Abstract
Background: This paper proposes a synthetic aperture radar (SAR) target recognition method based on adaptive weighted decision fusion of multi-level deep features.
Methods: The trained ResNet-18 is employed to extract multi-level deep features from SAR images. Afterwards, based on the joint sparse representation (JSR) model, the multi-level deep features are represented to obtain the corresponding reconstruction error vectors. Considering the differences in the abilities of different levels of features to distinguish the target, the reconstruction error vectors are analyzed based on entropy theory, and their corresponding weights are adaptively obtained. Finally, the fused reconstruction error result is obtained through adaptively weighted fusion, and the target label is determined accordingly.
Results: Experiments are conducted on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset under different conditions, and the proposed method is compared with published methods, including multi-feature decision fusion, JSR-based decision fusion and other types of ResNets.
Conclusion: The experimental results under standard operating condition (SOC) and extended operating conditions (EOCs) including depression angle variance and noise corruption validate the advantages of the proposed method.
Graphical Abstract
[1]
K. El-Darymli, E.W. Gill, P. Mcguire, D. Power, and C. Moloney, "Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review", IEEE Access, vol. 4, pp. 6014-6058, 2016.
[http://dx.doi.org/10.1109/ACCESS.2016.2611492]
[http://dx.doi.org/10.1109/ACCESS.2016.2611492]
[2]
J.R. Diemunsch, and J. Wissinger, "Moving and stationary target acquisition and recognition (MSTAR) model-based automatic target recognition: Search technology for a robust ATR", Proceeding 5th SPIE Algorithms Synthetic Aperture Radar Imagery, vol. 3370, pp. 481-492, 1998.
[http://dx.doi.org/10.1117/12.321851]
[http://dx.doi.org/10.1117/12.321851]
[3]
B. Ding, and G. Wen, "Target reconstruction based on 3-D scattering center model for robust SAR ATR", IEEE Trans. Geosci. Remote Sens., vol. 56, no. 7, pp. 3772-3785, 2018.
[http://dx.doi.org/10.1109/TGRS.2018.2810181]
[http://dx.doi.org/10.1109/TGRS.2018.2810181]
[4]
S. Gishkori, and B. Mulgrew, "Pseudo-Zernike moments based sparse representations for SAR image classification", IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 2, pp. 1037-1044, 2019.
[http://dx.doi.org/10.1109/TAES.2018.2856321]
[http://dx.doi.org/10.1109/TAES.2018.2856321]
[5]
X. Zhang, Z. Liu, S. Liu, D. Li, Y. Jia, and P. Huang, "Sparse coding of 2D-slice Zernike moments for SAR ATR", Int. J. Remote Sens., vol. 38, no. 2, pp. 412-431, 2017.
[http://dx.doi.org/10.1080/01431161.2016.1266107]
[http://dx.doi.org/10.1080/01431161.2016.1266107]
[6]
C. Clemente, L. Pallotta, D. Gaglione, A. De Maio, and J.J. Soraghan, "Automatic target recognition of military vehicles with Krawtchouk moments", IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 1, pp. 493-500, 2017.
[http://dx.doi.org/10.1109/TAES.2017.2649160]
[http://dx.doi.org/10.1109/TAES.2017.2649160]
[7]
B. Ding, G. Wen, C. Ma, and X. Yang, "Target recognition in synthetic aperture radar images using binary morphological operations", J. Appl. Remote Sens., vol. 10, no. 4, p. 046006, 2016.
[http://dx.doi.org/10.1117/1.JRS.10.046006]
[http://dx.doi.org/10.1117/1.JRS.10.046006]
[8]
C. Shi, F. Miao, Z. Jin, and Y. Xia, "Target recognition of synthetic aperture radar images based on matching and similarity evaluation between binary regions", IEEE Access, vol. 7, pp. 154398-154413, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2948839]
[http://dx.doi.org/10.1109/ACCESS.2019.2948839]
[9]
C. Shan, B. Huang, and M. Li, "Binary morphological filtering of dominant scattering area residues for SAR target recognition", Comput. Intell. Neurosci., vol. 2018, pp. 1-15, 2018.
[http://dx.doi.org/10.1155/2018/9680465] [PMID: 30627147]
[http://dx.doi.org/10.1155/2018/9680465] [PMID: 30627147]
[10]
J. Tan, X. Fan, S. Wang, Y. Ren, C. Guo, J. Liu, J. Li, and Q. Zhan, "Target recognition of SAR images by partially matching of target outlines", J. Electromagn. Waves Appl., vol. 33, no. 7, pp. 865-881, 2019.
[http://dx.doi.org/10.1080/09205071.2018.1495580]
[http://dx.doi.org/10.1080/09205071.2018.1495580]
[11]
X. Zhu, Z. Huang, and Z. Zhang, "Automatic target recognition of synthetic aperture radar images via gaussian mixture modeling of target outlines", Optik, vol. 194, p. 162922, 2019.
[http://dx.doi.org/10.1016/j.ijleo.2019.06.022]
[http://dx.doi.org/10.1016/j.ijleo.2019.06.022]
[12]
M. Chang, and X. You, "Target recognition in SAR images based on information-decoupled representation", Remote Sens., vol. 10, no. 1, p. 138, 2018.
[http://dx.doi.org/10.3390/rs10010138]
[http://dx.doi.org/10.3390/rs10010138]
[13]
A.K. Mishra, and T. Motaung, "Application of linear and nonlinear PCA to SAR ATR", 2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA), 2015, 21-22 Apr, 2015, Pardubice, Czech Republic, 2015, pp. 349-354, 2015.
[http://dx.doi.org/10.1109/RADIOELEK.2015.7129065]
[http://dx.doi.org/10.1109/RADIOELEK.2015.7129065]
[14]
Z. Cui, Z. Cao, J. Yang, J. Feng, and H. Ren, "Target recognition in synthetic aperture radar images via non-negative matrix factorisation", IET Radar, Sonar Navig., vol. 9, no. 9, pp. 1376-1385, 2015.
[http://dx.doi.org/10.1049/iet-rsn.2014.0407]
[http://dx.doi.org/10.1049/iet-rsn.2014.0407]
[15]
G. Dong, and G. Kuang, "Classification on the monogenic scale space: application to target recognition in SAR image", IEEE Trans. Image Process., vol. 24, no. 8, pp. 2527-2539, 2015.
[http://dx.doi.org/10.1109/TIP.2015.2421440] [PMID: 25872212]
[http://dx.doi.org/10.1109/TIP.2015.2421440] [PMID: 25872212]
[16]
Y. Ding, "Multiset canonical correlations analysis of bidimensional intrinsic mode functions for automatic target recognition of SAR images", Comput. Intell. Neurosci., vol. 2021, 2021.
[http://dx.doi.org/10.1155/2021/4392702]
[http://dx.doi.org/10.1155/2021/4392702]
[17]
B. Ding, G. Wen, X. Huang, C. Ma, and X. Yang, "Target recognition in synthetic aperture radar images via matching of attributed scattering centers", IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 10, no. 7, pp. 3334-3347, 2017.
[http://dx.doi.org/10.1109/JSTARS.2017.2671919]
[http://dx.doi.org/10.1109/JSTARS.2017.2671919]
[18]
X. Zhang, "Noise-robust target recognition of SAR images based on attribute scattering center matching", Remote Sens. Lett., vol. 10, no. 2, pp. 186-194, 2019.
[http://dx.doi.org/10.1080/2150704X.2018.1538580]
[http://dx.doi.org/10.1080/2150704X.2018.1538580]
[19]
Q. Zhao, and J.C. Principe, "Support vector machines for synthetic aperture radar automatic target recognition", IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 2, pp. 643-654, 2001.
[http://dx.doi.org/10.1109/7.937475]
[http://dx.doi.org/10.1109/7.937475]
[20]
H. Liu, and S. Li, "Decision fusion of sparse representation and support vector machine for SAR image target recognition", Neurocomputing, vol. 113, pp. 97-104, 2013.
[http://dx.doi.org/10.1016/j.neucom.2013.01.033]
[http://dx.doi.org/10.1016/j.neucom.2013.01.033]
[21]
L. Ma, "SAR target recognition using improved sparse representation with local reconstruction", Sci. Program., vol. 2021, 2021.
[http://dx.doi.org/10.1155/2021/2446848]
[http://dx.doi.org/10.1155/2021/2446848]
[22]
S. Chen, H. Wang, F. Xu, and Y-Q. Jin, "Target classification using the deep convolutional networks for SAR images", IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4806-4817, 2016.
[http://dx.doi.org/10.1109/TGRS.2016.2551720]
[http://dx.doi.org/10.1109/TGRS.2016.2551720]
[23]
H. Furukawa, "Deep learning for target classification from SAR imagery data augmentation and translation invariance", In: IEICE Technical Report., 2017, pp. 13-17.
[24]
S. Shang, G. Li, and G. Wang, "Combining multi-mode representations and ResNet for SAR target recognition", Remote Sens. Lett., vol. 12, no. 6, pp. 614-624, 2021.
[http://dx.doi.org/10.1080/2150704X.2021.1910363]
[http://dx.doi.org/10.1080/2150704X.2021.1910363]
[25]
R. Min, H. Lan, Z. Cao, and Z. Cui, "A gradually distilled CNN for SAR target recognition", IEEE Access, vol. 7, pp. 42190-42200, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2906564]
[http://dx.doi.org/10.1109/ACCESS.2019.2906564]
[26]
L. Wang, X. Bai, and F. Zhou, "SAR ATR of ground vehicles based on ESENet", Remote Sens., vol. 11, no. 11, p. 1316, 2019.
[http://dx.doi.org/10.3390/rs11111316]
[http://dx.doi.org/10.3390/rs11111316]
[27]
C. Jiang, and Y. Zhou, "Hierarchical fusion of convolutional neural networks and attributed scattering centers for Robust SAR ATR", Remote Sens., vol. 10, no. 6, p. 819, 2018.
[http://dx.doi.org/10.3390/rs10060819]
[http://dx.doi.org/10.3390/rs10060819]
[28]
B. Feng, W. Tang, and D. Feng, "Target recognition of SAR images via hierarchical fusion of complementary features", Optik, vol. 217, p. 164695, 2020.
[http://dx.doi.org/10.1016/j.ijleo.2020.164695]
[http://dx.doi.org/10.1016/j.ijleo.2020.164695]
[29]
S. Liu, and J. Yang, "Target recognition in synthetic aperture radar images via joint multifeature decision fusion", J. Appl. Remote Sens., vol. 12, no. 1, p. 1, 2018.
[http://dx.doi.org/10.1117/1.JRS.12.016012]
[http://dx.doi.org/10.1117/1.JRS.12.016012]
[30]
J. Lv, "Exploiting multi-level deep features via joint sparse representation with application to SAR target recognition", Int. J. Remote Sens., vol. 41, no. 1, pp. 320-338, 2020.
[http://dx.doi.org/10.1080/01431161.2019.1641246]
[http://dx.doi.org/10.1080/01431161.2019.1641246]
[31]
K. He, X. Zhang, and S. Ren, "Deep residual learning for image recognition", In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27-30 Jun, 2016 Las Vegas, NV, USA, 2016, pp. 770-778
[32]
H. Zhang, N.M. Nasrabadi, Y. Zhang, and T.S. Huang, "Multi-view automatic target recognition using joint sparse representation", IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 3, pp. 2481-2497, 2012.
[http://dx.doi.org/10.1109/TAES.2012.6237604]
[http://dx.doi.org/10.1109/TAES.2012.6237604]
[33]
W. Chen, W. Liu, K. Li, P. Wang, H. Zhu, Y. Zhang, and C. Hang, "Rail crack recognition based on adaptive weighting multi-classifier fusion decision", Measurement, vol. 123, pp. 102-114, 2018.
[http://dx.doi.org/10.1016/j.measurement.2018.03.059]
[http://dx.doi.org/10.1016/j.measurement.2018.03.059]
[34]
Z. Lu, G. Jiang, Y. Guan, Q. Wang, and J. Wu, "A SAR target recognition method based on decision fusion of multiple features and classifiers", Sci. Program., p. 20212021, .
[http://dx.doi.org/10.1155/2021/1258219]
[http://dx.doi.org/10.1155/2021/1258219]