Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

A Comprehensive Review on Imperative Role of Ionic Liquids in Pharmaceutical Sciences

Author(s): Prerna Uniyal*, Shibam Das, Surbhi Panwar, Neelima Kukreti, Pankaj Nainwal and Rohit Bhatia

Volume 21, Issue 9, 2024

Published on: 09 October, 2023

Page: [1197 - 1210] Pages: 14

DOI: 10.2174/0115672018255191230921035859

Price: $65

Abstract

Ionic liquids (ILs) are poorly-coordinated ionic salts that can exist as a liquid at room temperatures (or <100 °C). ILs are also referred to as "designer solvents" because so many of them have been created to solve particular synthetic issues. ILs are regarded as "green solvents" because they have several distinctive qualities, including better ionic conduction, recyclability, improved solvation ability, low volatility, and thermal stability. These have been at the forefront of the most innovative fields of science and technology during the past few years. ILs may be employed in new drug formulation development and drug design in the field of pharmacy for various functions such as improvement of solubility, targeted drug delivery, stabilizer, permeability enhancer, or improvement of bioavailability in the development of pharmaceutical or vaccine dosage formulations. Ionic liquids have become a key component in various areas such as synthetic and catalytic chemistry, extraction, analytics, biotechnology, etc., due to their superior abilities along with highly modifiable potential. This study concentrates on the usage of ILs in various pharmaceutical applications enlisting their numerous purposes from the delivery of drugs to pharmaceutical synthesis. To better comprehend cuttingedge technologies in IL-based drug delivery systems, highly focused mechanistic studies regarding the synthesis/preparation of ILs and their biocompatibility along with the ecotoxicological and biological effects need to be studied. The use of IL techniques can address key issues regarding pharmaceutical preparations such as lower solubility and bioavailability which plays a key role in the lack of effectiveness of significant commercially available drugs.

Graphical Abstract

[1]
Anderson, K.L.; Burckhardt, C.S. Conceptualization and measurement of quality of life as an outcome variable for health care intervention and research. J. Adv. Nurs., 1999, 29(2), 298-306.
[http://dx.doi.org/10.1046/j.1365-2648.1999.00889.x] [PMID: 10197928]
[2]
Hartman, M.; Martin, A.B.; Benson, J.; Catlin, A. National health care spending In 2018: Growth driven by accelerations in medicare and private insurance spending. Health Aff., 2020, 39(1), 8-17.
[http://dx.doi.org/10.1377/hlthaff.2019.01451] [PMID: 31804875]
[3]
Shamshina, J.L.; Rogers, R.D. Overcoming the problems of solid state drug formulations with ionic liquids. Ther. Deliv., 2014, 5(5), 489-491.
[http://dx.doi.org/10.4155/tde.14.28] [PMID: 24998266]
[4]
Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B, 2015, 5(5), 442-453.
[http://dx.doi.org/10.1016/j.apsb.2015.07.003] [PMID: 26579474]
[5]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 2012, 1-10.
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[6]
Cue, B.W.; Zhang, J. Green process chemistry in the pharmaceutical industry. Green Chem. Lett. Rev., 2009, 2(4), 193-211.
[http://dx.doi.org/10.1080/17518250903258150]
[7]
El-Zhry El-Yafi, A.K.; El-Zein, H. Technical crystallization for application in pharmaceutical material engineering: Review article. Asian J. Pharma. Sci., 2015, 10(4), 283-291.
[http://dx.doi.org/10.1016/j.ajps.2015.03.003]
[8]
Olivier-Bourbigou, H.; Magna, L. Ionic liquids: Perspectives for organic and catalytic reactions. J. Mol. Catal. Chem., 2002, 182-183, 419-437.
[http://dx.doi.org/10.1016/S1381-1169(01)00465-4]
[9]
Shamshina, J.L.; Kelley, S.P.; Gurau, G.; Rogers, R.D. Chemistry: Develop ionic liquid drugs. Nature, 2015, 528(7581), 188-189.
[http://dx.doi.org/10.1038/528188a] [PMID: 26659168]
[10]
Shamshina, J.L.; Barber, P.S.; Rogers, R.D. Ionic liquids in drug delivery. Expert Opin. Drug Deliv., 2013, 10(10), 1367-1381.
[http://dx.doi.org/10.1517/17425247.2013.808185] [PMID: 23795613]
[11]
Meine, N.; Benedito, F.; Rinaldi, R. Thermal stability of ionic liquids assessed by potentiometric titration. Green Chem., 2010, 12(10), 1711.
[http://dx.doi.org/10.1039/c0gc00091d]
[12]
Ahrens, S.; Peritz, A.; Strassner, T. Tunable aryl alkyl ionic liquids (TAAILs): The next generation of ionic liquids. Angew. Chem. Int. Ed., 2009, 48(42), 7908-7910.
[http://dx.doi.org/10.1002/anie.200903399] [PMID: 19760688]
[13]
Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37(1), 123-150.
[http://dx.doi.org/10.1039/B006677J] [PMID: 18197338]
[14]
Chum, H.L.; Koch, V.R.; Miller, L.L.; Osteryoung, R.A. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J. Am. Chem. Soc., 1975, 97(11), 3264-3265.
[http://dx.doi.org/10.1021/ja00844a081]
[15]
Uddin, M.N.; Basak, D.; Hopefl, R.; Minofar, B. Potential application of ionic liquids in pharmaceutical dosage forms for small molecule drug and vaccine delivery system. J. Pharm. Pharm. Sci., 2020, 23, 158-176.
[http://dx.doi.org/10.18433/jpps30965] [PMID: 32407287]
[16]
Domínguez de María, P. “Nonsolvent” applications of ionic liquids in biotransformations and organocatalysis. Angew. Chem. Int. Ed., 2008, 47(37), 6960-6968.
[http://dx.doi.org/10.1002/anie.200703305] [PMID: 18651677]
[17]
Blasucci, V.; Hart, R.; Mestre, V.L.; Hahne, D.J.; Burlager, M.; Huttenhower, H.; Thio, B.J.R.; Pollet, P.; Liotta, C.L.; Eckert, C.A. Single component, reversible ionic liquids for energy applications. Fuel, 2010, 89(6), 1315-1319.
[http://dx.doi.org/10.1016/j.fuel.2009.11.015]
[18]
Tiago, G.A.O.; Matias, I.A.S.; Ribeiro, A.P.C.; Martins, L.M.D.R.S. Application of ionic liquids in electrochemistry—recent advances. Molecules, 2020, 25(24), 5812.
[http://dx.doi.org/10.3390/molecules25245812] [PMID: 33317199]
[19]
Szpecht, A.; Zielinski, D.; Galinski, M.; Smiglak, M. Thermal and electrochemical properties of ionic liquids bearing allyl group with sulfonate-based anions—application potential in epoxy resin curing process. Molecules, 2023, 28(2), 709.
[http://dx.doi.org/10.3390/molecules28020709] [PMID: 36677767]
[20]
Pitawela, N.R.; Shaw, S.K. Imidazolium triflate ionic liquids’ capacitance-potential relationships and transport properties affected by cation chain lengths. ACS Measurement Science Au, 2021, 1(3), 117-130.
[http://dx.doi.org/10.1021/acsmeasuresciau.1c00015] [PMID: 36785553]
[21]
Poonam, G.; Singh, R. Applications of Ionic Liquids in Organic Synthesis. In: Applications of Nanotechnology for Green Synthesis.Nanotechnology in the Life Sciences; Inamuddin, A., Ed.; ChamSpringer International Publishing, 2020; pp. 41-62.
[22]
Maciejewski, H. Ionic Liquids in Catalysis. Catalysts, 2021, 11(3), 367.
[http://dx.doi.org/10.3390/catal11030367]
[23]
McNeice, P.; Marr, P.C.; Marr, A.C. Basic ionic liquids for catalysis: The road to greater stability. Catal. Sci. Technol., 2021, 11(3), 726-741.
[http://dx.doi.org/10.1039/D0CY02274H]
[24]
Mai, N.L.; Kim, C.K.; Park, B.; Park, H.J.; Lee, S.H.; Koo, Y.M. Prediction of cellulose dissolution in ionic liquids using molecular descriptors based QSAR model. J. Mol. Liq., 2016, 215, 541-548.
[http://dx.doi.org/10.1016/j.molliq.2016.01.040]
[25]
Ocreto, J.B.; Chen, W.H.; Rollon, A.P.; Chyuan Ong, H.; Pétrissans, A.; Pétrissans, M.; De Luna, M.D.G. Ionic liquid dissolution utilized for biomass conversion into biofuels, value-added chemicals and advanced materials: A comprehensive review. Chem. Eng. J., 2022, 445, 136733.
[http://dx.doi.org/10.1016/j.cej.2022.136733]
[26]
Zunita, M.; Rhamadhani, R.D. Recent development of biomass conversion using ionic liquid-based processes. ASEAN J. Chem. Eng., 2021, 21(2), 249-271.
[http://dx.doi.org/10.22146/ajche.69552]
[27]
Goossens, K.; Lava, K.; Bielawski, C.W.; Binnemans, K. Ionic liquid crystals: Versatile materials. Chem. Rev., 2016, 116(8), 4643-4807.
[http://dx.doi.org/10.1021/cr400334b] [PMID: 27088310]
[28]
Zhang, Q.; Shreeve, J.M. Energetic ionic liquids as explosives and propellant fuels: A new journey of ionic liquid chemistry. Chem. Rev., 2014, 114(20), 10527-10574.
[http://dx.doi.org/10.1021/cr500364t] [PMID: 25207674]
[29]
Claus, J.; Sommer, F.O.; Kragl, U. Ionic liquids in biotechnology and beyond. Solid State Ion., 2018, 314, 119-128.
[http://dx.doi.org/10.1016/j.ssi.2017.11.012]
[30]
Imam, H.T.; Krasňan, V.; Rebroš, M.; Marr, A.C. Applications of ionic liquids in whole-cell and isolated enzyme biocatalysis. Molecules, 2021, 26(16), 4791.
[http://dx.doi.org/10.3390/molecules26164791] [PMID: 34443378]
[31]
Almeida, C.; Pedro, A.Q.; Tavares, A.P.M.; Neves, M.C.; Freire, M.G. Ionic-liquid-based approaches to improve biopharmaceuticals downstream processing and formulation. Front. Bioeng. Biotechnol., 2023, 11.
[32]
pplication of Ionic Liquids in Biotechnology. Available from: https://www.researchgate.net/publication/263640818_Application_of_Ionic_Liquids_in_Biotechnology (accessed on 8 June 2023)
[33]
Smiglak, M.; Pringle, J.M.; Lu, X.; Han, L.; Zhang, S.; Gao, H.; MacFarlane, D.R.; Rogers, R.D. Ionic liquids for energy, materials, and medicine. Chem. Commun., 2014, 50(66), 9228-9250.
[http://dx.doi.org/10.1039/C4CC02021A] [PMID: 24830849]
[34]
Podgoršek, A.; Jacquemin, J. Pádua, A.A.H.; Costa Gomes, M.F. Mixing enthalpy for binary mixtures containing ionic liquids. Chem. Rev., 2016, 116(10), 6075-6106.
[http://dx.doi.org/10.1021/acs.chemrev.5b00379] [PMID: 27144455]
[35]
Rupp, A.B.A.; Krossing, I. Ionic liquids with weakly coordinating [m iii (or f) 4] − anions. Acc. Chem. Res., 2015, 48(9), 2537-2546.
[http://dx.doi.org/10.1021/acs.accounts.5b00247] [PMID: 26299782]
[36]
Hayes, R.; Warr, G.G.; Atkin, R. Structure and nanostructure in ionic liquids. Chem. Rev., 2015, 115(13), 6357-6426.
[http://dx.doi.org/10.1021/cr500411q] [PMID: 26028184]
[37]
Giacalone, F.; Gruttadauria, M. Covalently supported ionic liquid phases: An advanced class of recyclable catalytic systems. ChemCatChem, 2016, 8(4), 664-684.
[http://dx.doi.org/10.1002/cctc.201501086]
[38]
Yue, C.; Fang, D.; Liu, L.; Yi, T.F. Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J. Mol. Liq., 2011, 163(3), 99-121.
[http://dx.doi.org/10.1016/j.molliq.2011.09.001]
[39]
Gu, Y.; Li, G. Ionic liquids-based catalysis with solids: State of the art. Adv. Synth. Catal., 2009, 351(6), 817-847.
[http://dx.doi.org/10.1002/adsc.200900043]
[40]
Plaquevent, J.C.; Levillain, J.; Guillen, F.; Malhiac, C.; Gaumont, A.C. Ionic liquids: New targets and media for alpha-amino acid and peptide chemistry. Chem. Rev., 2008, 108(12), 5035-5060.
[http://dx.doi.org/10.1021/cr068218c] [PMID: 19053329]
[41]
Vidal, L.; Riekkola, M.L.; Canals, A. Ionic liquid-modified materials for solid-phase extraction and separation: A review. Anal. Chim. Acta, 2012, 715, 19-41.
[http://dx.doi.org/10.1016/j.aca.2011.11.050] [PMID: 22244164]
[42]
Cowan, M.G.; Gin, D.L.; Noble, R.D. Poly(ionic liquid)/ionic liquid ion-gels with high “free” ionic liquid content: platform membrane materials for co 2/light gas separations. Acc. Chem. Res., 2016, 49(4), 724-732.
[http://dx.doi.org/10.1021/acs.accounts.5b00547] [PMID: 27046045]
[43]
Rajyaguru, Y.V.; Patil, J.H.; Kusanur, R. Ionic liquids, an asset in extraction techniques : A comprehensive review. rev. and adv. chem., 2022, 12, 107-122.
[http://dx.doi.org/10.1134/S2634827622020040 ]
[44]
Ola, P.D.; Matsumoto, M.; Ola, P.D.; Matsumoto, M. Metal extraction with ionic liquids-based aqueous two-phase system.Recent Advances in Ionic Liquids; IntechOpen, 2018.
[http://dx.doi.org/10.5772/intechopen.77286]
[45]
Ventura, S.P.M.; e Silva, F.A.; Quental, M.V.; Mondal, D.; Freire, M.G.; Coutinho, J.A.P. Ionic-liquid-mediated extraction and separation processes for bioactive compounds: Past, present, and future trends. Chem. Rev., 2017, 117(10), 6984-7052.
[http://dx.doi.org/10.1021/acs.chemrev.6b00550] [PMID: 28151648]
[46]
Singh, V.V.; Nigam, A.K.; Batra, A.; Boopathi, M.; Singh, B.; Vijayaraghavan, R. Applications of ionic liquids in electrochemical sensors and biosensors. Int. J. Electrochem., 2012, 2012, 1-19.
[http://dx.doi.org/10.1155/2012/165683]
[47]
Fan, C.; Wen, L.; Cao, X. A biphasic system based on guanidinium ionic liquid: Preparative separation of eicosapentaenoic acid ethyl ester and docosahexaenoic acid ethyl ester by countercurrent chromatography. J. Chromatogr. A, 2020, 1618, 460872.
[http://dx.doi.org/10.1016/j.chroma.2020.460872] [PMID: 31959458]
[48]
Patel, R.; Kumari, M.; Khan, A.B. Recent advances in the applications of ionic liquids in protein stability and activity: A review. Appl. Biochem. Biotechnol., 2014, 172(8), 3701-3720.
[http://dx.doi.org/10.1007/s12010-014-0813-6] [PMID: 24599667]
[49]
Weingärtner, H.; Cabrele, C.; Herrmann, C. How ionic liquids can help to stabilize native proteins. Phys. Chem. Chem. Phys., 2012, 14(2), 415-426.
[http://dx.doi.org/10.1039/C1CP21947B] [PMID: 22089969]
[50]
Naushad, M. ALOthman, Z.A.; Khan, A.B.; Ali, M. Effect of ionic liquid on activity, stability, and structure of enzymes: A review. Int. J. Biol. Macromol., 2012, 51(4), 555-560.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.06.020] [PMID: 22732130]
[51]
Quijano, G.; Couvert, A.; Amrane, A. Ionic liquids: Applications and future trends in bioreactor technology. Bioresour. Technol., 2010, 101(23), 8923-8930.
[http://dx.doi.org/10.1016/j.biortech.2010.06.161] [PMID: 20667722]
[52]
Armstrong, J.P.; Hurst, C.; Jones, R.G.; Licence, P.; Lovelock, K.R.J.; Satterley, C.J.; Villar-Garcia, I.J. Vapourisation of ionic liquids. Phys. Chem. Chem. Phys., 2007, 9(8), 982-990.
[http://dx.doi.org/10.1039/b615137j] [PMID: 17301888]
[53]
Vahid, A.; Maginn, E.J. Monte Carlo simulation and SAFT modeling study of the solvation thermodynamics of dimethylformamide, dimethylsulfoxide, ethanol and 1-propanol in the ionic liquid trimethylbutylammonium bis(trifluoromethylsulfonyl)imide. Phys. Chem. Chem. Phys., 2015, 17(11), 7449-7462.
[http://dx.doi.org/10.1039/C4CP05961A] [PMID: 25704844]
[54]
Fumino, K.; Wulf, A.; Verevkin, S.P.; Heintz, A.; Ludwig, R. Estimating enthalpies of vaporization of imidazolium-based ionic liquids from far-infrared measurements. ChemPhysChem, 2010, 11(8), 1623-1626.
[http://dx.doi.org/10.1002/cphc.201000140] [PMID: 20391460]
[55]
Kosmulski, M.; Gustafsson, J.; Rosenholm, J.B. Thermal stability of low temperature ionic liquids revisited. Thermochim. Acta, 2004, 412(1-2), 47-53.
[http://dx.doi.org/10.1016/j.tca.2003.08.022]
[56]
Maria Siedlecka, E.; Czerwicka, M.; Stolte, S.; Stepnowski, P. Stability of ionic liquids in application conditions. Curr. Org. Chem., 2011, 15(12), 1974-1991.
[http://dx.doi.org/10.2174/138527211795703630]
[57]
Chen, Y.; Cao, Y.; Shi, Y.; Xue, Z.; Mu, T. Quantitative research on the vaporization and decomposition of [emim][tf 2 n] by thermogravimetric analysis-mass spectrometry. Ind. Eng. Chem. Res., 2012, 51(21), 7418-7427.
[http://dx.doi.org/10.1021/ie300247v]
[58]
Greaves, T.L.; Drummond, C.J. Protic ionic liquids: Properties and applications. Chem. Rev., 2008, 108(1), 206-237.
[http://dx.doi.org/10.1021/cr068040u] [PMID: 18095716]
[59]
Jacquemin, J.; Ge, R.; Nancarrow, P.; Rooney, D.W.; Costa Gomes, M.F. Pádua, A.A.H.; Hardacre, C. Prediction of ionic liquid properties. i. volumetric properties as a function of temperature at 0.1 MPa. J. Chem. Eng. Data, 2008, 53(3), 716-726.
[http://dx.doi.org/10.1021/je700707y]
[60]
Wasserscheid, P.; Welton, T. Eds.; Ionic Liquids in Synthesis; 1st; Wiley, 2007.
[http://dx.doi.org/10.1002/9783527621194]
[61]
Sirdeshmukh, D.B.; Sirdeshmukh, L.; Subhadra, K.G. Structure-related parameters. In: Alkali Halide; Springer Series in Materials ScienceSpringer: Berlin, Heidelber, 2001; p. 49.
[http://dx.doi.org/10.1007/978-3-662-04341-7_1]
[62]
Crosthwaite, J.M.; Aki, S.N.V.K.; Maginn, E.J.; Brennecke, J.F. Liquid phase behavior of imidazolium-based ionic liquids with alcohols. J. Phys. Chem. B, 2004, 108(16), 5113-5119.
[http://dx.doi.org/10.1021/jp037774x]
[63]
Every, H.A.; Bishop, A.G.; MacFarlane, D.R. Orädd, G.; Forsyth, M. Transport properties in a family of dialkylimidazolium ionic liquids. Phys. Chem. Chem. Phys., 2004, 6(8), 1758-1765.
[http://dx.doi.org/10.1039/B315813F]
[64]
Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Zanatta, N.; Bonacorso, H.G. Ionic liquids in heterocyclic synthesis. Chem. Rev., 2008, 108(6), 2015-2050.
[http://dx.doi.org/10.1021/cr078399y] [PMID: 18543878]
[65]
Subhedar, D.D.; Shaikh, M.H.; Nawale, L.; Yeware, A.; Sarkar, D.; Khan, F.A.K.; Sangshetti, J.N.; Shingate, B.B. Novel tetrazoloquinoline-rhodanine conjugates: Highly efficient synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2016, 26(9), 2278-2283.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.045] [PMID: 27013391]
[66]
Subhedar, D.D.; Shaikh, M.H.; Kalam Khan, F.A.; Sangshetti, J.N.; Khedkar, V.M.; Shingate, B.B. Facile synthesis of new N-sulfonamidyl-4-thiazolidinone derivatives and their biological evaluation. New J. Chem., 2016, 40(4), 3047-3058.
[http://dx.doi.org/10.1039/C6NJ00021E]
[67]
Tao, Y.; Dong, R.; Pavlidis, I.V.; Chen, B.; Tan, T. Using imidazolium-based ionic liquids as dual solvent-catalysts for sustainable synthesis of vitamin esters: Inspiration from bio- and organo-catalysis. Green Chem., 2016, 18(5), 1240-1248.
[http://dx.doi.org/10.1039/C5GC02557E]
[68]
Siodmiak, T.; Piotr Marszall, M.; Proszowska, A. Ionic liquids: A new strategy in pharmaceutical synthesis. Mini Rev. Org. Chem., 2012, 9(2), 203-208.
[http://dx.doi.org/10.2174/157019312800604698]
[69]
Ghaffari Khaligh, N. 1,1′-Butylenebis(3-methyl-3H-imidazol-1-ium) hydrogen sulfate as an efficient binuclear Brønsted ionic liquid for the synthesis of tacrine analogues. Monatsh. Chem., 2015, 146(2), 321-326.
[http://dx.doi.org/10.1007/s00706-014-1325-3]
[70]
Abd Razik, B.M.; Osman, H.; Basiri, A.; Salhin, A.; Kia, Y.; Ezzat, M.O.; Murugaiyah, V. Ionic liquid mediated synthesis and molecular docking study of novel aromatic embedded Schiff bases as potent cholinesterase inhibitors. Bioorg. Chem., 2014, 57, 162-168.
[http://dx.doi.org/10.1016/j.bioorg.2014.10.005] [PMID: 25462993]
[71]
Basiri, A.; Murugaiyah, V.; Osman, H.; Kumar, R.S.; Kia, Y.; Hooda, A.; Parsons, R.B. Cholinesterase inhibitory activity versus aromatic core multiplicity: A facile green synthesis and molecular docking study of novel piperidone embedded thiazolopyrimidines. Bioorg. Med. Chem., 2014, 22(2), 906-916.
[http://dx.doi.org/10.1016/j.bmc.2013.11.020] [PMID: 24369842]
[72]
Rajerison, H.; Faye, D.; Roumesy, A.; Louaisil, N.; Boeda, F.; Faivre-Chauvet, A.; Gestin, J.F.; Legoupy, S. Ionic liquid supported organotin reagents to prepare molecular imaging and therapy agents. Org. Biomol. Chem., 2016, 14(6), 2121-2126.
[http://dx.doi.org/10.1039/C5OB02459E] [PMID: 26782686]
[73]
Deshmukh, A.; Gore, B.; Thulasiram, H.V.; Swamy, V.P. Recyclable ionic liquid iodinating reagent for solvent free, regioselective iodination of activated aromatic and heteroaromatic amines. RSC Advances, 2015, 5(107), 88311-88315.
[http://dx.doi.org/10.1039/C5RA14702F]
[74]
Chantereau, G.; Sharma, M.; Abednejad, A.; Neves, B.M.; Sèbe, G.; Coma, V.; Freire, M.G; Freire, C.S.R; Silvestre, A.J.D. Design of nonsteroidal anti-inflammatory drug-based ionic liquids with improved water solubility and drug delivery. ACS Sustain. Chem.& Eng., 2019, 7(16), 14126-14134.
[http://dx.doi.org/10.1021/acssuschemeng.9b02797]
[75]
Moshikur, R.M.; Ali, M.K.; Wakabayashi, R.; Moniruzzaman, M.; Goto, M. Favipiravir-based ionic liquids as potent antiviral drugs for oral delivery: Synthesis, solubility, and pharmacokinetic evaluation. Mol. Pharm., 2021, 18(8), 3108-3115.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00324] [PMID: 34250805]
[76]
Palanisamy, K.; Rubavathy, S.M.E.; Prakash, M.; Thilagavathi, R.; Hosseini-Zare, M.S.; Selvam, C. Antiviral activities of natural compounds and ionic liquids to inhibit the Mpro of SARS-CoV-2: A computational approach. RSC Advances, 2022, 12(6), 3687-3695.
[http://dx.doi.org/10.1039/D1RA08604A] [PMID: 35425367]
[77]
Ferraz, R.; Noronha, J.; Murtinheira, F.; Nogueira, F.; Machado, M. Prudêncio, M.; Parapini, S.; D’Alessandro, S.; Teixeira, C.; Gomes, A.; Prudêncio, C.; Gomes, P. Primaquine-based ionic liquids as a novel class of antimalarial hits. RSC Advances, 2016, 6(61), 56134-56138.
[http://dx.doi.org/10.1039/C6RA10759A]
[78]
Tay, E.; Nguyen, T.H.; Ford, L.; Williams, H.D.; Benameur, H.; Scammells, P.J.; Porter, C.J.H. Ionic liquid forms of the antimalarial lumefantrine in combination with lfcs type iiib lipid-based formulations preferentially increase lipid solubility, in vitro solubilization behavior and in vivo exposure. Pharmaceutics, 2019, 12(1), 17.
[http://dx.doi.org/10.3390/pharmaceutics12010017] [PMID: 31877828]
[79]
Fernandes, M.M.; Carvalho, E.O.; Correia, D.M. Esperança, J.M.S.S.; Padrão, J.; Ivanova, K.; Hoyo, J.; Tzanov, T.; Lanceros-Mendez, S. Ionic liquids as biocompatible antibacterial agents: A case study on structure-related bioactivity on escherichia coli. ACS Appl. Bio Mater., 2022, 5(11), 5181-5189.
[http://dx.doi.org/10.1021/acsabm.2c00615] [PMID: 36260814]
[80]
Antimicrobial ionic liquid-based materials for biomedical applications. Adv. Funct. Mat; Wiley Online Library, 2021, 31(42), 2104148. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202104148
[81]
Guncheva, M. Ionic liquids for anticancer application.Encyclopedia of Ionic Liquids; Zhang, S., Ed.; Springer: Singapore, 2019, pp. 1-6.
[82]
Moshikur, R.M.; Ali, M.K.; Wakabayashi, R.; Moniruzzaman, M.; Goto, M. Methotrexate-based ionic liquid as a potent anticancer drug for oral delivery: In vivo pharmacokinetics, biodistribution, and antitumor efficacy. Int. J. Pharm., 2021, 608, 121129.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121129] [PMID: 34562557]
[83]
Kumar, V.; Malhotra, S.V. Synthesis of nucleoside-based antiviral drugs in ionic liquids. Bioorg. Med. Chem. Lett., 2008, 18(20), 5640-5642.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.090] [PMID: 18796352]
[84]
Shukla, M.K.; Tiwari, H.; Verma, R.; Dong, W.L.; Azizov, S.; Kumar, B.; Pandey, S.; Kumar, D. Role and recent advancements of ionic liquids in drug delivery systems. Pharmaceutics, 2023, 15(2), 702.
[http://dx.doi.org/10.3390/pharmaceutics15020702] [PMID: 36840024]
[85]
Pedro, S.N.; R. Freire, C.S.; Silvestre, A.J.D.; Freire, M.G. The role of ionic liquids in the pharmaceutical field: An overview of relevant applications. Int. J. Mol. Sci., 2020, 21(21), 8298.
[http://dx.doi.org/10.3390/ijms21218298] [PMID: 33167474]
[86]
Płotka-Wasylka, J.; de la Guardia, M.; Andruch, V.; Vilková, M. Deep eutectic solvents vs. ionic liquids: Similarities and differences. Microchem. J., 2020, 159, 105539.
[http://dx.doi.org/10.1016/j.microc.2020.105539]
[87]
Vanda, H.; Dai, Y.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. C. R. Chim., 2018, 21(6), 628-638.
[http://dx.doi.org/10.1016/j.crci.2018.04.002]
[88]
Jiang, L.; Sun, Y.; Lu, A.; Wang, X.; Shi, Y. Ionic liquids: Promising approach for oral drug delivery. Pharm. Res., 2022, 39(10), 2353-2365.
[http://dx.doi.org/10.1007/s11095-022-03260-8] [PMID: 35449344]
[89]
Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev., 2017, 117(10), 7132-7189.
[http://dx.doi.org/10.1021/acs.chemrev.6b00562] [PMID: 28125212]
[90]
Agatemor, C.; Ibsen, K.N.; Tanner, E.E.L.; Mitragotri, S. Ionic liquids for addressing unmet needs in healthcare. Bioeng. Transl. Med., 2018, 3(1), 7-25.
[http://dx.doi.org/10.1002/btm2.10083] [PMID: 29376130]
[91]
Clarke, C.J.; Tu, W.C.; Levers, O. Bröhl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev., 2018, 118(2), 747-800.
[http://dx.doi.org/10.1021/acs.chemrev.7b00571] [PMID: 29300087]
[92]
Moniruzzaman, M.; Goto, M. Ionic liquids: Future solvents and reagents for pharmaceuticals. J. Chem. Eng, 2011, 44, 370-381.
[http://dx.doi.org/10.1252/jcej.11we015]
[93]
Hattori, T.; Tagawa, H.; Inai, M.; Kan, T.; Kimura, S.; Itai, S.; Mitragotri, S.; Iwao, Y. Transdermal delivery of nobiletin using ionic liquids. Sci. Rep., 2019, 9(1), 20191.
[http://dx.doi.org/10.1038/s41598-019-56731-1] [PMID: 31882884]
[94]
Dasari, S.; Mallik, B.S. Solubility and solvation free energy of a cardiovascular drug, LASSBio-294, in ionic liquids: A computational study. J. Mol. Liq., 2020, 301, 112449.
[http://dx.doi.org/10.1016/j.molliq.2020.112449]
[95]
Jesus, A.R.; Raposo, L.R.; Soromenho, M.R.C.; Agostinho, D.A.S.; Esperança, J.M.S.S.; Baptista, P.V.; Fernandes, A.R.; Reis, P.M. New non-toxic n-alkyl cholinium-based ionic liquids as excipients to improve the solubility of poorly water-soluble drugs. Symmetry, 2021, 13(11), 2053.
[http://dx.doi.org/10.3390/sym13112053]
[96]
Williams, H.D.; Ford, L.; Lim, S.; Han, S.; Baumann, J.; Sullivan, H.; Vodak, D.; Igonin, A.; Benameur, H.; Pouton, C.W.; Scammells, P.J.; Porter, C.J.H. Transformation of biopharmaceutical classification system class I and III Drugs into ionic liquids and lipophilic salts for enhanced developability using lipid formulations. J. Pharm. Sci., 2018, 107(1), 203-216.
[http://dx.doi.org/10.1016/j.xphs.2017.05.019] [PMID: 28549907]
[97]
Sahbaz, Y.; Nguyen, T.H.; Ford, L.; McEvoy, C.L.; Williams, H.D.; Scammells, P.J.; Porter, C.J.H. Ionic liquid forms of weakly acidic drugs in oral lipid formulations: Preparation, characterization, in vitro digestion, and in vivo absorption studies. Mol. Pharm., 2017, 14(11), 3669-3683.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00442] [PMID: 28954512]
[98]
Sahbaz, Y.; Williams, H.D.; Nguyen, T.H.; Saunders, J.; Ford, L.; Charman, S.A.; Scammells, P.J.; Porter, C.J.H. Transformation of poorly water-soluble drugs into lipophilic ionic liquids enhances oral drug exposure from lipid based formulations. Mol. Pharm., 2015, 12(6), 1980-1991.
[http://dx.doi.org/10.1021/mp500790t] [PMID: 25905624]
[99]
Faria, R.A.; da Ponte, M.N.; Bogel-Łukasik, E. Solubility studies on the system of trihexyl(tetradecyl)phosphonium bis[(trifluoromethyl)sulfonyl]amide) ionic liquid and pharmaceutical and bioactive compounds. Fluid Phase Equilib., 2015, 385, 1-9.
[http://dx.doi.org/10.1016/j.fluid.2014.10.033]
[100]
dos Santos, A.D.; Morais, A.R.C.; Melo, C.; Bogel-Łukasik, R.; Bogel-Łukasik, E. Solubility of pharmaceutical compounds in ionic liquids. Fluid Phase Equilib., 2013, 356, 18-29.
[http://dx.doi.org/10.1016/j.fluid.2013.07.020]
[101]
Goindi, S.; Arora, P.; Kumar, N.; Puri, A. Development of novel ionic liquid-based microemulsion formulation for dermal delivery of 5-Fluorouracil. AAPS PharmSciTech, 2014, 15(4), 810-821.
[http://dx.doi.org/10.1208/s12249-014-0103-1] [PMID: 24668136]
[102]
Mizuuchi, H.; Jaitely, V.; Murdan, S.; Florence, A.T. Room temperature ionic liquids and their mixtures: Potential pharmaceutical solvents. Eur. J. Pharm. Sci., 2008, 33(4-5), 326-331.
[http://dx.doi.org/10.1016/j.ejps.2008.01.002] [PMID: 18291630]
[103]
Smith, K.B.; Bridson, R.H.; Leeke, G.A. Solubilities of pharmaceutical compounds in ionic liquids. J. Chem. Eng. Data, 2011, 56(5), 2039-2043.
[http://dx.doi.org/10.1021/je101040p]
[104]
McCrary, P.D.; Beasley, P.A.; Gurau, G.; Narita, A.; Barber, P.S.; Cojocaru, O.A.; Rogers, R.D. Drug specific, tuning of an ionic liquid’s hydrophilic-lipophilic balance to improve water solubility of poorly soluble active pharmaceutical ingredients. New J. Chem., 2013, 37(7), 2196.
[http://dx.doi.org/10.1039/c3nj00454f]
[105]
Melo, C.I.; Bogel-Łukasik, R.; Nunes da Ponte, M.; Bogel-Łukasik, E. Ammonium ionic liquids as green solvents for drugs. Fluid Phase Equilib., 2013, 338, 209-216.
[http://dx.doi.org/10.1016/j.fluid.2012.11.029]
[106]
Lourenço, C.; Melo, C.I.; Bogel-Łukasik, R.; Bogel-Łukasik, E. solubility advantage of pyrazine-2-carboxamide: Application of alternative solvents on the way to the future pharmaceutical development. J. Chem. Eng. Data, 2012, 57(5), 1525-1533.
[http://dx.doi.org/10.1021/je300044x]
[107]
Williams, H.D.; Sahbaz, Y.; Ford, L.; Nguyen, T.H.; Scammells, P.J.; Porter, C.J.H. Ionic liquids provide unique opportunities for oral drug delivery: Structure optimization and in vivo evidence of utility. Chem. Commun., 2014, 50(14), 1688-1690.
[http://dx.doi.org/10.1039/C3CC48650H] [PMID: 24394756]
[108]
Kandasamy, S.; Moniruzzaman, M.; Sivapragasam, M.; Shamsuddin, M.R.; Mutalib, M.I.A. Formulation and characterization of acetate based ionic liquid in oil microemulsion as a carrier for acyclovir and methotrexate. Separ. Purif. Tech., 2018, 196, 149-156.
[http://dx.doi.org/10.1016/j.seppur.2017.08.044]
[109]
Kubota, K.; Shibata, A.; Yamaguchi, T. The molecular assembly of the ionic liquid/aliphatic carboxylic acid/aliphatic amine as effective and safety transdermal permeation enhancers. Eur. J. Pharm. Sci., 2016, 86, 75-83.
[http://dx.doi.org/10.1016/j.ejps.2016.03.002] [PMID: 26965004]
[110]
Furukawa, S.; Hattori, G.; Sakai, S.; Kamiya, N. Highly efficient and low toxic skin penetrants composed of amino acid ionic liquids. RSC Advances, 2016, 6(90), 87753-87755.
[http://dx.doi.org/10.1039/C6RA16926K]
[111]
Monti, D.; Egiziano, E.; Burgalassi, S.; Chetoni, P.; Chiappe, C.; Sanzone, A.; Tampucci, S. Ionic liquids as potential enhancers for transdermal drug delivery. Int. J. Pharm., 2017, 516(1-2), 45-51.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.020] [PMID: 27836753]
[112]
Elgundi, Z.; Reslan, M.; Cruz, E.; Sifniotis, V.; Kayser, V. The state-of-play and future of antibody therapeutics. Adv. Drug Deliv. Rev., 2017, 122, 2-19.
[http://dx.doi.org/10.1016/j.addr.2016.11.004] [PMID: 27916504]
[113]
Takekiyo, T.; Ishikawa, Y.; Yoshimura, Y. Cryopreservation of proteins using ionic liquids: A case study of cytochrome c. J. Phys. Chem. B, 2017, 121(32), 7614-7620.
[http://dx.doi.org/10.1021/acs.jpcb.7b05158] [PMID: 28708401]
[114]
Bisht, M.; Mondal, D.; Pereira, M.M.; Freire, M.G.; Venkatesu, P.; Coutinho, J.A.P. Long-term protein packaging in cholinium-based ionic liquids: Improved catalytic activity and enhanced stability of cytochrome c against multiple stresses. Green Chem., 2017, 19(20), 4900-4911.
[http://dx.doi.org/10.1039/C7GC02011B] [PMID: 30271272]
[115]
Tarannum, A.; Rao, J.R.; Fathima, N.N. Choline-based amino acid ils-collagen interaction: Enunciating its role in stabilization/destabilization phenomena. J. Phys. Chem. B, 2018, 122(3), 1145-1151.
[http://dx.doi.org/10.1021/acs.jpcb.7b10645] [PMID: 29239608]
[116]
Pedro, S.N.; Freire, C.S.R.; Silvestre, A.J.D.; Freire, M.G. Ionic liquids in drug delivery. Encyclopedia, 2021, 1(2), 324-339.
[http://dx.doi.org/10.3390/encyclopedia1020027]
[117]
Sadaf, A.; Sinha, R.; Ekka, M.K. Ionic liquid-mediated skin technologies: Recent advances and prospects. Current Research in Biotechnology, 2022, 4, 514-529.
[http://dx.doi.org/10.1016/j.crbiot.2022.10.005]
[118]
Pyne, A.; Kuchlyan, J.; Maiti, C.; Dhara, D.; Sarkar, N. Cholesterol based surface active ionic liquid that can form microemulsions and spontaneous vesicles. Langmuir, 2017, 33(23), 5891-5899.
[http://dx.doi.org/10.1021/acs.langmuir.7b01158] [PMID: 28514858]
[119]
Dib, N.; Silber, J.J.; Correa, N.M.; Falcone, R.D. Combination of a protic ionic liquid-like surfactant and biocompatible solvents to generate environmentally friendly anionic reverse micelles. New J. Chem., 2019, 43(26), 10398-10404.
[http://dx.doi.org/10.1039/C9NJ02268F]
[120]
Roy, A.; Kundu, S.; Dutta, R.; Sarkar, N. Influence of bile salt on vitamin E derived vesicles involving a surface active ionic liquid and conventional cationic micelle. J. Colloid Interface Sci., 2017, 501, 202-214.
[http://dx.doi.org/10.1016/j.jcis.2017.04.051] [PMID: 28456104]
[121]
Sastry, N.V.; Singh, D.K.; Trivedi, P.A. Hybrid hydrogel systems of micelles of drug anion containing ionic liquid and biopolymers: Rheological behavior and drug release. Colloids Surf. A Physicochem. Eng. Asp., 2018, 555, 668-678.
[http://dx.doi.org/10.1016/j.colsurfa.2018.07.047]
[122]
Tanner, E.E.L.; Ibsen, K.N.; Mitragotri, S. Transdermal insulin delivery using choline-based ionic liquids (CAGE). J. Control. Release, 2018, 286, 137-144.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.029] [PMID: 30026081]
[123]
Banerjee, A.; Ibsen, K.; Brown, T.; Chen, R.; Agatemor, C.; Mitragotri, S. Ionic liquids for oral insulin delivery. Proc. Natl. Acad. Sci., 2018, 115(28), 7296-7301.
[http://dx.doi.org/10.1073/pnas.1722338115] [PMID: 29941553]
[124]
Vaidya, A.; Mitragotri, S. Ionic liquid-mediated delivery of insulin to buccal mucosa. J. Control. Release, 2020, 327, 26-34.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.037] [PMID: 32735879]
[125]
Wu, X.; Zhang, H.; He, S.; Yu, Q.; Lu, Y.; Wu, W.; Ding, N.; Zhu, Q.; Chen, Z.; Ma, Y.; Qi, J. Improving dermal delivery of hyaluronic acid by ionic liquids for attenuating skin dehydration. Int. J. Biol. Macromol., 2020, 150, 528-535.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.072] [PMID: 32057854]
[126]
Tang, W.; Liu, B.; Wang, S.; Liu, T.; Fu, C.; Ren, X.; Tan, L.; Duan, W.; Meng, X. Doxorubicin-loaded ionic liquid-polydopamine nanoparticles for combined chemotherapy and microwave thermal therapy of cancer. RSC Advances, 2016, 6(39), 32434-32440.
[http://dx.doi.org/10.1039/C6RA02434C]
[127]
Martini Garcia, I.; Jung Ferreira, C.; de Souza, V.S.; Castelo Branco Leitune, V.; Samuel, S.M.W.; de Souza Balbinot, G.; de Souza da Motta, A.; Visioli, F.; Damiani Scholten, J.; Mezzomo Collares, F. Ionic liquid as antibacterial agent for an experimental orthodontic adhesive. Dent. Mater., 2019, 35(8), 1155-1165.
[http://dx.doi.org/10.1016/j.dental.2019.05.010] [PMID: 31128938]
[128]
Sivapragasam, M.; Moniruzzaman, M.; Goto, M. An overview on the toxicological properties of ionic liquids toward microorganisms. Biotechnol. J., 2020, 15(4), 1900073.
[http://dx.doi.org/10.1002/biot.201900073] [PMID: 31864234]
[129]
Md Moshikur, R.; Chowdhury, M.R.; Moniruzzaman, M.; Goto, M. Biocompatible ionic liquids and their applications in pharmaceutics. Green Chem., 2020, 22(23), 8116-8139.
[http://dx.doi.org/10.1039/D0GC02387F]
[130]
Zheng, Z.; Guo, J.; Mao, H.; Xu, Q.; Qin, J.; Yan, F. Metal-containing poly(ionic liquid) membranes for antibacterial applications. ACS Biomater. Sci. Eng., 2017, 3(6), 922-928.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00165] [PMID: 33429564]
[131]
Zhang, T.; Guo, J.; Ding, Y.; Mao, H.; Yan, F. Redox-responsive ferrocene-containing poly(ionic liquid)s for antibacterial applications. Sci. China Chem., 2019, 62(1), 95-104.
[http://dx.doi.org/10.1007/s11426-018-9348-5]
[132]
Guo, J.; Qin, J.; Ren, Y.; Wang, B.; Cui, H.; Ding, Y.; Mao, H.; Yan, F. Antibacterial activity of cationic polymers: Side-chain or main-chain type? Polym. Chem., 2018, 9(37), 4611-4616.
[http://dx.doi.org/10.1039/C8PY00665B]
[133]
Curreri, A.M.; Mitragotri, S.; Tanner, E.E.L. Recent advances in ionic liquids in biomedicine. Adv. Sci., 2021, 8(17), 2004819.
[http://dx.doi.org/10.1002/advs.202004819] [PMID: 34245140]
[134]
Kumari, P.; Pillai, V.V.S.; Gobbo, D.; Ballone, P.; Benedetto, A. The transition from salt-in-water to water-in-salt nanostructures in water solutions of organic ionic liquids relevant for biological applications. Phys. Chem. Chem. Phys., 2021, 23(2), 944-959.
[http://dx.doi.org/10.1039/D0CP04959J] [PMID: 33367394]
[135]
Egorova, K.S.; Posvyatenko, A.V.; Fakhrutdinov, A.N.; Kashin, A.S.; Ananikov, V.P. Assessing possible influence of structuring effects in solution on cytotoxicity of ionic liquid systems. J. Mol. Liq., 2020, 297, 111751.
[http://dx.doi.org/10.1016/j.molliq.2019.111751]
[136]
M, S.; K, B.; G, S.; M, R.P. Ionic liquid-mediated: Enhanced surface morphology of silver/manganese oxide/bentonite nanocomposite for improved biological activities. J. Mol. Liq., 2018, 249, 1020-1032.
[http://dx.doi.org/10.1016/j.molliq.2017.11.065]
[137]
Jahed, F.S.; Galehassadi, M.; Davaran, S. A novel 1,2,3-benzotriazolium based ionic liquid monomer for preparation of MMT/poly ionic liquid (PIL) pH-sensitive positive charge nanocomposites. J. Chem. Sci., 2019, 131(3), 18.
[http://dx.doi.org/10.1007/s12039-019-1592-y]
[138]
Su, L.; Wu, Q.; Tan, L.; Huang, Z.; Fu, C.; Ren, X.; Xia, N.; Chen, Z.; Ma, X.; Lan, X.; Zhang, Q.; Meng, X. High Biocompatible ZIF-8 Coated by ZrO 2 for chemo-microwave thermal tumor synergistic therapy. ACS Appl. Mater. Interfaces, 2019, 11(11), 10520-10531.
[http://dx.doi.org/10.1021/acsami.8b22177] [PMID: 30801175]
[139]
Demirkurt, B.; Akdogan, Y. Development of an ionic liquid based method for the preparation of albumin nanoparticles. ChemistrySelect, 2018, 3(34), 9940-9945.
[http://dx.doi.org/10.1002/slct.201801648]
[140]
Cellante, L.; Costa, R.; Monaco, I.; Cenacchi, G.; Locatelli, E. One-step esterification of nanocellulose in a Brønsted acid ionic liquid for delivery to glioblastoma cancer cells. New J. Chem., 2018, 42(7), 5237-5242.
[http://dx.doi.org/10.1039/C7NJ04633B]
[141]
Yavir, K.; Marcinkowski, Ł.; Marcinkowska, R.; Namieśnik, J.; Kloskowski, A. Analytical applications and physicochemical properties of ionic liquid-based hybrid materials: A review. Anal. Chim. Acta, 2019, 1054, 1-16.
[http://dx.doi.org/10.1016/j.aca.2018.10.061] [PMID: 30712579]
[142]
Brett, C.M.A. Deep eutectic solvents and applications in electrochemical sensing. Curr. Opin. Electrochem., 2018, 10, 143-148.
[http://dx.doi.org/10.1016/j.coelec.2018.05.016]
[143]
Shpigun, L.K.; Andryukhina, E.Y. Electrochemical sensor based on nanocomposite of ionic liquid modified graphene oxide - chitosan and its application for flow injection detection of anticancer thiopurine drugs. Electroanalysis, 2018, 30(10), 2356-2365.
[http://dx.doi.org/10.1002/elan.201800358]
[144]
Gomes, J.M.; Silva, S.S.; Reis, R.L. Biocompatible ionic liquids: Fundamental behaviours and applications. Chem. Soc. Rev., 2019, 48(15), 4317-4335.
[http://dx.doi.org/10.1039/C9CS00016J] [PMID: 31225558]
[145]
Baharuddin, S.H.; Mustahil, N.A.; Reddy, A.V.B.; Abdullah, A.A.; Mutalib, M.I.A.; Moniruzzaman, M. Development, formulation and optimization of a novel biocompatible ionic liquids dispersant for the effective oil spill remediation. Chemosphere, 2020, 249, 126125.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126125] [PMID: 32058133]
[146]
Mustahil, N.A.; Baharuddin, S.H.; Abdullah, A.A.; Reddy, A.V.B.; Abdul Mutalib, M.I.; Moniruzzaman, M. Synthesis, characterization, ecotoxicity and biodegradability evaluations of novel biocompatible surface active lauroyl sarcosinate ionic liquids. Chemosphere, 2019, 229, 349-357.
[http://dx.doi.org/10.1016/j.chemosphere.2019.05.026] [PMID: 31078892]
[147]
Petkovic, M.; Ferguson, J.L.; Gunaratne, H.Q.N.; Ferreira, R.; Leitão, M.C.; Seddon, K.R.; Rebelo, L.P.N.; Pereira, C.S. Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability. Green Chem., 2010, 12(4), 643.
[http://dx.doi.org/10.1039/b922247b]
[148]
Young, G.R.; Abdelghany, T.M.; Leitch, A.C.; Dunn, M.P.; Blain, P.G.; Lanyon, C.; Wright, M.C. Changes in the gut microbiota of mice orally exposed to methylimidazolium ionic liquids. PLoS One, 2020, 15(3), e0229745.
[http://dx.doi.org/10.1371/journal.pone.0229745] [PMID: 32163446]
[149]
Leitch, A.C.; Lakey, A.F.; Hotham, W.E.; Agius, L.; Kass, G.E.N.; Blain, P.G.; Wright, M.C. The ionic liquid 1-octyl-3-methylimidazolium (M8OI) is an activator of the human estrogen receptor alpha. Biochem. Biophys. Res. Commun., 2018, 503(3), 2167-2172.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.008] [PMID: 30086880]
[150]
Andanson, J.M.; Meng, X. Traïkia, M.; Husson, P. Quantification of the impact of water as an impurity on standard physico-chemical properties of ionic liquids. J. Chem. Thermodyn., 2016, 94, 169-176.
[http://dx.doi.org/10.1016/j.jct.2015.11.008]
[151]
Baaqel, H.; Tulus, V.; Chachuat, B. Guillén-Gosálbez, G.; Hallett, J. Uncovering the true cost of ionic liquids using monetization. 30 European Symposium on Computer Aided Process Engineering, 2020, 48, pp. 1825-1830.
[http://dx.doi.org/10.1016/B978-0-12-823377-1.50305-0]
[152]
Mahdi, G.; Michela, I. Developing new inexpensive room-temperature ionic liquids with high thermal stability and a greener synthetic profile. ACS Omega., 2020, 5(22), 12637-12648. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288359/ (accessed on 9 June 2023).
[153]
George, A.; Brandt, A.; Tran, K.; Zahari, S.M.S.N.S.; Klein-Marcuschamer, D.; Sun, N.; Sathitsuksanoh, N.; Shi, J.; Stavila, V.; Parthasarathi, R.; Singh, S.; Holmes, B.M.; Welton, T.; Simmons, B.A.; Hallett, J.P. Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem., 2015, 17(3), 1728-1734.
[http://dx.doi.org/10.1039/C4GC01208A]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy