Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Medicinal Chemistry Aspects of Isoxazole Analogues as Anti-tubercular Agents

Author(s): Harshwardhan Singh, Anila Kumari V.S., Ankit Kumar Singh, Adarsh Kumar and Pradeep Kumar*

Volume 27, Issue 15, 2023

Published on: 10 October, 2023

Page: [1308 - 1318] Pages: 11

DOI: 10.2174/0113852728264519231006055100

Price: $65

Abstract

Tuberculosis (TB) is the major cause of mortality around the world and one of the most common diseases linked to AIDS. Due to the emergence of multi-drug resistance, extensive drug resistance, and total drug resistance strains, TB has become a difficult disease to treat. Isoxazole scaffold shows a wide range of biological activities, including anticancer, antibacterial, anti-tubercular, antiviral, and anti-inflammatory activities etc. Several isoxazole derivatives have been produced and few of them have shown comparable anti-tubercular activity with standard drugs. In this review, we have focused on reported isoxazole derivatives having anti-tubercular activity and summarized their structure-activity relationship.

Graphical Abstract

[1]
Villar-Hernández, R.; Ghodousi, A.; Konstantynovska, O.; Duarte, R.; Lange, C.; Raviglione, M. Tuberculosis: Current challenges and beyond. Breathe, 2023, 19(1), 220166.
[http://dx.doi.org/10.1183/20734735.0166-2022] [PMID: 37334103]
[2]
Lange, C.; Abubakar, I.; Alffenaar, J.W.C.; Bothamley, G.; Caminero, J.A.; Carvalho, A.C.C.; Chang, K.C.; Codecasa, L.; Correia, A.; Crudu, V.; Davies, P.; Dedicoat, M.; Drobniewski, F.; Duarte, R.; Ehlers, C.; Erkens, C.; Goletti, D.; Günther, G.; Ibraim, E.; Kampmann, B.; Kuksa, L.; de Lange, W.; van Leth, F.; van Lunzen, J.; Matteelli, A.; Menzies, D.; Monedero, I.; Richter, E.; Rüsch-Gerdes, S.; Sandgren, A.; Scardigli, A.; Skrahina, A.; Tortoli, E.; Volchenkov, G.; Wagner, D.; van der Werf, M.J.; Wil-liams, B.; Yew, W.W.; Zellweger, J.P.; Cirillo, D.M. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: A TBNET consensus statement. Eur. Respir. J., 2014, 44(1), 23-63.
[http://dx.doi.org/10.1183/09031936.00188313] [PMID: 24659544]
[3]
Pfyffer, G. E. Mycobacterium: General characteristics, laboratory detection, and staining procedures. Man. Clin. Microbiol., 2015, 536-569.
[4]
Jnawali, H.N.; Ryoo, S. First- and second-line drugs and drug resistance. Tuberc.: Curr. Issues Diagn. Manage., 2013, 20, 163-180.
[5]
Dheda, K.; Sharma, S.K. What is new in the WHO consolidated guidelines on drug-resistant tuberculosis treatment? Indian J. Med. Res., 2019, 149(3), 309-312.
[http://dx.doi.org/10.4103/ijmr.IJMR_579_19] [PMID: 31249191]
[6]
Heemskerk, D.; Caws, M.; Marais, B.; Farrar, J. Tuberculosis in adults and children; Springer: London, 2015.
[http://dx.doi.org/10.1007/978-3-319-19132-4]
[7]
Ngwira, L.G.; Dowdy, D.W.; Khundi, M.; Barnes, G.L.; Nkhoma, A.; Choko, A.T.; Murowa, M.; Chaisson, R.E.; Corbett, E.L.; Fielding, K. Delay in seeking care for tuberculosis symptoms among adults newly diagnosed with HIV in rural Malawi. Int. J. Tuberc. Lung Dis., 2018, 22(3), 280-286.
[http://dx.doi.org/10.5588/ijtld.17.0539] [PMID: 29471905]
[8]
Pasipanodya, J.G.; Gumbo, T. A new evolutionary and pharmacokinetic-pharmacodynamic scenario for rapid emergence of resistance to single and multiple anti-tuberculosis drugs. Curr. Opin. Pharmacol., 2011, 11(5), 457-463.
[http://dx.doi.org/10.1016/j.coph.2011.07.001] [PMID: 21807559]
[9]
Nguyen, L. Antibiotic resistance mechanisms in M. tuberculosis: An update. Arch. Toxicol., 2016, 90(7), 1585-1604.
[http://dx.doi.org/10.1007/s00204-016-1727-6] [PMID: 27161440]
[10]
Zhang, Y. Persisters, persistent infections and the Yin-Yang model. Emerg. Microbes Infect., 2014, 3(1), 1-10.
[http://dx.doi.org/10.1038/emi.2014.3] [PMID: 26038493]
[11]
Gurumurthy, P.; Ramachandran, G.; Hemanth Kumar, A.K.; Rajasekaran, S.; Padmapriyadarsini, C.; Swaminathan, S.; Venkatesan, P.; Sekar, L.; Kumar, S.; Krishnarajasekhar, O.R.; Paramesh, P. Malabsorption of rifampin and isoniazid in HIV-infected patients with and without tuberculosis. Clin. Infect. Dis., 2004, 38(2), 280-283.
[http://dx.doi.org/10.1086/380795] [PMID: 14699462]
[12]
Takiff, H.E. The molecular mechanisms of drug resistance in Mycobacterium tuberculosis; Multidrug-Resistant Tuberculosis, 2000, pp. 77-114.
[http://dx.doi.org/10.1007/978-94-011-4084-3_6]
[13]
Koch, A.; Cox, H.; Mizrahi, V. Drug-resistant tuberculosis: Challenges and opportunities for diagnosis and treatment. Curr. Opin. Pharmacol., 2018, 42, 7-15.
[http://dx.doi.org/10.1016/j.coph.2018.05.013] [PMID: 29885623]
[14]
Spratt, B.G. Resistance to antibiotics mediated by target alterations. Science, 1994, 264(5157), 388-393.
[http://dx.doi.org/10.1126/science.8153626] [PMID: 8153626]
[15]
Ahsan, M.; Ansari, M.; Yasmin, S.; Jadav, S.; Kumar, P.; Garg, S.; Aseri, A.; Khalilullah, H. Tuberculosis: Current treatment, diagnostics, and newer antitubercular agents in clinical trials. Infect. Disord. Drug Targets, 2015, 15(1), 32-41.
[http://dx.doi.org/10.2174/1871526514666140923153329] [PMID: 25246035]
[16]
Katoch, V.M. Newer diagnostic techniques for tuberculosis. Indian J. Med. Res., 2004, 120(4), 418-428.
[PMID: 15520490]
[17]
Peter, J.G.; Haripesad, A.; Mottay, L.; Kraus, S.; Meldau, R.; Dheda, K. The clinical utility of urine lipoarabinomannan and the novel point-of-care lateral flow strip test (Determine® TB) for the diagnosis of tuberculosis in hospitalised patients with HIV-related advanced immunosuppression. Am. J. Respir. Crit. Care Med., 2011, 183, A5313.
[18]
Kumar, K.; Kon, O.M. Diagnosis and treatment of tuberculosis: Latest developments and future priorities. Ann. Res. Hosp., 2017, 1(37), 1-15.
[http://dx.doi.org/10.21037/arh.2017.08.08]
[19]
Patil, S. J. New theoretical background for tuberculosis treatment. J. Pharmacovigil., 2014, 2(6), e123.
[http://dx.doi.org/10.4172/2329-6887.1000e123]
[20]
Eker, B.; Ortmann, J.; Migliori, G.B.; Sotgiu, G.; Muetterlein, R.; Centis, R.; Hoffmann, H.; Kirsten, D.; Schaberg, T.; Ruesch-Gerdes, S.; Lange, C. Multidrug- and extensively drug-resistant tuberculosis, Germany. Emerg. Infect. Dis., 2008, 14(11), 1700-1706.
[http://dx.doi.org/10.3201/eid1411.080729] [PMID: 18976552]
[21]
Gutierrez, M.C.; Brisse, S.; Brosch, R.; Fabre, M.; Omaïs, B.; Marmiesse, M.; Supply, P.; Vincent, V. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog., 2005, 1(1), e5.
[http://dx.doi.org/10.1371/journal.ppat.0010005] [PMID: 16201017]
[22]
Rendon, A.; Tiberi, S.; Scardigli, A.; D’Ambrosio, L.; Centis, R.; Caminero, J.A.; Migliori, G.B. Classification of drugs to treat multidrug-resistant tuberculosis (MDR-TB): Evidence and perspectives. J. Thorac. Dis., 2016, 8(10), 2666-2671.
[http://dx.doi.org/10.21037/jtd.2016.10.14] [PMID: 27867538]
[23]
Zhang, H.Z.; Gan, L.L.; Wang, H.; Zhou, C.H. New progress in azole compounds as antimicrobial agents. Mini Rev. Med. Chem., 2016, 17(2), 122-166.
[http://dx.doi.org/10.2174/1389557516666160630120725] [PMID: 27484625]
[24]
Zhu, J.; Mo, J.; Lin, H.; Chen, Y.; Sun, H. The recent progress of isoxazole in medicinal chemistry. Bioorg. Med. Chem., 2018, 26(12), 3065-3075.
[http://dx.doi.org/10.1016/j.bmc.2018.05.013] [PMID: 29853341]
[25]
Chikkula, K.V. S, R. Isoxazole–a potent pharmacophore. Int. J. Pharm. Pharm. Sci., 2017, 9(7), 13.
[http://dx.doi.org/10.22159/ijpps.2017.v9i7.19097]
[26]
Pandhurnekar, C.P.; Pandhurnekar, H.C.; Mungole, A.J.; Butoliya, S.S.; Yadao, B.G. A review of recent synthetic strategies and biological activities of isoxazole. J. Heterocycl. Chem., 2023, 60(4), 537-565.
[http://dx.doi.org/10.1002/jhet.4586]
[27]
Lamberth, C. Oxazole and isoxazole chemistry in crop protection. J. Heterocycl. Chem., 2018, 55(9), 2035-2045.
[http://dx.doi.org/10.1002/jhet.3252]
[28]
Fernández-Villa, D.; Aguilar, M.R.; Rojo, L. Folic acid antagonists: Antimicrobial and immunomodulating mechanisms and applications. Int. J. Mol. Sci., 2019, 20(20), 4996.
[http://dx.doi.org/10.3390/ijms20204996] [PMID: 31601031]
[29]
Kumar, P.; Kumar, A.; Singh, A.K.; Thareja, S. A review of pyridine and pyrimidine derivatives as anti-MRSA agents. Antiinfect. Agents, 2023, 21(2), e050722206610.
[http://dx.doi.org/10.2174/2211352520666220705085733]
[30]
Madaan, V.; Bestha, D.P.; Kolli, V.; Jauhari, S.; Burket, R.C. Clinical utility of the risperidone formulations in the management of Schizophrenia. Neuropsychiatr. Dis. Treat., 2011, 7, 611-620.
[http://dx.doi.org/10.2147/NDT.S14385] [PMID: 22090797]
[31]
Crofton, S.J.; Chaulet, P.; Maher, D.; Grosset, J.; Harris, W.; Horne, N.; Iseman, M.; Watt, B. Guidelines for the management of drug-resistant tuberculosis; World Health Organization, 1997.
[32]
Organization, W.H. Guidelines for the programmatic management of drug-resistant tuberculosis: Emergency update 2008; World Health Organization, 2008.
[33]
Organization, W.H. Rapid communication: Key changes to treatment of multidrug-and rifampicin-resistant tuberculosis (MDR/RR-TB); World Health Organization, 2018.
[34]
Angula, K.T.; Legoabe, L.J.; Beteck, R.M. Chemical classes presenting novel antituberculosis agents currently in different phases of drug development: A 2010-2020 review. Pharmaceuticals, 2021, 14(5), 461.
[http://dx.doi.org/10.3390/ph14050461] [PMID: 34068171]
[35]
Waldo, J.P.; Larock, R.C. Synthesis of isoxazoles via electrophilic cyclization. Org. Lett., 2005, 7(23), 5203-5205.
[http://dx.doi.org/10.1021/ol052027z] [PMID: 16268538]
[36]
Naidu, K.M.; Srinivasarao, S.; Agnieszka, N.; Ewa, A.K.; Kumar, M.M.K.; Chandra Sekhar, K.V.G. Seeking potent anti-tubercular agents: Design, synthesis, anti-tubercular activity and docking study of various ((triazoles/indole)-piperazin-1-yl/1,4-diazepan-1-yl)benzo[d]isoxazole derivatives. Bioorg. Med. Chem. Lett., 2016, 26(9), 2245-2250.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.059] [PMID: 27020525]
[37]
Palleapati, K.; Kancharlapalli, V.R.; Shaik, A.B. Synthesis, characterization and anti-tubercular evaluation of some new isoxazole appended 1-carboxamido-4, 5-dihydro-1H-pyrazoles. J. Res. Pharm., 2019, 23(2), 156-163.
[38]
Chavan, A.P.; Deshpande, R.R.; Borade, N.A.; Shinde, A.; Mhaske, P.C.; Sarkar, D.; Bobade, V.D. Synthesis of new 1,3,4-oxadiazole and benzothiazolylthioether derivatives of 4-arylmethylidene-3-substituted-isoxazol-5(4H)-one as potential antimycobacterial agents. Med. Chem. Res., 2019, 28(11), 1873-1884.
[http://dx.doi.org/10.1007/s00044-019-02420-7]
[39]
Shingare, R.M.; Patil, Y.S.; Sangshetti, J.N.; Patil, R.B.; Rajani, D.P.; Madje, B.R. Synthesis, biological evaluation and docking study of some novel isoxazole clubbed 1,3,4-oxadiazoles derivatives. Med. Chem. Res., 2018, 27(4), 1283-1291.
[http://dx.doi.org/10.1007/s00044-018-2148-2]
[40]
Shaharyar, M.; Ali, M.A.; Bakht, M.A.; Murugan, V. Synthesis and antimycobacterial activity of 4-[5-(substituted phenyl)-4,5-dihydro-3-isoxazolyl]-2-methylphenols. J. Enzyme Inhib. Med. Chem., 2008, 23(3), 432-436.
[http://dx.doi.org/10.1080/14756360701652559] [PMID: 18569351]
[41]
Thakur, A.; Verma, M.; Bharti, R.; Sharma, R. Oxazole and isoxazole: From one-pot synthesis to medical applications. Tetrahedron, 2022, 119, 132813.
[http://dx.doi.org/10.1016/j.tet.2022.132813]
[42]
De Logu, A.; Onnis, V.; Saddi, B.; Congiu, C.; Schivo, M.L.; Cocco, M.T. Activity of a new class of isonicotinoylhydrazones used alone and in combination with isoniazid, rifampicin, ethambutol, para-aminosalicylic acid and clofazimine against Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2002, 49(2), 275-282.
[http://dx.doi.org/10.1093/jac/49.2.275] [PMID: 11815568]
[43]
Protopopova, M.; Hanrahan, C.; Nikonenko, B.; Samala, R.; Chen, P.; Gearhart, J.; Einck, L.; Nacy, C.A. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J. Antimicrob. Chemother., 2005, 56(5), 968-974.
[http://dx.doi.org/10.1093/jac/dki319] [PMID: 16172107]
[44]
Gu, X.; Cheng, Q.; He, P.; Zhang, Y.; Jiang, Z.; Zeng, Y. Dihydroartemisinin-loaded chitosan nanoparticles inhibit the rifampicin-resistant Mycobacterium tuberculosis by disrupting the cell wall. Front. Microbiol., 2021, 12, 735166.
[http://dx.doi.org/10.3389/fmicb.2021.735166] [PMID: 34630358]
[45]
Devecı̇, A.; Çoban, A.Y.; Tanriverdı̇ Çayci, Y.; Acı̇cbe, Ö.; Taşdelen Fişgin, N.; Akgüneş, A.; Özatli, D.; Uzun, M.; Durupinar, B. In vitro effect of ankaferd blood stopper®, a plant extract against Mycobacterium tuberculosis isolates. Mikrobiyol. Bul., 2013, 47(1), 71-78.
[http://dx.doi.org/10.5578/mb.4264] [PMID: 23390904]
[46]
Zheng, H.; Lu, L.; Wang, B.; Pu, S.; Zhang, X.; Zhu, G.; Shi, W.; Zhang, L.; Wang, H.; Wang, S.; Zhao, G.; Zhang, Y. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS One, 2008, 3(6), e2375.
[http://dx.doi.org/10.1371/journal.pone.0002375] [PMID: 18584054]
[47]
Grange, J.M. Mycobacterium bovis infection in human beings. Tuberculosis, 2001, 81(1-2), 71-77.
[http://dx.doi.org/10.1054/tube.2000.0263] [PMID: 11463226]
[48]
Nongrum, R.; Nongkhlaw, R.; Majaw, S.P.; Kumari, J.; Sriram, D.; Nongkhlaw, R. A nano-organo catalyst mediated approach towards the green synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-one derivatives and biological evaluation of the derivatives as a potent anti-fungal and anti-tubercular agent. Sustain. Chem. Pharm., 2023, 32, 100967.
[http://dx.doi.org/10.1016/j.scp.2023.100967]
[49]
Sharabu, R.; Pappula, N. Synthesis, characterization, anti-mycobacterial evaluation and in-silico molecular docking of novel isoxazole clubbed pyrimidine derivatives. J. Pharm. Res. Int., 2021, 33(26B), 69-79.
[50]
Sahoo, S.K.; Rani, B.; Gaikwad, N.B.; Ahmad, M.N.; Kaul, G.; Shukla, M.; Nanduri, S.; Dasgupta, A.; Chopra, S.; Yaddanapudi, V.M. Synthesis and structure-activity relationship of new chalcone linked 5-phenyl-3-isoxazolecarboxylic acid methyl esters potentially active against drug resistant Mycobacterium tuberculosis. Eur. J. Med. Chem., 2021, 222, 113580.
[http://dx.doi.org/10.1016/j.ejmech.2021.113580] [PMID: 34116324]
[51]
Radhika, T.; Vijay, A.; Harinadha, B.V.; Madhavareddy, B. Design, synthesis, molecular docking studies, and biological evaluation of pyrazoline incorporated isoxazole derivatives. Russ. J. Bioorganic Chem., 2020, 46(3), 429-437.
[http://dx.doi.org/10.1134/S1068162020030152]
[52]
Płoszaj, P.; Junka, A.; Szponar, B.; Mączyński, M.; Ryng, S.; Bartoszewicz, M.; Piwowar, A. Insights into mycobacterial activity and cytotoxicity of substitued isoxazole-4-carbohydrazide derivatives. Acta Pol. Pharm., 2018, 75(3), 637-647.
[53]
Azzali, E.; Machado, D.; Kaushik, A.; Vacondio, F.; Flisi, S.; Cabassi, C.S.; Lamichhane, G.; Viveiros, M.; Costantino, G.; Pieroni, M. Substituted N-phenyl-5-(2-(phenylamino) thiazol-4-yl) isoxazole-3-carboxamides are valuable anti-tubercular candidates that evade innate efflux machinery. J. Med. Chem., 2017, 60(16), 7108-7122.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00793] [PMID: 28749666]
[54]
Hajlaoui, K.; Guesmi, A.; Hamadi, N.B.; Msaddek, M. Synthesis of carbohydrate-substituted isoxazoles and evaluation of their antitubercular activity. Heterocycl. Commun., 2017, 23(3), 225-229.
[http://dx.doi.org/10.1515/hc-2016-0185]
[55]
Patel, D.; Kumari, P.; Patel, N.B. Synthesis and biological evaluation of coumarin based isoxazoles, pyrimidinthiones and pyrimidin-2-ones. Arab. J. Chem., 2017, 10, S3990-S4001.
[http://dx.doi.org/10.1016/j.arabjc.2014.06.010]
[56]
Joshi, S.D.; Dixit, S.R.; Kirankumar, M.N.; Aminabhavi, T.M.; Raju, K.V.S.N.; Narayan, R.; Lherbet, C.; Yang, K.S. Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties. Eur. J. Med. Chem., 2016, 107, 133-152.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.047] [PMID: 26580979]
[57]
Solankee, A.; Tailor, R.; Kapadia, K. In vitro antimycobacterial and antimicrobial activity of some new pyrazoline, isoxazole and benzodiazepine derivatives containing 1, 3, 5-triazine nucleus via chalcone series. Indian J. Chem. Sect. B: Org. Chem. Incl. Med. Chem., 2016, 55, 1277-1287.
[58]
Ganesh, N.; Pujar, V. Synthesis and evaluation of new 5-methylisoxazole-3-carboxamide derivatives as anti-tubercular agents. Antiinfect. Agents, 2015, 13(2), 114-122.
[http://dx.doi.org/10.2174/2211352513666150326004534]
[59]
Naidu, K.M.; Suresh, A.; Subbalakshmi, J.; Sriram, D.; Yogeeswari, P.; Raghavaiah, P.; Chandra Sekhar, K.V.G. Design, synthesis and antimycobacterial activity of various 3-(4-(substitutedsulfonyl)piperazin-1-yl)benzo[d]isoxazole derivatives. Eur. J. Med. Chem., 2014, 87, 71-78.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.043] [PMID: 25240097]
[60]
Gupta, R.A.; Kaskhedikar, S.G. Synthesis, antitubercular activity, and QSAR analysis of substituted nitroaryl analogs: Chalcone, pyrazole, isoxazole, and pyrimidines. Med. Chem. Res., 2013, 22(8), 3863-3880.
[http://dx.doi.org/10.1007/s00044-012-0385-3]
[61]
Vergelli, C.; Cilibrizzi, A.; Crocetti, L.; Graziano, A.; Dal Piaz, V.; Wan, B.; Wang, Y.; Franzblau, S.; Giovannoni, M.P. Synthesis and evaluation as anti-tubercular agents of 5-arylethenyl and 5-(hetero) aryl-3-isoxazolecarboxylate. Drug Dev. Res., 2013, 74(3), 162-172.
[http://dx.doi.org/10.1002/ddr.21057]
[62]
Palanisamy, P.; Jenniefer, S.J.; Muthiah, P.T.; Kumaresan, S. Synthesis, characterization, antimicrobial, anticancer, and antituberculosis activity of some new pyrazole, isoxazole, pyrimidine and benzodiazepine derivatives containing thiochromeno and benzothiepino moieties. RSC Adv., 2013, 3(42), 19300-19310.
[http://dx.doi.org/10.1039/c3ra42283f]
[63]
Yamuna, E.; Kumar, R.A.; Zeller, M.; Rajendra Prasad, K.J. Synthesis, antimicrobial, antimycobacterial and structure–activity relationship of substituted pyrazolo-, isoxazolo-, pyrimido- and mercaptopyrimidocyclohepta[b]indoles. Eur. J. Med. Chem., 2012, 47(1), 228-238.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.046] [PMID: 22119150]
[64]
Rajurkar, V.; Patil, R.; Bhanojirao, M.; Pattan, S. Synthesis, characterization and antimicrobial, antifungal and anti-tubercular activity of some 3, 5-substituted isoxazoles, 4-[(3, 5-substituted, 1H-pyrazol-1-yl) carbonyl] pyridines and 4, 6-substituted pyrimidin-2-amines. Int. J. Adv. In Phar. Biol. Chem., 2012, 1(1), 1-6.
[65]
Ali, M.A.; Ismail, R.; Choon, T.S.; Pandian, S.; Hassan Ansari, M.Z. Antimycobacterial activity: Synthesis of novel 3-(substituted phenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]isoxazole analogues. J. Enzyme Inhib. Med. Chem., 2011, 26(4), 598-602.
[http://dx.doi.org/10.3109/14756366.2010.529805] [PMID: 21714764]
[66]
Mao, J.; Yuan, H.; Wang, Y.; Wan, B.; Pak, D.; He, R.; Franzblau, S.G. Synthesis and antituberculosis activity of novel mefloquine-isoxazole carboxylic esters as pro-drugs. Bioorg. Med. Chem. Lett., 2010, 20(3), 1263-1268.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.105] [PMID: 20022500]
[67]
Changtam, C.; Hongmanee, P.; Suksamrarn, A. Isoxazole analogs of curcuminoids with highly potent multidrug-resistant antimycobacterial activity. Eur. J. Med. Chem., 2010, 45(10), 4446-4457.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.003] [PMID: 20691508]
[68]
Rakesh; Sun, D.; Lee, R.B.; Tangallapally, R.P.; Lee, R.E. Synthesis, optimization and structure-activity relationships of 3,5-disubstituted isoxazolines as new anti-tuberculosis agents. Eur. J. Med. Chem., 2009, 44(2), 460-472.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.007] [PMID: 18524421]
[69]
Lilienkampf, A.; Mao, J.; Wan, B.; Wang, Y.; Franzblau, S.G.; Kozikowski, A.P. Structure-activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating Mycobacterium tuberculosis. J. Med. Chem., 2009, 52(7), 2109-2118.
[http://dx.doi.org/10.1021/jm900003c] [PMID: 19271749]
[70]
Pieroni, M.; Lilienkampf, A.; Wan, B.; Wang, Y.; Franzblau, S.G.; Kozikowski, A.P. Synthesis, biological evaluation, and structure-activity relationships for 5-[(E)-2-arylethenyl]-3-isoxazolecarboxylic acid alkyl ester derivatives as valuable antitubercular chemotypes. J. Med. Chem., 2009, 52(20), 6287-6296.
[http://dx.doi.org/10.1021/jm900513a] [PMID: 19757815]
[71]
Kachhadia, V.; Patel, M.; Joshi, H. Synthesis of isoxazoles and cyanopyridines bearing benzo (b) thiophene nucleus as potential anti-tubercular and antimicrobial agents. J. Sci. Islamic Repub. Iran, 2004, 15(1), 47-51.
[72]
Doshi, R.; Kagthara, P.; Parekh, H. Synthesis and biological evaluation of some novel isoxazoles and cyanopyridines, a new class of potential anti-tubercular agents. Indian J. Chem. Sect. B: Org. Chem. Incl. Med. Chem, 1999, 38, 348-352.
[73]
Jiang, Y.; Li, Y.; Liu, C.; Zhang, L.; Lv, D.; Weng, Y.; Cheng, Z.; Chen, X.; Zhan, J.; Zhang, H. Isonicotinylation is a histone mark induced by the anti-tuberculosis first-line drug isoniazid. Nat. Commun., 2021, 12(1), 5548.
[http://dx.doi.org/10.1038/s41467-021-25867-y] [PMID: 34545082]
[74]
Timmins, G.S.; Deretic, V. Mechanisms of action of isoniazid. Mol. Microbiol., 2006, 62(5), 1220-1227.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05467.x] [PMID: 17074073]
[75]
Alsayyed, B. Rifampin. Pediatr. Rev., 2004, 25(6), 216-217.
[http://dx.doi.org/10.1542/pir.25.6.216] [PMID: 15173456]
[76]
Nusrath Unissa, A.; Hanna, L.E. Molecular mechanisms of action, resistance, detection to the first-line anti tuberculosis drugs: Rifampicin and pyrazinamide in the post whole genome sequencing era. Tuberculosis, 2017, 105, 96-107.
[http://dx.doi.org/10.1016/j.tube.2017.04.008] [PMID: 28610794]
[77]
Njire, M.; Tan, Y.; Mugweru, J.; Wang, C.; Guo, J.; Yew, W.; Tan, S.; Zhang, T. Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update. Adv. Med. Sci., 2016, 61(1), 63-71.
[http://dx.doi.org/10.1016/j.advms.2015.09.007] [PMID: 26521205]
[78]
Zhang, Y.; Shi, W.; Zhang, W.; Mitchison, D. Mechanisms of pyrazinamide action and resistance. Microbiol. Spectrum., 2014, 2(4), MGM2-0023-2013.
[http://dx.doi.org/10.1128/9781555818845.ch24]
[79]
Cheng, S.; Cui, Z.; Li, Y.; Hu, Z. Diagnostic accuracy of a molecular drug susceptibility testing method for the antituberculosis drug ethambutol: A systematic review and meta-analysis. J. Clin. Microbiol., 2014, 52(8), 2913-2924.
[http://dx.doi.org/10.1128/JCM.00560-14] [PMID: 24899018]
[80]
Starks, A.M.; Gumusboga, A.; Plikaytis, B.B.; Shinnick, T.M.; Posey, J.E. Mutations at embB codon 306 are an important molecular indicator of ethambutol resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2009, 53(3), 1061-1066.
[http://dx.doi.org/10.1128/AAC.01357-08] [PMID: 19104018]
[81]
Cohen, K.A.; Stott, K.E.; Munsamy, V.; Manson, A.L.; Earl, A.M.; Pym, A.S. Evidence for expanding the role of streptomycin in the management of drug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2020, 64(9), e00860-e20.
[http://dx.doi.org/10.1128/AAC.00860-20] [PMID: 32540971]
[82]
Honoré, N.; Cole, S.T. Streptomycin resistance in mycobacteria. Antimicrob. Agents Chemother., 1994, 38(2), 238-242.
[http://dx.doi.org/10.1128/AAC.38.2.238] [PMID: 8192450]
[83]
Louw, G.E.; Warren, R.M.; Gey van Pittius, N.C.; Leon, R.; Jimenez, A.; Hernandez-Pando, R.; McEvoy, C.R.E.; Grobbelaar, M.; Murray, M.; van Helden, P.D.; Victor, T.C. Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacterium tuberculosis through efflux. Am. J. Respir. Crit. Care Med., 2011, 184(2), 269-276.
[http://dx.doi.org/10.1164/rccm.201011-1924OC] [PMID: 21512166]
[84]
Al-Omar, M.A. Ofloxacin. Profiles Drug Subst. Excip. Relat. Methodol., 2009, 34, 265-298.
[http://dx.doi.org/10.1016/S1871-5125(09)34006-6] [PMID: 22469176]
[85]
Kumar, B.; Sharma, D.; Sharma, P.; Katoch, V.M.; Venkatesan, K.; Bisht, D. Proteomic analysis of Mycobacterium tuberculosis isolates resistant to kanamycin and amikacin. J. Proteomics, 2013, 94, 68-77.
[http://dx.doi.org/10.1016/j.jprot.2013.08.025] [PMID: 24036035]
[86]
Zaunbrecher, M.A.; Sikes, R.D., Jr; Metchock, B.; Shinnick, T.M.; Posey, J.E. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci., 2009, 106(47), 20004-20009.
[http://dx.doi.org/10.1073/pnas.0907925106] [PMID: 19906990]
[87]
Brossier, F.; Veziris, N.; Aubry, A.; Jarlier, V.; Sougakoff, W. Detection by GenoType MTBDRsl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex isolates. J. Clin. Microbiol., 2010, 48(5), 1683-1689.
[http://dx.doi.org/10.1128/JCM.01947-09] [PMID: 20335420]
[88]
Georghiou, S.B.; Magana, M.; Garfein, R.S.; Catanzaro, D.G.; Catanzaro, A.; Rodwell, T.C. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: A systematic review. PLoS One, 2012, 7(3), e33275.
[http://dx.doi.org/10.1371/journal.pone.0033275] [PMID: 22479378]
[89]
Toungoussova, O.S.; Mariandyshev, A.O.; Bjune, G.; Caugant, D.A.; Sandven, P. Resistance of multidrug-resistant strains of Mycobacterium tuberculosis from the Archangel oblast, Russia, to second-line anti-tuberculosis drugs. Eur. J. Clin. Microbiol. Infect. Dis., 2005, 24(3), 202-206.
[http://dx.doi.org/10.1007/s10096-005-1284-z] [PMID: 15742171]
[90]
Johansen, S.K.; Maus, C.E.; Plikaytis, B.B.; Douthwaite, S. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol. Cell, 2006, 23(2), 173-182.
[http://dx.doi.org/10.1016/j.molcel.2006.05.044] [PMID: 16857584]
[91]
Hsiao, Y.H.; Huang, S.J.; Lin, E.C.; Hsiao, P.Y.; Toh, S.I.; Chen, I.H.; Xu, Z.; Lin, Y.P.; Liu, H.J.; Chang, C.Y. Crystal structure of the α-ketoglutarate-dependent non-heme iron oxygenase CmnC in capreomycin biosynthesis and its engineering to catalyze hydroxylation of the substrate enantiomer. Front Chem., 2022, 10, 1001311.
[http://dx.doi.org/10.3389/fchem.2022.1001311] [PMID: 36176888]
[92]
Vale, N.; Gomes, P.; Santos, H.A. Metabolism of the antituberculosis drug ethionamide. Curr. Drug Metab., 2013, 14(1), 151-158.
[http://dx.doi.org/10.2174/138920013804545151] [PMID: 23215813]
[93]
Rodriguez, R.; Campbell-Kruger, N.; Gonzalez Camba, J.; Berude, J.; Fetterman, R.; Stanley, S. MarR-dependent transcriptional regulation of mmpSL5 induces ethionamide resistance in mycobacterium abscessus. Antimicrob. Agents Chemother., 2023, 67(4), e01350-e22.
[http://dx.doi.org/10.1128/aac.01350-22] [PMID: 36988462]
[94]
DeBarber, A.E.; Mdluli, K.; Bosman, M.; Bekker, L.G.; Barry, C.E. III Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc. Natl. Acad. Sci., 2000, 97(17), 9677-9682.
[http://dx.doi.org/10.1073/pnas.97.17.9677] [PMID: 10944230]
[95]
Minato, Y.; Thiede, J.M.; Kordus, S.L.; McKlveen, E.J.; Turman, B.J.; Baughn, A.D. Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance. Antimicrob. Agents Chemother., 2015, 59(9), 5097-5106.
[http://dx.doi.org/10.1128/AAC.00647-15] [PMID: 26033719]
[96]
Zheng, J.; Rubin, E.J.; Bifani, P.; Mathys, V.; Lim, V.; Au, M.; Jang, J.; Nam, J.; Dick, T.; Walker, J.R.; Pethe, K.; Camacho, L.R. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J. Biol. Chem., 2013, 288(32), 23447-23456.
[http://dx.doi.org/10.1074/jbc.M113.475798] [PMID: 23779105]
[97]
Singh, B.; Cocker, D.; Ryan, H.; Sloan, D.J. Linezolid for drug-resistant pulmonary tuberculosis. Cochrane Database Syst. Rev., 2019, 3(3), CD012836.
[PMID: 30893466]
[98]
Schecter, G.F.; Scott, C.; True, L.; Raftery, A.; Flood, J.; Mase, S. Linezolid in the treatment of multidrug-resistant tuberculosis. Clin. Infect. Dis., 2010, 50(1), 49-55.
[http://dx.doi.org/10.1086/648675] [PMID: 19947856]
[99]
Barbachyn, M.R.; Ford, C.W. Oxazolidinone structure-activity relationships leading to linezolid. Angew. Chem. Int. Ed., 2003, 42(18), 2010-2023.
[http://dx.doi.org/10.1002/anie.200200528] [PMID: 12746812]
[100]
Li, Y.; Wang, F.; Wu, L.; Zhu, M.; He, G.; Chen, X.; Sun, F.; Liu, Q.; Wang, X.; Zhang, W. Cycloserine for treatment of multidrug-resistant tuberculosis: A retrospective cohort study in China. Infect. Drug Resist., 2019, 12, 721-731.
[http://dx.doi.org/10.2147/IDR.S195555] [PMID: 30992677]
[101]
Caminero, J.A.; Sotgiu, G.; Zumla, A.; Migliori, G.B. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect. Dis., 2010, 10(9), 621-629.
[http://dx.doi.org/10.1016/S1473-3099(10)70139-0] [PMID: 20797644]
[102]
Lambert, M.P.; Neuhaus, F.C. Mechanism of D-cycloserine action: Alanine racemase from Escherichia coli W. J. Bacteriol., 1972, 110(3), 978-987.
[http://dx.doi.org/10.1128/jb.110.3.978-987.1972] [PMID: 4555420]
[103]
Feng, Z.; Barletta, R.G. Roles of Mycobacterium smegmatis D-alanine:D-alanine ligase and D-alanine racemase in the mechanisms of action of and resistance to the pepti-doglycan inhibitor D-cycloserine. Antimicrob. Agents Chemother., 2003, 47(1), 283-291.
[http://dx.doi.org/10.1128/AAC.47.1.283-291.2003] [PMID: 12499203]
[104]
Desjardins, C.A.; Cohen, K.A.; Munsamy, V.; Abeel, T.; Maharaj, K.; Walker, B.J.; Shea, T.P.; Almeida, D.V.; Manson, A.L.; Salazar, A.; Padayatchi, N.; O’Donnell, M.R.; Mlisana, K.P.; Wortman, J.; Birren, B.W.; Grosset, J.; Earl, A.M.; Pym, A.S. Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance. Nat. Genet., 2016, 48(5), 544-551.
[http://dx.doi.org/10.1038/ng.3548] [PMID: 27064254]
[105]
Singh, R.; Dwivedi, S.P.; Gaharwar, U.S.; Meena, R.; Rajamani, P.; Prasad, T. Recent updates on drug resistance in Mycobacterium tuberculosis. J. Appl. Microbiol., 2020, 128(6), 1547-1567.
[http://dx.doi.org/10.1111/jam.14478] [PMID: 31595643]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy