Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Research Article

AI-based Controllers for a Z-Axis Micro Precision Positioning System

Author(s): Ali Abdi*

Volume 16, Issue 5, 2023

Published on: 10 October, 2023

Page: [394 - 402] Pages: 9

DOI: 10.2174/0122127976262157230925065236

Price: $65

Abstract

Background: Stick-slip actuators are commonly used in Nano/Micro precision positioning systems, but their control is challenging due to factors like nonlinear friction, PEA hysteresis, and uncertainty. Researchers have made efforts to address these challenges and documented their findings in articles and patents.

Methods: This study introduces a novel vertical stick-slip actuator and proposes two different methods for overcoming the challenges associated with controlling it. The first method involves training an inverse model of the actuator using a supervised machine-learning algorithm to determine the optimal number of signals and peak voltage required for the saw-tooth signals in an open-loop controller. The second method is a closed-loop controller that utilizes the maximum allowable peak voltage unless the positioning error is smaller than the maximum step size. At this point, the neural network-based controller adjusts the peak voltage to a lower value, ensuring that the actuator reaches the desired position at the end of the final signal.

Results: According to the results, both controllers perform effectively. The open-loop and closed-loop controllers exhibit a relative error of 1.59% and 0.4%, respectively, for an arbitrary desired position in the final position.

Conclusion: In conclusion, the suggested controllers offer a practical solution to the controlling challenges faced by stick-slip positioners, which are essential in the advancement of Nano/Micro sciences.

[1]
Ha JL, Fung RF, Yang CS. Hysteresis identification and dynamic responses of the impact drive mechanism. J Sound Vibrat 2005; 283(3-5): 943-56.
[http://dx.doi.org/10.1016/j.jsv.2004.05.032]
[2]
Cheng T, Li H, He M, Zhao H, Lu X, Gao H. Investigation on driving characteristics of a piezoelectric stick–slip actuator based on resonant/off-resonant hybrid excitation. Smart Mater Struct 2017; 26(3): 035042.
[http://dx.doi.org/10.1088/1361-665X/aa5c2c]
[3]
Guo Z, Tian Y, Zhang D, Wang T, Wu M. A novel stick-slip based linear actuator using bi-directional motion of micropositioner. Mech Syst Signal Process 2019; 128: 37-49.
[http://dx.doi.org/10.1016/j.ymssp.2019.03.025]
[4]
Tian Y. Design and Modeling of a Decoupled 2-DOF Stick-slip Positioning Stage. In.2019 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). 04-08 August 2019, Zhenjiang, China.
[http://dx.doi.org/10.1109/3M-NANO46308.2019.8947415]
[5]
Huang W, Sun M. Design, analysis, and experiment on a novel stick-slip piezoelectric actuator with a lever mechanism. Micromachines 2019; 10(12): 863.
[http://dx.doi.org/10.3390/mi10120863] [PMID: 31817987]
[6]
Zhou M, Fan Z, Ma Z, et al. Design and experimental research of a novel stick-slip type piezoelectric actuator. Micromachines (Basel) 2017; 8(5): 150.
[http://dx.doi.org/10.3390/mi8050150]
[7]
Cheng T, Lu X, Zhao H, et al. Performance improvement of smooth impact drive mechanism at low voltage utilizing ultrasonic friction reduction. Rev Sci Instrum 2016; 87(8): 085007.
[http://dx.doi.org/10.1063/1.4960392] [PMID: 27587153]
[8]
Yang CF, Jeng SL, Chieng WH. Motion behavior of triangular waveform excitation input in an operating impact drive mechanism. Sens Actuators A Phys 2011; 166(1): 66-77.
[http://dx.doi.org/10.1016/j.sna.2010.12.008]
[9]
Wang S, Rong W, Wang L, Pei Z, Sun L. Design, analysis and experimental performance of a novel stick-slip type piezoelectric rotary actuator based on variable force couple driving. Smart Mater Struct 2017; 26(5): 055005.
[http://dx.doi.org/10.1088/1361-665X/aa64c3]
[10]
Wang Y. A novel stick-slip type rotary piezoelectric actuator. Adv Mater Sci Eng 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/6563520]
[11]
Abdi A, Shariat Panahi M, Hairi Yazdi MR, Mazraeh S. Design and Implementation of a novel vertical precision positioner. Int J Precis Eng Manuf 2021; 22(11): 1861-72.
[http://dx.doi.org/10.1007/s12541-021-00576-0]
[12]
Cheng L, Liu W, Yang C, Huang T, Hou Z-G, Tan M. A neural-network-based controller for piezoelectric-actuated stick–slip devices. IEEE Trans Ind Electron 2018; 65(3): 2598-607.
[http://dx.doi.org/10.1109/TIE.2017.2740826]
[13]
Yang C, Zhang Z, Zhao Q. The application of intelligent control in precision positioning. In. 2008 Second International Symposium on Intelligent Information Technology Application. 20-22 December 2008, Shanghai, China.
[http://dx.doi.org/10.1109/IITA.2008.420]
[14]
Chen Q, Yang Z-X. Adaptive RBF-PIDSMC control method with estimated model parameters for a piezo-actuated stage. Microsyst Technol 2021; 27: 69-77.
[15]
Liu W. Neural-network based model predictive control for piezoelectric- actuated stick-slip micro-positioning devices. In. IEEE International Conference on Advanced Intelligent Mechatronics (AIM). 12-15 July 2016, Banff, AB, Canada, pp. 1312.
[http://dx.doi.org/10.1109/AIM.2016.7576951]
[16]
Sang-Soon Ku. Pinsopon U, Cetinkunt S, Nakajima S. Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner. IEEE/ASME Trans Mechatron 2000; 5(3): 273-80.
[http://dx.doi.org/10.1109/3516.868919]
[17]
Wang HY, Fan K-C, Ye J-K, Lin C-H. A long-stroke nanopositioning control system of the coplanar stage. IEEE/ASME Trans Mechatron 2014; 19(1): 348-56.
[http://dx.doi.org/10.1109/TMECH.2012.2235455]
[18]
Akbari S, Pirbodaghi T. Precision positioning using a novel six axes compliant nano-manipulator. Microsyst Technol 2017; 23(7): 2499-507.
[http://dx.doi.org/10.1007/s00542-016-2931-2]
[19]
Wang G, Xu Q. Design and precision position/force control of a piezo-driven microinjection system. IEEE/ASME Trans Mechatron 2017; 22(4): 1744-54.
[http://dx.doi.org/10.1109/TMECH.2017.2698139]
[20]
Xu J-H. Neural network control of a piezo tool positioner. Proceedings of Canadian Conference on Electrical and Computer Engineering. 14-17 September 1993, Vancouver, BC, Canada pp. 333-336
[http://dx.doi.org/10.1109/CCECE.1993.332324]
[21]
Liaw HC, Shirinzadeh B, Smith J, Smith J. Robust neural network motion tracking control of piezoelectric actuation systems for micro/nanomanipulation. IEEE Trans Neural Netw 2009; 20(2): 356-67.
[http://dx.doi.org/10.1109/TNN.2008.2004406] [PMID: 19150798]
[22]
Liaw HC, Shirinzadeh B, Shirinzadeh B. Neural network motion tracking control of piezo-actuated flexure-based mechanisms for micro-/nanomanipulation. IEEE/ASME Trans Mechatron 2009; 14(5): 517-27.
[http://dx.doi.org/10.1109/TMECH.2009.2005491]
[23]
Mishra JP, Xu Q, Yu X, Jalili M. Precision position tracking for piezoelectric-driven motion system using continuous third-order sliding mode control. IEEE/ASME Trans Mechatron 2018; 23(4): 1521-31.
[http://dx.doi.org/10.1109/TMECH.2018.2853737]
[24]
Ghafarian M, Shirinzadeh B, Al-Jodah A, et al. An XYZ micromanipulator for precise positioning applications. J Microbio Robot 2020; 16(1): 53-63.
[http://dx.doi.org/10.1007/s12213-020-00124-5]
[25]
Abdi A. Design and Control of an XY Precision Positioning System Using Impact Drive Mechanism. Recent Pat Mech Eng 2021; 14(4): 528-40.
[http://dx.doi.org/10.2174/2212797614666210129150320]
[26]
ABIDO MA, DHAHRA MY. Neuro-Fuzzy Control System for Grid-Connected Photovoltaic Systems. Patent US 2016/0226253, 2016.
[27]
GOKMEN SH. Fuzzy logic algorithm-based oven temperature control system. Patent Patent WO2017188909, 2017.
[28]
Matheis TF, Hansen EC, Yunjie Z. BoFilter with Fuzzy Logic Control Evoqua Water Technologies LLC Patent US20170120190, 2017.
[29]
Rangarajan TT. Fuzzy logic control of thermoelectric cooling in a processor Patent EP2889706, 2015.
[30]
Liansheng ZHCRHQZ. High-precision six-degree-of-freedom micro-displacement workbench system capable of releasing thermal deformation Patent CN114187961B, 2022.
[31]
Junfeng Z, Yuying Y, Mengjun Y, et al. Piezoelectric Driving Multi-Degree-of-Freedom Optical Space Positioning Device, Method, and System China Patent CN114510085A, 2022.
[32]
Jianhao S, Duan Z, Xiaoli X, Li L. High-Bandwidth Large-Stroke Space Three-Degree-of-Freedom Parallel Flexible Precision Positioning Platform China Patent CN114812368A, 2022.
[33]
Jianyu W, Yumeng M, Liangliang L, et al. Sub-Nanometer Level High-Precision Micro-Displacement Device Capable of Being Calibrated China Patent CN114252002B, 2022.
[34]
Axially compliant bearing for precision positioning. Patent WO2017079232, 2017.
[35]
Aphale SS. M.N. A. Control system to control precision positioning arrangements. Patent WO2016113576, 2016.
[36]
Chen L-C. Six-degree-of-freedom precision positioning system. national taiwan university, taipei, taiwan. Patent US7940150B2, 2011.
[37]
Santiago IB, da Silva RA, Halla DL. Method of Generating Fuzzy Knowledge Base for a Programmable Fuzzy Controller Patent US20170075324, 2017.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy