Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

An Insight into Mesoporous Silica Nanoparticles: Ray of Hope for Cancer Management

Author(s): Chetan Singh Chauhan, Akash Garg* and Rutvi Agrawal

Volume 20, Issue 4, 2024

Published on: 10 October, 2023

Page: [341 - 356] Pages: 16

DOI: 10.2174/0115733947242447231003035334

Price: $65

Abstract

Cancer is one of the fatal diseases leading to a high mortality rate. The conventional formulations available for the treatment of cancer are associated with several drawbacks. The major ones are increased side effects due to improper tumor selectivity, metastasis of cancer cells and development of multi-drug resistance to available chemotherapeutic drugs. The development of nanobased formulations for the treatment of cancer has been found to be beneficial up to a great extent. Mesoporous Silica nanoparticles are one of the nanotechnology-based formulations that could overcome major disadvantages associated with conventional therapy, such as metastasis, multi-drug resistance and side effects to normal cells. MSN-based nanoformulations could provide dual therapeutic effects against cancer cells. Due to their small size and large surface, which could be functionalized by using different targeting and therapeutic moieties, they provide targeted and enhanced drug delivery. This review highlights Mesoporous silica nanoparticles along with their properties, drug encapsulation and various applications in drug delivery, such as multi-targeting strategy, and multimodal combined therapy by using ultrasound, photodynamic etc. In the future, MSN-based nanomedicines could be used to develop other innovative strategies for cancer treatment.

Graphical Abstract

[1]
Mathur P, Sathishkumar K, Chaturvedi M, et al. Group, o. b. o. I.-N.-N. I. Cancer Statistics, 2020. Report From National Cancer Registry Programme, India 2020; (6): 1063-75.
[2]
Chae SW, Sohn JH, Kim DH, et al. Overexpressions of Cyclin B1, cdc2, p16 and p53 in human breast cancer: The clinicopathologic correlations and prognostic implications. Yonsei Med J 2011; 52(3): 445-53.
[http://dx.doi.org/10.3349/ymj.2011.52.3.445] [PMID: 21488187]
[3]
Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene 2001; 20(15): 1803-15.
[http://dx.doi.org/10.1038/sj.onc.1204252] [PMID: 11313928]
[4]
Bukholm I K, Nesland J M. Protein expression of p53, p21 (WAF1/CIP1), bcl-2, Bax, cyclin D1 and pRb in human colon carcinomas. Virchows Archiv Int J pathol 2000; 436(3): 224-8.
[5]
Roninson IB. Oncogenic functions of tumour suppressor p21Waf1/Cip1/Sdi1: association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 2002; 179(1): 1-14.
[http://dx.doi.org/10.1016/S0304-3835(01)00847-3] [PMID: 11880176]
[6]
May P, May E. Twenty years of p53 research: Structural and functional aspects of the p53 protein. Oncogene 1999; 18(53): 7621-36.
[http://dx.doi.org/10.1038/sj.onc.1203285] [PMID: 10618702]
[7]
Selivanova G. p53: Fighting cancer. Curr Cancer Drug Targets 2004; 4(5): 385-402.
[http://dx.doi.org/10.2174/1568009043332934] [PMID: 15320716]
[8]
Kanai Y, Hirohashi S. Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state. Carcinogenesis 2007; 28(12): 2434-42.
[http://dx.doi.org/10.1093/carcin/bgm206] [PMID: 17893234]
[9]
Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta 2007; 1775(1): 138-62.
[PMID: 17045745]
[10]
Esteller M. Epigenetic gene silencing in cancer: The DNA hypermethylome. Hum Mol Genet 2007; 16(R1): R50-9.
[http://dx.doi.org/10.1093/hmg/ddm018] [PMID: 17613547]
[11]
Chidambaram M, Manavalan R, Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. Journal of pharmacy & pharmaceutical sciences : A publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques 2011; 14(1): 67-77.
[12]
Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: Focus on cancer. Int J Nanomedicine 2014; 9: 467-83.
[PMID: 24531078]
[13]
Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 2012; 7: 4391-408.
[PMID: 22927757]
[14]
Yu L, Chen Y, Lin H, Du W, Chen H, Shi J. Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery. Biomaterials 2018; 161: 292-305.
[http://dx.doi.org/10.1016/j.biomaterials.2018.01.046] [PMID: 29427925]
[15]
Asefa T, Tao Z. Biocompatibility of mesoporous silica nanoparticles. Chem Res Toxicol 2012; 25(11): 2265-84.
[http://dx.doi.org/10.1021/tx300166u] [PMID: 22823891]
[16]
Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells 2011; 31(4): 295-302.
[http://dx.doi.org/10.1007/s10059-011-0051-5] [PMID: 21360197]
[17]
Ni D, Jiang D, Ehlerding EB, Huang P, Cai W. Radiolabeling silica-based nanoparticles via coordination chemistry: Basic principles, strategies, and applications. Acc Chem Res 2018; 51(3): 778-88.
[http://dx.doi.org/10.1021/acs.accounts.7b00635] [PMID: 29489335]
[18]
Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 2012; 41(7): 2590-605.
[http://dx.doi.org/10.1039/c1cs15246g] [PMID: 22216418]
[19]
Yan Y, Fu J, Wang T, Lu X. Controlled release of silyl ether camptothecin from thiol-ene click chemistry-functionalized mesoporous silica nanoparticles. Acta Biomater 2017; 51: 471-8.
[http://dx.doi.org/10.1016/j.actbio.2017.01.062] [PMID: 28131940]
[20]
Huang R, Shen YW, Guan YY, et al. Mesoporous silica nanoparticles: Facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater 2020; 116: 1-15.
[http://dx.doi.org/10.1016/j.actbio.2020.09.009] [PMID: 32911102]
[21]
Lee JE, Lee N, Kim H, et al. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J Am Chem Soc 2010; 132(2): 552-7.
[http://dx.doi.org/10.1021/ja905793q] [PMID: 20017538]
[22]
Chan MH, Lin HM. Preparation and identification of multifunctional mesoporous silica nanoparticles for in vitro and in vivo dual-mode imaging, theranostics, and targeted tracking. Biomaterials 2015; 46: 149-58.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.034] [PMID: 25678124]
[23]
Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, et al. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm 2022; 625: 122099.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122099] [PMID: 35961417]
[24]
Taghavi S, Nia AH, Abnous K, Ramezani M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int J Pharm 2017; 516(1-2): 301-12.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.027] [PMID: 27840158]
[25]
Ding X, Su Y, Wang C, et al. Synergistic suppression of tumor angiogenesis by the co-delivering of vascular endothelial growth factor targeted siRNA and candesartan mediated by functionalized carbon nanovectors. ACS Appl Mater Interfaces 2017; 9(28): 23353-69.
[http://dx.doi.org/10.1021/acsami.7b04971] [PMID: 28617574]
[26]
Luo L, Yang J, Zhu C, et al. Sustained release of anti-PD-1 peptide for perdurable immunotherapy together with photothermal ablation against primary and distant tumors. J Control Release 2018; 278: 87-99.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.002] [PMID: 29626502]
[27]
Lei Y, Tang L, Xie Y, et al. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat Commun 2017; 8(1): 15130.
[http://dx.doi.org/10.1038/ncomms15130] [PMID: 28440296]
[28]
Mohamed Isa ED, Ahmad H, Abdul Rahman MB. Optimization of synthesis parameters of mesoporous silica nanoparticles based on ionic liquid by experimental design and its application as a drug delivery agent. J Nanomater 2019; 2019: 1-8.
[http://dx.doi.org/10.1155/2019/4982054]
[29]
Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J. A new property of MCM-41: Drug delivery system. Chem Mater 2001; 13(2): 308-11.
[http://dx.doi.org/10.1021/cm0011559]
[30]
Phillips E, Penate-Medina O, Zanzonico PB, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 2014; 6(260): 260ra149.
[http://dx.doi.org/10.1126/scitranslmed.3009524] [PMID: 25355699]
[31]
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv Mater 2012; 24(12): 1504-34.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[32]
Hao N, Li L, Tang F. Shape matters when engineering mesoporous silica-based nanomedicines. Biomater Sci 2016; 4(4): 575-91.
[http://dx.doi.org/10.1039/C5BM00589B] [PMID: 26818852]
[33]
Vazquez NI, Gonzalez Z, Ferrari B, Castro Y. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications. Bol Soc Esp Ceram Vidr 2017; 56(3): 139-45.
[http://dx.doi.org/10.1016/j.bsecv.2017.03.002]
[34]
Yuan L, Tang Q, Yang D, Zhang JZ, Zhang F, Hu J. Preparation of ph-responsive mesoporous silica nanoparticles and their application in controlled drug delivery. J Phys Chem C 2011; 115(20): 9926-32.
[http://dx.doi.org/10.1021/jp201053d]
[35]
Pang X, Tang F. Morphological control of mesoporous materials using inexpensive silica sources. Microporous Mesoporous Mater 2005; 85(1-2): 1-6.
[http://dx.doi.org/10.1016/j.micromeso.2005.06.012]
[36]
Hodali HA, Marzouqa DM, Tekfa FZ. Evaluation of mesoporous silicate nanoparticles for the sustained release of the anticancer drugs: 5-fluorouracil and 7-hydroxycoumarin. J Sol-Gel Sci Technol 2016; 80(2): 417-25.
[http://dx.doi.org/10.1007/s10971-016-4127-8]
[37]
Lelong G, Bhattacharyya S, Kline S, Cacciaguerra T, Gonzalez MA, Saboungi ML. Effect of surfactant concentration on the morphology and texture of MCM-41 materials. J Phys Chem C 2008; 112(29): 10674-80.
[http://dx.doi.org/10.1021/jp800898n]
[38]
Chen B, Wang Z, Quan G, et al. In vitro and in vivo evaluation of ordered mesoporous silica as a novel adsorbent in liquisolid formulation. Int J Nanomedicine 2012; 7: 199-209.
[PMID: 22275835]
[39]
Lin YS, Hurley KR, Haynes CL. Critical considerations in the biomedical use of mesoporous silica nanoparticles. J Phys Chem Lett 2012; 3(3): 364-74.
[http://dx.doi.org/10.1021/jz2013837] [PMID: 26285853]
[40]
Fowler CE, Khushalani D, Lebeau B, Mann S. Nanoscale materials with mesostructured interiors. Adv Mater 2001; 13(9): 649-52.
[http://dx.doi.org/10.1002/1521-4095(200105)13:9<649::AID-ADMA649>3.0.CO;2-G]
[41]
Cai Q, Luo ZS, Pang WQ, Fan YW, Chen XH, Cui FZ. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem Mater 2001; 13(2): 258-63.
[http://dx.doi.org/10.1021/cm990661z]
[42]
Han Y, Ying JY. Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures. Angew Chem Int Ed 2005; 44(2): 288-92.
[http://dx.doi.org/10.1002/anie.200460892] [PMID: 15614899]
[43]
Berggren A, Palmqvist AEC. Particle size control of colloidal suspensions of mesostructured silica. J Phys Chem C 2008; 112(3): 732-7.
[http://dx.doi.org/10.1021/jp0766858]
[44]
Suteewong T, Sai H, Cohen R, et al. Highly aminated mesoporous silica nanoparticles with cubic pore structure. J Am Chem Soc 2011; 133(2): 172-5.
[http://dx.doi.org/10.1021/ja1061664] [PMID: 21158438]
[45]
Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 1968; 26(1): 62-9.
[http://dx.doi.org/10.1016/0021-9797(68)90272-5]
[46]
Grün M, Lauer I, Unger K K. The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. AdvMat 1997; 9(3): 254-157.
[47]
Singh LP, Bhattacharyya SK, Kumar R, et al. Sol-Gel processing of silica nanoparticles and their applications. Adv Colloid Interface Sci 2014; 214: 17-37.
[http://dx.doi.org/10.1016/j.cis.2014.10.007] [PMID: 25466691]
[48]
Hwang J, Lee JH, Chun J. Facile approach for the synthesis of spherical mesoporous silica nanoparticles from sodium silicate. Mater Lett 2021; 283: 128765.
[http://dx.doi.org/10.1016/j.matlet.2020.128765]
[49]
Feng SH, Li GH. Hydrothermal and solvothermal syntheses. In: Xu R, Xu Y, Eds. In modern inorganic synthetic chemistry. (2nd ed.). Amsterdam, Elsevier 2017; pp. 73-104.
[50]
Yu Q, Hui J, Wang P, Xu B, Zhuang J, Wang X. Hydrothermal synthesis of mesoporous silica spheres: effect of the cooling process. Nanoscale 2012; 4(22): 7114-20.
[http://dx.doi.org/10.1039/c2nr31834b] [PMID: 23070358]
[51]
Song T, Zhao H, Hu Y, Sun N, Zhang H. Facile assembly of mesoporous silica nanoparticles with hierarchical pore structure for CO2 capture. Chin Chem Lett 2019; 30(12): 2347-50.
[http://dx.doi.org/10.1016/j.cclet.2019.07.024]
[52]
Lv C, Xu L, Chen M, et al. Constructing highly dispersed Ni based catalysts supported on fibrous silica nanosphere for low-temperature CO2 methanation. Fuel 2020; 278: 118333.
[http://dx.doi.org/10.1016/j.fuel.2020.118333]
[53]
Ferreira Soares DC, Soares LM, Miranda de Goes A, et al. Mesoporous SBA-16 silica nanoparticles as a potential vaccine adjuvant against Paracoccidioides brasiliensis. Microporous Mesoporous Mater 2020; 291: 109676.
[http://dx.doi.org/10.1016/j.micromeso.2019.109676]
[54]
Abburi A, Ali M, Moriya PV. Synthesis of mesoporous silica nanoparticles from waste hexafluorosilicic acid of fertilizer industry. J Mater Res Technol 2020; 9(4): 8074-80.
[http://dx.doi.org/10.1016/j.jmrt.2020.05.055]
[55]
Mohamad DF, Osman NS, Nazri MKHM, et al. Synthesis of mesoporous silica nanoparticle from banana peel ash for removal of phenol and methyl orange in aqueous solution. Mater Today Proc 2019; 19: 1119-25.
[http://dx.doi.org/10.1016/j.matpr.2019.11.004]
[56]
Li H, Wu X, Yang B, et al. Evaluation of biomimetically synthesized mesoporous silica nanoparticles as drug carriers: Structure, wettability, degradation, biocompatibility and brain distribution. Mater Sci Eng C 2019; 94: 453-64.
[http://dx.doi.org/10.1016/j.msec.2018.09.053] [PMID: 30423730]
[57]
Mamaeva V, Sahlgren C, Lindén M. Mesoporous silica nanoparticles in medicine-Recent advances. Adv Drug Deliv Rev 2013; 65(5): 689-702.
[http://dx.doi.org/10.1016/j.addr.2012.07.018] [PMID: 22921598]
[58]
Lee JE, Lee N, Kim T, Kim J, Hyeon T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 2011; 44(10): 893-902.
[http://dx.doi.org/10.1021/ar2000259] [PMID: 21848274]
[59]
Khatoon S, Han HS, Lee M, et al. Zwitterionic mesoporous nanoparticles with a bioresponsive gatekeeper for cancer therapy. Acta Biomater 2016; 40: 282-92.
[http://dx.doi.org/10.1016/j.actbio.2016.04.011] [PMID: 27063494]
[60]
Meng H, Liong M, Xia T, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 2010; 4(8): 4539-50.
[http://dx.doi.org/10.1021/nn100690m] [PMID: 20731437]
[61]
Du X, Xiong L, Dai S, Qiao SZ. γ-PGA-coated mesoporous silica nanoparticles with covalently attached prodrugs for enhanced cellular uptake and intracellular GSH-responsive release. Adv Healthc Mater 2015; 4(5): 771-81.
[http://dx.doi.org/10.1002/adhm.201400726] [PMID: 25582379]
[62]
Llinàs MC, Martínez-Edo G, Cascante A, Porcar I, Borrós S, Sánchez-García D. Preparation of a mesoporous silica-based nano-vehicle for dual DOX/CPT pH-triggered delivery. Drug Deliv 2018; 25(1): 1137-46.
[http://dx.doi.org/10.1080/10717544.2018.1472678] [PMID: 29779394]
[63]
Tada DB, Vono LLR, Duarte EL, et al. Methylene blue-containing silica-coated magnetic particles: A potential magnetic carrier for photodynamic therapy. Langmuir 2007; 23(15): 8194-9.
[http://dx.doi.org/10.1021/la700883y] [PMID: 17590032]
[64]
Dong JH, Ma Y, Li R, et al. Smart MSN-drug-delivery system for tumor cell targeting and tumor microenvironment release. ACS Appl Mater Interfaces 2021; 13(36): 42522-32.
[http://dx.doi.org/10.1021/acsami.1c14189] [PMID: 34463488]
[65]
Liberti MV, Locasale JW. The warburg effect: How does it benefit cancer cells? Trends Biochem Sci 2016; 41(3): 211-8.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001] [PMID: 26778478]
[66]
Yang KN, Zhang CQ, Wang W, Wang PC, Zhou JP, Liang XJ. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biol Med 2014; 11(1): 34-43.
[PMID: 24738037]
[67]
Tamanna T, Bulitta JB, Yu A. Controlling antibiotic release from mesoporous silica nano drug carriers via self-assembled polyelectrolyte coating. J Mater Sci Mater Med 2015; 26(2): 117.
[http://dx.doi.org/10.1007/s10856-015-5444-0] [PMID: 25665846]
[68]
Feng W, Nie W, He C, et al. Effect of pH-responsive alginate/chitosan multilayers coating on delivery efficiency, cellular uptake and biodistribution of mesoporous silica nanoparticles based nanocarriers. ACS Appl Mater Interfaces 2014; 6(11): 8447-60.
[http://dx.doi.org/10.1021/am501337s] [PMID: 24745551]
[69]
Zhao R, Li T, Zheng G, Jiang K, Fan L, Shao J. Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials 2017; 143: 1-16.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.030] [PMID: 28755539]
[70]
Li H, Wang P, Deng Y, et al. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma. Biomaterials 2017; 139: 30-8.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.030] [PMID: 28582716]
[71]
de la Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 2012; 64(11): 967-78.
[http://dx.doi.org/10.1016/j.addr.2012.01.002] [PMID: 22266127]
[72]
Overall CM, Kleifeld O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 2006; 6(3): 227-39.
[http://dx.doi.org/10.1038/nrc1821] [PMID: 16498445]
[73]
Zou Z, He X, He D, et al. Programmed packaging of mesoporous silica nanocarriers for matrix metalloprotease 2-triggered tumor targeting and release. Biomaterials 2015; 58: 35-45.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.034] [PMID: 25941780]
[74]
Lu HY, Chang YJ, Fan NC, et al. Synergism through combination of chemotherapy and oxidative stress-induced autophagy in A549 lung cancer cells using redox-responsive nanohybrids: A new strategy for cancer therapy. Biomaterials 2015; 42: 30-41.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.029] [PMID: 25542791]
[75]
Yao J, Feng J, Chen J. External-stimuli responsive systems for cancer theranostic. Asian J Pharmac Sci 2016; 11(5): 585-95.
[http://dx.doi.org/10.1016/j.ajps.2016.06.001]
[76]
Li T, Shen X, Geng Y, et al. Folate-functionalized magnetic-mesoporous silica nanoparticles for drug/gene codelivery to potentiate the antitumor efficacy. ACS Appl Mater Interfaces 2016; 8(22): 13748-58.
[http://dx.doi.org/10.1021/acsami.6b02963] [PMID: 27191965]
[77]
Jo SD, Ku SH, Won YY, Kim SH, Kwon IC. Targeted nanotheranostics for future personalized medicine: Recent progress in cancer therapy. Theranostics 2016; 6(9): 1362-77.
[http://dx.doi.org/10.7150/thno.15335] [PMID: 27375785]
[78]
Lv Y, Cao Y, Li P, et al. Ultrasound‐triggered destruction of folate‐functionalized mesoporous silica nanoparticle‐loaded microbubble for targeted tumor therapy. Adv Healthc Mater 2017; 6(18): 1700354.
[http://dx.doi.org/10.1002/adhm.201700354] [PMID: 28671341]
[79]
Bekeredjian R, Katus H, Kuecherer H. Therapeutic use of ultrasound targeted microbubble destruction: A review of non-cardiac applications. Ultraschall Med 2006; 28(2): 134-40.
[http://dx.doi.org/10.1055/s-2005-858993] [PMID: 16612722]
[80]
Sun R, Wang W, Wen Y, Zhang X. Recent advance on mesoporous silica nanoparticles-based controlled release system: Intelligent switches open up new horizon. Nanomaterials 2015; 5(4): 2019-53.
[http://dx.doi.org/10.3390/nano5042019] [PMID: 28347110]
[81]
Li ZY, Hu JJ, Xu Q, et al. A redox-responsive drug delivery system based on RGD containing peptide-capped mesoporous silica nanoparticles. J Mater Chem B Mater Biol Med 2015; 3(1): 39-44.
[http://dx.doi.org/10.1039/C4TB01533A] [PMID: 32261922]
[82]
Chen Y, Chen H, Shi J. Drug delivery/imaging multifunctionality of mesoporous silica-based composite nanostructures. Expert Opin Drug Deliv 2014; 11(6): 917-30.
[http://dx.doi.org/10.1517/17425247.2014.908181] [PMID: 24746014]
[83]
Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 2002; 54(5): 675-93.
[http://dx.doi.org/10.1016/S0169-409X(02)00042-X] [PMID: 12204598]
[84]
Low P, Antony AC. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev 2004; 56(8): 1055-8.
[http://dx.doi.org/10.1016/j.addr.2004.02.003] [PMID: 15094205]
[85]
Morelli C, Maris P, Sisci D, et al. PEG-templated mesoporous silica nanoparticles exclusively target cancer cells. Nanoscale 2011; 3(8): 3198-207.
[http://dx.doi.org/10.1039/c1nr10253b] [PMID: 21725561]
[86]
Teng IT, Chang YJ, Wang LS, et al. Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials 2013; 34(30): 7462-70.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.001] [PMID: 23810081]
[87]
Tortorella S, Karagiannis T. The significance of transferrin receptors in oncology: The development of functional nano-based drug delivery systems. Curr Drug Deliv 2014; 11(4): 427-43.
[http://dx.doi.org/10.2174/1567201810666140106115436] [PMID: 24387131]
[88]
Hwang AA, Lu J, Tamanoi F, Zink JI. Functional nanovalves on protein-coated nanoparticles for in vitro and in vivo controlled drug delivery. Small 2015; 11(3): 319-28.
[89]
Milane L, Duan Z, Amiji M. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol Pharm 2011; 8(1): 185-203.
[http://dx.doi.org/10.1021/mp1002653] [PMID: 20942457]
[90]
Iftimia N, Iyer AK, Hammer DX, et al. Fluorescence-guided optical coherence tomography imaging for colon cancer screening: A preliminary mouse study. Biomed Opt Express 2012; 3(1): 178-91.
[http://dx.doi.org/10.1364/BOE.3.000178] [PMID: 22254178]
[91]
Sugahara KN, Teesalu T, Karmali PP, et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 2010; 328(5981): 1031-5.
[http://dx.doi.org/10.1126/science.1183057] [PMID: 20378772]
[92]
Liu Q, Zhang J, Xia W, Gu H. Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles. Nanoscale 2012; 4(11): 3415-21.
[http://dx.doi.org/10.1039/c2nr30352c] [PMID: 22543531]
[93]
Koohi Moftakhari Esfahani M, Alavi SE, Cabot PJ, Islam N, Izake EL. Application of mesoporous silica nanoparticles in cancer therapy and delivery of repurposed anthelmintics for cancer therapy. Pharmaceutics 2022; 14(8): 1579.
[http://dx.doi.org/10.3390/pharmaceutics14081579] [PMID: 36015204]
[94]
Martínez-Carmona M, Lozano D, Colilla M, Vallet-Regí M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater 2018; 65: 393-404.
[http://dx.doi.org/10.1016/j.actbio.2017.11.007] [PMID: 29127069]
[95]
Chen Y, Ai K, Liu J, Sun G, Yin Q, Lu L. Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. Biomaterials 2015; 60: 111-20.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.003] [PMID: 25988726]
[96]
Shan L, Zhuo X, Zhang F, et al. A paclitaxel prodrug with bifunctional folate and albumin binding moieties for both passive and active targeted cancer therapy. Theranostics 2018; 8(7): 2018-30.
[http://dx.doi.org/10.7150/thno.24382] [PMID: 29556370]
[97]
Li F, Lu J, Liu J, et al. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nat Commun 2017; 8(1): 1390.
[http://dx.doi.org/10.1038/s41467-017-01565-6] [PMID: 29123088]
[98]
Meng H, Wang M, Liu H, et al. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 2015; 9(4): 3540-57.
[http://dx.doi.org/10.1021/acsnano.5b00510] [PMID: 25776964]
[99]
Alvarez-Berríos MP, Vivero-Escoto JL. In vitro evaluation of folic acid-conjugated redox-responsive mesoporous silica nanoparticles for the delivery of cisplatin. Int J Nanomedicine 2016; 11: 6251-65.
[http://dx.doi.org/10.2147/IJN.S118196] [PMID: 27920531]
[100]
Pan G, Jia T, Huang Q, et al. Mesoporous silica nanoparticles (MSNs)-based organic/inorganic hybrid nanocarriers loading 5-Fluorouracil for the treatment of colon cancer with improved anticancer efficacy. Colloids Surf B Biointerfaces 2017; 159: 375-85.
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.013] [PMID: 28818782]
[101]
Goel S, Chen F, Hong H, et al. VEGF₁₂₁-conjugated mesoporous silica nanoparticle: A tumor targeted drug delivery system. ACS Appl Mater Interfaces 2014; 6(23): 21677-85.
[http://dx.doi.org/10.1021/am506849p] [PMID: 25353068]
[102]
He Q, Shi J, Chen F, Zhu M, Zhang L. An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials 2010; 31(12): 3335-46.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.015] [PMID: 20106517]
[103]
Chen Y, Meng Q, Wu M, et al. Hollow mesoporous organosilica nanoparticles: A generic intelligent framework-hybridization approach for biomedicine. J Am Chem Soc 2014; 136(46): 16326-34.
[http://dx.doi.org/10.1021/ja508721y] [PMID: 25343459]
[104]
Zhu Y, Shi J, Shen W, Chen H, Dong X, Ruan M. Preparation of novel hollow mesoporous silica spheres and their sustained-release property. Nanotechnology 2005; 16(11): 2633-8.
[http://dx.doi.org/10.1088/0957-4484/16/11/027]
[105]
Giaccone G, Pinedo HM. Drug resistance. Oncologist 1996; 1(1-2): 82-7.
[http://dx.doi.org/10.1634/theoncologist.1-1-82] [PMID: 10387972]
[106]
Lu J, Liong M, Sherman S, Xia T, Kovochich M. Mesoporous silica nanoparticles for cancer therapy: Energy-dependent cellular uptake and delivery of paclitaxel to cancer cells. Nanobiotechnology J inte Nanotech Molec Biol Biomed Sci 2007; 3(2): 89-95.
[107]
He Q, Zhang Z, Gao Y, Shi J, Li Y. Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. Small 2009; 5(23): 2722-9.
[108]
Lu F, Wu S H, Hung Y, Mou C Y. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009; 5(12): 1408-13.
[109]
Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010; 31(3): 438-48.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.060] [PMID: 19800115]
[110]
Tham HP, Xu K, Lim WQ, et al. Microneedle-assisted topical delivery of photodynamically active mesoporous formulation for combination therapy of deep-seated melanoma. ACS Nano 2018; 12(12): 11936-48.
[http://dx.doi.org/10.1021/acsnano.8b03007] [PMID: 30444343]
[111]
Yu Z, Zhou P, Pan W, Li N, Tang B. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat Commun 2018; 9(1): 5044.
[http://dx.doi.org/10.1038/s41467-018-07197-8] [PMID: 30487569]
[112]
Lu Y, Yang Y, Gu Z, et al. Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced cancer immunotherapy. Biomaterials 2018; 175: 82-92.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.025] [PMID: 29803106]
[113]
Wu M, Zhang H, Tie C, et al. MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma. Nat Commun 2018; 9(1): 4777.
[http://dx.doi.org/10.1038/s41467-018-07250-6] [PMID: 30429468]
[114]
Liu J, Liang H, Li M, et al. Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 2018; 157: 107-24.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.003] [PMID: 29268142]
[115]
Wei Q, Chen Y, Ma X, et al. High-efficient clearable nanoparticles for multi-modal imaging and image-guided cancer therapy. Adv Funct Mater 2018; 28(2): 1704634.
[http://dx.doi.org/10.1002/adfm.201704634]
[116]
Choi JY, Ramasamy T, Kim SY, et al. PEGylated lipid bilayer-supported mesoporous silica nanoparticle composite for synergistic co-delivery of axitinib and celastrol in multi-targeted cancer therapy. Acta Biomater 2016; 39: 94-105.
[http://dx.doi.org/10.1016/j.actbio.2016.05.012] [PMID: 27163403]
[117]
Mu S, Liu Y, Wang T, et al. Unsaturated nitrogen-rich polymer poly(l-histidine) gated reversibly switchable mesoporous silica nanoparticles using “graft to” strategy for drug controlled release. Acta Biomater 2017; 63: 150-62.
[http://dx.doi.org/10.1016/j.actbio.2017.08.050] [PMID: 28873341]
[118]
Duo Y, Yang M, Du Z, et al. CX-5461-loaded nucleolus-targeting nanoplatform for cancer therapy through induction of pro-death autophagy. Acta Biomater 2018; 79: 317-30.
[http://dx.doi.org/10.1016/j.actbio.2018.08.035] [PMID: 30172068]
[119]
Sun L, Wang D, Chen Y, et al. Core-shell hierarchical mesostructured silica nanoparticles for gene/chemo-synergetic stepwise therapy of multidrug-resistant cancer. Biomaterials 2017; 133: 219-28.
[http://dx.doi.org/10.1016/j.biomaterials.2017.04.028] [PMID: 28441616]
[120]
Shao D, Li M, Wang Z, et al. Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein delivery. Adv mat 2018; e1801198.
[121]
Li T, Shi S, Goel S, et al. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater 2019; 89: 1-13.
[http://dx.doi.org/10.1016/j.actbio.2019.02.031] [PMID: 30797106]
[122]
Hambley TW. Physiological targeting to improve anticancer drug selectivity. Aust J Chem 2008; 61(9): 647-53.
[http://dx.doi.org/10.1071/CH08180]
[123]
He Q, Zhang Z, Gao F, Li Y, Shi J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: Effects of particle size and PEGylation. Small 2011; 7(2): 271-80.
[124]
Hajitou A, Pasqualini R, Arap W. Vascular targeting: Recent advances and therapeutic perspectives. Trends Cardiovasc Med 2006; 16(3): 80-8.
[http://dx.doi.org/10.1016/j.tcm.2006.01.003] [PMID: 16546688]
[125]
Casasús R, Marcos MD, Martínez-Máñez R, et al. Toward the development of ionically controlled nanoscopic molecular gates. J Am Chem Soc 2004; 126(28): 8612-3.
[http://dx.doi.org/10.1021/ja048095i] [PMID: 15250688]
[126]
Wang Y, Caruso F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation. Chem Mater 2005; 17(5): 953-61.
[http://dx.doi.org/10.1021/cm0483137]
[127]
Gao Q, Xu Y, Wu D, Shen W, Deng F. Synthesis, characterization, and in vitro pH-controllable drug release from mesoporous silica spheres with switchable gates. Langmuir 2010; 26(22): 17133-8.
[http://dx.doi.org/10.1021/la102952n] [PMID: 20939524]
[128]
Liu R, Liao P, Liu J, Feng P. Responsive polymer-coated mesoporous silica as a pH-sensitive nanocarrier for controlled release. Langmuir 2011; 27(6): 3095-9.
[http://dx.doi.org/10.1021/la104973j] [PMID: 21314163]
[129]
Lai CY, Trewyn BG, Jeftinija DM, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 2003; 125(15): 4451-9.
[http://dx.doi.org/10.1021/ja028650l] [PMID: 12683815]
[130]
Tkachenko AG, Xie H, Coleman D, et al. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 2003; 125(16): 4700-1.
[http://dx.doi.org/10.1021/ja0296935] [PMID: 12696875]
[131]
Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VSY. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 2004; 126(41): 13216-7.
[http://dx.doi.org/10.1021/ja046275m] [PMID: 15479063]
[132]
Hernandez R, Tseng HR, Wong JW, Stoddart JF, Zink JI. An operational supramolecular nanovalve. J Am Chem Soc 2004; 126(11): 3370-1.
[http://dx.doi.org/10.1021/ja039424u] [PMID: 15025433]
[133]
Ma M, Chen H, Chen Y, et al. Hyaluronic acid-conjugated mesoporous silica nanoparticles: Excellent colloidal dispersity in physiological fluids and targeting efficacy. J Mater Chem 2012; 22(12): 5615-21.
[http://dx.doi.org/10.1039/c2jm15489g]
[134]
Zhou J. Multidrug resistance in cancer. New York, Springer 2010; p. 492.
[135]
Jean-Pierre G, Michael MG. Mechanism of multidrug resiatance in cancer. Methods Mol Biol 2010; 596: 47-76.
[136]
He Q, Shi J. MSN anti-cancer nanomedicines: Chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv Mater 2014; 26(3): 391-411.
[http://dx.doi.org/10.1002/adma.201303123] [PMID: 24142549]
[137]
He Q, Guo S, Qian Z, Chen X. Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem Soc Rev 2015; 44(17): 6258-86.
[http://dx.doi.org/10.1039/C4CS00511B] [PMID: 26056688]
[138]
Wang Y, Wang K, Zhao J, et al. Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc 2013; 135(12): 4799-804.
[http://dx.doi.org/10.1021/ja312221g] [PMID: 23495667]
[139]
Wang X, Chen H, Chen Y, et al. Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient high intensity focused ultrasound (HIFU). Adv Mater 2012; 24(6): 785-91.
[http://dx.doi.org/10.1002/adma.201104033] [PMID: 22223403]
[140]
He X, Chen F, Chang Z, et al. Silver mesoporous silica nanoparticles: Fabrication to combination therapies for cancer and infection. Chem Rec 2022; 22(4): e202100287.
[http://dx.doi.org/10.1002/tcr.202100287] [PMID: 35020240]
[141]
Salve R, Kumar P, Chaudhari BP, Gajbhiye V. Aptamer tethered bio-responsive mesoporous silica nanoparticles for efficient targeted delivery of paclitaxel to treat ovarian cancer cells. J Pharm Sci 2023; 112(5): 1450-9.
[http://dx.doi.org/10.1016/j.xphs.2023.01.011] [PMID: 36669561]
[142]
Tavira M, Mousavi-Khattat M, Shakeran Z, Zarrabi A. PCL/gelatin nanofibers embedded with doxorubicin-loaded mesoporous silica nanoparticles/silver nanoparticles as an antibacterial and anti-melanoma cancer. Int J Pharm 2023; 642: 123162.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123162] [PMID: 37343778]
[143]
Heydari SR, Samadi M, Shirangi A, et al. Dual responsive hydroxyapatite capped mesoporous silica nanoparticles for controlled delivery of Palbociclib to treat osteosarcoma. J Drug Deliv Sci Technol 2023; 82: 104356.
[http://dx.doi.org/10.1016/j.jddst.2023.104356]
[144]
Truong-Thi NH, Nguyen NH, Nguyen DTD, Tang TN, Nguyen TH, Nguyen DH. pH-responsive delivery of platinum-based drugs through the surface modification of heparin on mesoporous silica nanoparticles. Eur Polym J 2023; 185: 111818.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.111818]
[145]
Zarkesh K, Heidari R, Iranpour P, et al. Theranostic hyaluronan coated EDTA modified magnetic mesoporous silica nanoparticles for targeted delivery of cisplatin. J Drug Deliv Sci Technol 2022; 77: 103903.
[http://dx.doi.org/10.1016/j.jddst.2022.103903]
[146]
Wang S, Wo L, Zhang Z, et al. Delivery of LINC00589 via mesoporous silica nanoparticles inhibits peritoneal metastasis in gastric cancer. Cancer Lett 2022; 549: 215916.
[http://dx.doi.org/10.1016/j.canlet.2022.215916] [PMID: 36126899]
[147]
Lu J, Liong M, Li Z, Zink J I, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010; 6(16): 1794-805.
[148]
Zhou S, Wu D, Yin X, et al. Intracellular pH-responsive and rituximab-conjugated mesoporous silica nanoparticles for targeted drug delivery to lymphoma B cells. J Exp Clin Cancer Res 2017; 36(1): 24.
[http://dx.doi.org/10.1186/s13046-017-0492-6] [PMID: 28166836]
[149]
Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 2009; 8(4): 331-6.
[http://dx.doi.org/10.1038/nmat2398] [PMID: 19234444]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy