dx.doi.org/10.1186/s12864-016-3322-x] [PMID: 28155658]
[16]
Kim, T.Y.; Ji, E.S.; Lee, J.Y.; Kim, J.Y.; Yoo, J.S.; Szasz, A.M.; Dome, B.; Marko-Varga, G.; Kwon, H.J. DNA polymerase alpha subunit b is a binding protein for erlotinib resistance in non-small cell lung cancer. Cancers, 2020, 12(9), 2613.
[http://dx.doi.org/10.3390/cancers12092613] [PMID: 32933200]
[17]
Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol., 2015, 19(1A), A68-A77.
[http://dx.doi.org/10.5114/wo.2014.47136]
[18]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Res., 2012, 41(D1), D991-D995.
[http://dx.doi.org/10.1093/nar/gks1193] [PMID: 23193258]
[19]
Hudson, T.J.; Anderson, W.; Artez, A.; Barker, A.D.; Bell, C.; Bernabé, R.R.; Bhan, M.K.; Calvo, F.; Eerola, I.; Gerhard, D.S.; Guttmacher, A.; Guyer, M.; Hemsley, F.M.; Jennings, J.L.; Kerr, D.; Klatt, P.; Kolar, P.; Kusada, J.; Lane, D.P.; Laplace, F.; Youyong, L.; Nettekoven, G.; Ozenberger, B.; Peterson, J.; Rao, T.S.; Remacle, J.; Schafer, A.J.; Shibata, T.; Stratton, M.R.; Vockley, J.G.; Watanabe, K.; Yang, H.; Yuen, M.M.; Knoppers, B.M.; Bobrow, M.; Cambon-Thomsen, A.; Dressler, L.G.; Dyke, S.O.; Joly, Y.; Kato, K.; Kennedy, K.L.; Nicolás, P.; Parker, M.J.; Rial-Sebbag, E.; Romeo-Casabona, C.M.; Shaw, K.M.; Wallace, S.; Wiesner, G.L.; Zeps, N.; Lichter, P.; Biankin, A.V.; Chabannon, C.; Chin, L.; Clément, B.; de Alava, E.; Degos, F.; Ferguson, M.L.; Geary, P.; Hayes, D.N.; Hudson, T.J.; Johns, A.L.; Kasprzyk, A.; Nakagawa, H.; Penny, R.; Piris, M.A.; Sarin, R.; Scarpa, A.; Shibata, T.; van de Vijver, M.; Futreal, P.A.; Aburatani, H.; Bayés, M.; Botwell, D.D.; Campbell, P.J.; Estivill, X.; Gerhard, D.S.; Grimmond, S.M.; Gut, I.; Hirst, M.; López-Otín, C.; Majumder, P.; Marra, M.; McPherson, J.D.; Nakagawa, H.; Ning, Z.; Puente, X.S.; Ruan, Y.; Shibata, T.; Stratton, M.R.; Stunnenberg, H.G.; Swerdlow, H.; Velculescu, V.E.; Wilson, R.K.; Xue, H.H.; Yang, L.; Spellman, P.T.; Bader, G.D.; Boutros, P.C.; Campbell, P.J.; Flicek, P.; Getz, G.; Guigó, R.; Guo, G.; Haussler, D.; Heath, S.; Hubbard, T.J.; Jiang, T.; Jones, S.M.; Li, Q.; López-Bigas, N.; Luo, R.; Muthuswamy, L.; Ouellette, B.F.; Pearson, J.V.; Puente, X.S.; Quesada, V.; Raphael, B.J.; Sander, C.; Shibata, T.; Speed, T.P.; Stein, L.D.; Stuart, J.M.; Teague, J.W.; Totoki, Y.; Tsunoda, T.; Valencia, A.; Wheeler, D.A.; Wu, H.; Zhao, S.; Zhou, G.; Stein, L.D.; Guigó, R.; Hubbard, T.J.; Joly, Y.; Jones, S.M.; Kasprzyk, A.; Lathrop, M.; López-Bigas, N.; Ouellette, B.F.; Spellman, P.T.; Teague, J.W.; Thomas, G.; Valencia, A.; Yoshida, T.; Kennedy, K.L.; Axton, M.; Dyke, S.O.; Futreal, P.A.; Gerhard, D.S.; Gunter, C.; Guyer, M.; Hudson, T.J.; McPherson, J.D.; Miller, L.J.; Ozenberger, B.; Shaw, K.M.; Kasprzyk, A.; Stein, L.D.; Zhang, J.; Haider, S.A.; Wang, J.; Yung, C.K.; Cros, A.; Liang, Y.; Gnaneshan, S.; Guberman, J.; Hsu, J.; Bobrow, M.; Chalmers, D.R.; Hasel, K.W.; Joly, Y.; Kaan, T.S.; Kennedy, K.L.; Knoppers, B.M.; Lowrance, W.W.; Masui, T.; Nicolás, P.; Rial-Sebbag, E.; Rodriguez, L.L.; Vergely, C.; Yoshida, T.; Grimmond, S.M.; Biankin, A.V.; Bowtell, D.D.; Cloonan, N.; deFazio, A.; Eshleman, J.R.; Etemadmoghadam, D.; Gardiner, B.B.; Kench, J.G.; Scarpa, A.; Sutherland, R.L.; Tempero, M.A.; Waddell, N.J.; Wilson, P.J.; McPherson, J.D.; Gallinger, S.; Tsao, M.S.; Shaw, P.A.; Petersen, G.M.; Mukhopadhyay, D.; Chin, L.; DePinho, R.A.; Thayer, S.; Muthuswamy, L.; Shazand, K.; Beck, T.; Sam, M.; Timms, L.; Ballin, V.; Lu, Y.; Ji, J.; Zhang, X.; Chen, F.; Hu, X.; Zhou, G.; Yang, Q.; Tian, G.; Zhang, L.; Xing, X.; Li, X.; Zhu, Z.; Yu, Y.; Yu, J.; Yang, H.; Lathrop, M.; Tost, J.; Brennan, P.; Holcatova, I.; Zaridze, D.; Brazma, A.; Egevard, L.; Prokhortchouk, E.; Banks, R.E.; Uhlén, M.; Cambon-Thomsen, A.; Viksna, J.; Ponten, F.; Skryabin, K.; Stratton, M.R.; Futreal, P.A.; Birney, E.; Borg, A.; Børresen-Dale, A.L.; Caldas, C.; Foekens, J.A.; Martin, S.; Reis-Filho, J.S.; Richardson, A.L.; Sotiriou, C.; Stunnenberg, H.G.; Thoms, G.; van de Vijver, M.; van’t Veer, L.; Calvo, F.; Birnbaum, D.; Blanche, H.; Boucher, P.; Boyault, S.; Chabannon, C.; Gut, I.; Masson-Jacquemier, J.D.; Lathrop, M.; Pauporté, I.; Pivot, X.; Vincent-Salomon, A.; Tabone, E.; Theillet, C.; Thomas, G.; Tost, J.; Treilleux, I.; Calvo, F.; Bioulac-Sage, P.; Clément, B.; Decaens, T.; Degos, F.; Franco, D.; Gut, I.; Gut, M.; Heath, S.; Lathrop, M.; Samuel, D.; Thomas, G.; Zucman-Rossi, J.; Lichter, P.; Eils, R.; Brors, B.; Korbel, J.O.; Korshunov, A.; Landgraf, P.; Lehrach, H.; Pfister, S.; Radlwimmer, B.; Reifenberger, G.; Taylor, M.D.; von Kalle, C.; Majumder, P.P.; Sarin, R.; Rao, T.S.; Bhan, M.K.; Scarpa, A.; Pederzoli, P.; Lawlor, R.A.; Delledonne, M.; Bardelli, A.; Biankin, A.V.; Grimmond, S.M.; Gress, T.; Klimstra, D.; Zamboni, G.; Shibata, T.; Nakamura, Y.; Nakagawa, H.; Kusada, J.; Tsunoda, T.; Miyano, S.; Aburatani, H.; Kato, K.; Fujimoto, A.; Yoshida, T.; Campo, E.; López-Otín, C.; Estivill, X.; Guigó, R.; de Sanjosé, S.; Piris, M.A.; Montserrat, E.; González-Díaz, M.; Puente, X.S.; Jares, P.; Valencia, A.; Himmelbauer, H.; Quesada, V.; Bea, S.; Stratton, M.R.; Futreal, P.A.; Campbell, P.J.; Vincent-Salomon, A.; Richardson, A.L.; Reis-Filho, J.S.; van de Vijver, M.; Thomas, G.; Masson-Jacquemier, J.D.; Aparicio, S.; Borg, A.; Børresen-Dale, A.L.; Caldas, C.; Foekens, J.A.; Stunnenberg, H.G.; van’t Veer, L.; Easton, D.F.; Spellman, P.T.; Martin, S.; Barker, A.D.; Chin, L.; Collins, F.S.; Compton, C.C.; Ferguson, M.L.; Gerhard, D.S.; Getz, G.; Gunter, C.; Guttmacher, A.; Guyer, M.; Hayes, D.N.; Lander, E.S.; Ozenberger, B.; Penny, R.; Peterson, J.; Sander, C.; Shaw, K.M.; Speed, T.P.; Spellman, P.T.; Vockley, J.G.; Wheeler, D.A.; Wilson, R.K.; Hudson, T.J.; Chin, L.; Knoppers, B.M.; Lander, E.S.; Lichter, P.; Stein, L.D.; Stratton, M.R.; Anderson, W.; Barker, A.D.; Bell, C.; Bobrow, M.; Burke, W.; Collins, F.S.; Compton, C.C.; DePinho, R.A.; Easton, D.F.; Futreal, P.A.; Gerhard, D.S.; Green, A.R.; Guyer, M.; Hamilton, S.R.; Hubbard, T.J.; Kallioniemi, O.P.; Kennedy, K.L.; Ley, T.J.; Liu, E.T.; Lu, Y.; Majumder, P.; Marra, M.; Ozenberger, B.; Peterson, J.; Schafer, A.J.; Spellman, P.T.; Stunnenberg, H.G.; Wainwright, B.J.; Wilson, R.K.; Yang, H. International network of cancer genome projects. Nature, 2010, 464(7291), 993-998.
[http://dx.doi.org/10.1038/nature08987] [PMID: 20393554]
[20]
Lánczky, A.; Győrffy, B. Web-based survival analysis tool tailored for medical research (KMplot): Development and implementation. J. Med. Internet Res., 2021, 23(7), e27633.
[http://dx.doi.org/10.2196/27633] [PMID: 34309564]
[21]
Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res., 2020, 48(W1), W509-W514.
[http://dx.doi.org/10.1093/nar/gkaa407]
[22]
Reimand, J.; Isserlin, R.; Voisin, V.; Kucera, M.; Tannus-Lopes, C.; Rostamianfar, A.; Wadi, L.; Meyer, M.; Wong, J.; Xu, C.; Merico, D.; Bader, G.D. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc., 2019, 14(2), 482-517.
[http://dx.doi.org/10.1038/s41596-018-0103-9] [PMID: 30664679]
[23]
Pan, J.; Zhou, H.; Cooper, L.; Huang, J.; Zhu, S.; Zhao, X.; Ding, H.; Pan, Y.; Rong, L. LAYN Is a prognostic biomarker and correlated with immune infiltrates in gastric and colon cancers. Front. Immunol., 2019, 10, 6.
[http://dx.doi.org/10.3389/fimmu.2019.00006] [PMID: 30761122]
[24]
Granville, C.A.; Memmott, R.M.; Balogh, A.; Mariotti, J.; Kawabata, S.; Han, W.; LoPiccolo, J.; Foley, J.; Liewehr, D.J.; Steinberg, S.M.; Fowler, D.H.; Hollander, M.C.; Dennis, P.A. A central role for Foxp3+ regulatory T cells in K-Ras-driven lung tumorigenesis. PLoS One, 2009, 4(3), e5061.
[http://dx.doi.org/10.1371/journal.pone.0005061] [PMID: 19330036]
[25]
Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol., 2018, 15(10), 599-616.
[http://dx.doi.org/10.1038/s41571-018-0073-4] [PMID: 30061739]
[26]
Pan, Y.; Chen, H.; Yu, J. Biomarkers in hepatocellular carcinoma: Current status and future perspectives. Biomedicines, 2020, 8(12), 576.
[http://dx.doi.org/10.3390/biomedicines8120576] [PMID: 33297335]
[27]
Brückner, A.; Stadlbauer, F.; Guarino, L.A.; Brunahl, A.; Schneider, C.; Rehfuess, C.; Previes, C.; Fanning, E.; Nasheuer, H.P. The mouse DNA polymerase alpha-primase subunit p48 mediates species-specific replication of polyomavirus DNA in vitro. Mol. Cell. Biol., 1995, 15(3), 1716-1724.
[http://dx.doi.org/10.1128/MCB.15.3.1716] [PMID: 7862163]
[28]
Waga, S.; Stillman, B. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem., 1998, 67(1), 721-751.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.721] [PMID: 9759502]
[29]
Song, Q.; Wang, H.; Bao, J.; Pullikuth, A.K.; Li, K.C.; Miller, L.D.; Zhou, X. Systems biology approach to studying proliferation-dependent prognostic subnetworks in breast cancer. Sci. Rep., 2015, 5(1), 12981.
[http://dx.doi.org/10.1038/srep12981] [PMID: 26257336]
[30]
Pillai, A.; Ahn, J.; Kulik, L. Integrating genomics into clinical practice in hepatocellular carcinoma: The challenges ahead. Am. J. Gastroenterol., 2020, 115(12), 1960-1969.
[http://dx.doi.org/10.14309/ajg.0000000000000843] [PMID: 33038134]
[31]
Dimri, M.; Satyanarayana, A. Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers, 2020, 12(2), 491.
[http://dx.doi.org/10.3390/cancers12020491] [PMID: 32093152]
[32]
Weichhart, T.; Säemann, M.D. The PI3K/Akt/mTOR pathway in innate immune cells: Emerging therapeutic applications. Ann. Rheum. Dis., 2008, 67(Suppl. 3), iii70-iii74.
[http://dx.doi.org/10.1136/ard.2008.098459] [PMID: 19022819]
[33]
Ruf, B.; Heinrich, B.; Greten, T.F. Immunobiology and immunotherapy of HCC: Spotlight on innate and innate-like immune cells. Cell. Mol. Immunol., 2021, 18(1), 112-127.
[http://dx.doi.org/10.1038/s41423-020-00572-w] [PMID: 33235387]
[34]
Oura, K.; Morishita, A.; Tani, J.; Masaki, T. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: A review. Int. J. Mol. Sci., 2021, 22(11), 5801.
[http://dx.doi.org/10.3390/ijms22115801] [PMID: 34071550]
[35]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy