Generic placeholder image

Current Aging Science

Editor-in-Chief

ISSN (Print): 1874-6098
ISSN (Online): 1874-6128

General Review Article

Autophagy Behavior in Endothelial Cell Regeneration

Author(s): Basheer Abdullah Marzoog*

Volume 17, Issue 1, 2024

Published on: 09 October, 2023

Page: [58 - 67] Pages: 10

DOI: 10.2174/0118746098260689231002044435

Price: $65

Abstract

Autophagy plays a crucial role in maintaining endothelial cell homeostasis through the turnover of intracellular components during stress conditions in a lysosomal-dependent manner. The regeneration strategy involves several aspects, including autophagy. Autophagy is a catabolic degenerative lysosomal-dependent degradation of intracellular components. Autophagy modifies cellular and subcellular endothelial cell functions, including mitochondria stress, lysosomal stress, and endoplasmic reticulum unfolded protein response. Activation of common signaling pathways of autophagy and regeneration and enhancement of intracellular endothelial cell metabolism serve as the bases for the induction of endothelial regeneration. Endothelial progenitor cells include induced pluripotent stem cells (iPSC), embryonic stem cells, and somatic cells, such as fibroblasts. Future strategies of endothelial cell regeneration involve the induction of autophagy to minimize the metabolic degeneration of the endothelial cells and optimize the regeneration outcomes.

Graphical Abstract

[1]
Sedwick C. Yoshinori Ohsumi: Autophagy from beginning to end. J Cell Biol 2012; 197(2): 164-5.
[http://dx.doi.org/10.1083/jcb.1972pi] [PMID: 22508506]
[2]
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 2018; 25(3): 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[3]
Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death: Recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 2009; 16(1): 3-11.
[http://dx.doi.org/10.1038/cdd.2008.150] [PMID: 18846107]
[4]
Vion AC, Kheloufi M, Hammoutene A, et al. Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow Proc Natl Acad Sci USA 2017; 114(41): E8675-84.
[http://dx.doi.org/10.1073/pnas.1702223114] [PMID: 28973855]
[5]
Joffre J, Hellman J, Ince C, Ait-Oufella H. Endothelial responses in sepsis. Am J Respir Crit Care Med 2020; 202(3): 361-70.
[http://dx.doi.org/10.1164/rccm.201910-1911TR] [PMID: 32101446]
[6]
Paone S, Baxter AA, Hulett MD, Poon IKH. Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis. Cell Mol Life Sci 2019; 76(6): 1093-106.
[http://dx.doi.org/10.1007/s00018-018-2983-9] [PMID: 30569278]
[7]
Morris G, Puri BK, Olive L, Carvalho A, Berk M, Walder K. Endothelial dysfunction in neuroprogressive disorders—causes and suggested treatments. BMC Med 2020; 18(1): 1-31.
[8]
Yao Y, Song Q, Hu C, et al. Endothelial cell metabolic memory causes cardiovascular dysfunction in diabetes. Cardiovasc Res 2022; 118(1): 196-211.
[http://dx.doi.org/10.1093/cvr/cvab013] [PMID: 33483741]
[9]
Marzoog BA, Vasyileva O. Manifestations of COVID-19 in anterior eye segment; up-to-date. Saudi J Ophthalmol 2022.
[10]
Marzoog BA. Tree of life: Endothelial cell in norm and disease, the good guy is a partner in crime! Anat Cell Biol 2023; 56(2): 166-78.
[http://dx.doi.org/10.5115/acb.22.190] [PMID: 36879408]
[11]
Marzoog BA. Systemic and local hypothermia in the context of cell regeneration. Cryo Lett 2022; 43(2): 66-73.
[http://dx.doi.org/10.54680/fr22210110112] [PMID: 36626147]
[12]
Marzoog BA, Vlasova TI. Membrane lipids under norm and pathology. Eur J Clin Exp Med 2021; 19(1): 59-75.
[http://dx.doi.org/10.15584/ejcem.2021.1.9]
[13]
Marzoog B. Lipid behavior in metabolic syndrome pathophysiology. Curr Diabetes Rev 2022; 18(6): e150921196497.
[http://dx.doi.org/10.2174/1573399817666210915101321] [PMID: 34525924]
[14]
Marzoog BA. The metabolic syndrome puzzles; possible pathogenesis and management. Curr Diabetes Rev 2023; 19(4): e290422204258.
[http://dx.doi.org/10.2174/1573399818666220429100411] [PMID: 35507784]
[15]
Marzoog BA. Recent advances in molecular biology of metabolic syndrome pathophysiology: Endothelial dysfunction as a potential therapeutic target. J Diabetes Metab Disord 2022; 21(2): 1903-11.
[http://dx.doi.org/10.1007/s40200-022-01088-y] [PMID: 36065330]
[16]
Abdullah Marzoog B. Autophagy as an anti-senescent in aging neurocytes. Curr Mol Med 2024; 24(2): 182-90.
[http://dx.doi.org/10.2174/1566524023666230120102718] [PMID: 36683318]
[17]
Abdullah MB. Autophagy behavior under local hypothermia in myocardiocytes injury. Cardiovasc Hematol Agents Med Chem 2023; 21.
[http://dx.doi.org/10.2174/1871525721666230803102554] [PMID: 37534483]
[18]
Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. Central role of metabolism in endothelial cell function and vascular disease. Physiology 2017; 32(2): 126-40.
[http://dx.doi.org/10.1152/physiol.00031.2016] [PMID: 28202623]
[19]
Khan S, Taverna F, Rohlenova K, et al. EndoDB: A database of endothelial cell transcriptomics data. Nucleic Acids Res 2019; 47(D1): D736-44.
[http://dx.doi.org/10.1093/nar/gky997] [PMID: 30357379]
[20]
Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human diseases. Int J Biol Sci 2013; 9(10): 1057-69.
[http://dx.doi.org/10.7150/ijbs.7502] [PMID: 24250251]
[21]
Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 2008; 15(2): 261-71.
[http://dx.doi.org/10.1016/j.devcel.2008.07.002] [PMID: 18694565]
[22]
Marzoog BA, Vlasova TI. Transcription factors in deriving β cell regeneration: A potential novel therapeutic target. Curr Mol Med 2022; 22(5): 421-30.
[http://dx.doi.org/10.2174/1566524021666210712144638] [PMID: 34931980]
[23]
Marzoog BA. Transcription factors - the essence of heart regeneration: A potential novel therapeutic strategy. Curr Mol Med 2023; 23(3): 232-8.
[http://dx.doi.org/10.2174/1566524022666220216123650] [PMID: 35170408]
[24]
Matsuzaki T, Alvarez-Garcia O, Mokuda S, et al. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci Transl Med 2018; 10(428): eaan0746.
[http://dx.doi.org/10.1126/scitranslmed.aan0746] [PMID: 29444976]
[25]
Marzoog BA, Vlasova TI. Myocardiocyte autophagy in the context of myocardiocytes regeneration: A potential novel therapeutic strategy. Egypt J Med Hum Genet 2022; 23(1): 41.
[http://dx.doi.org/10.1186/s43042-022-00250-8]
[26]
Marzoog BA, Vlasova TI. Beta-cell autophagy under the scope of hypoglycemic drugs; possible mechanism as a novel therapeutic target. Obes Metab 2022; 18(4): 465-70.
[http://dx.doi.org/10.14341/omet12778]
[27]
Liu J, Bi X, Chen T, et al. Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression. Cell Death Dis 2015; 6(7): e1827.
[http://dx.doi.org/10.1038/cddis.2015.193] [PMID: 26181207]
[28]
Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014; 20(4): 368-76.
[29]
Jansen F, Yang X, Hoelscher M, et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 2013; 128(18): 2026-38.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001720] [PMID: 24014835]
[30]
Masoud AG, Lin J, Azad AK, et al. Apelin directs endothelial cell differentiation and vascular repair following immune-mediated injury. J Clin Invest 2019; 130(1): 94-107.
[http://dx.doi.org/10.1172/JCI128469] [PMID: 31738185]
[31]
Xia W, Yin J, Zhang S, et al. Parkin modulates ERRα/eNOS signaling pathway in endothelial cells. Cell Physiol Biochem 2018; 49(5): 2022-34.
[http://dx.doi.org/10.1159/000493713] [PMID: 30244249]
[32]
Cuervo AM, Wong E. Chaperone-mediated autophagy: Roles in disease and aging. Cell Res 2014; 24(1): 92-104.
[http://dx.doi.org/10.1038/cr.2013.153] [PMID: 24281265]
[33]
Suzuki K, Ohsumi Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 2007; 581(11): 2156-61.
[http://dx.doi.org/10.1016/j.febslet.2007.01.096] [PMID: 17382324]
[34]
Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 2018; 19(6): 349-64.
[http://dx.doi.org/10.1038/s41580-018-0003-4] [PMID: 29618831]
[35]
Gatica D, Chiong M, Lavandero S, Klionsky DJ. Molecular mechanisms of autophagy in the cardiovascular system. Circ Res 2015; 116(3): 456-67.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303788] [PMID: 25634969]
[36]
Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010; 90(4): 1383-435.
[http://dx.doi.org/10.1152/physrev.00030.2009] [PMID: 20959619]
[37]
Di Malta C, Cinque L, Settembre C. Transcriptional regulation of autophagy: Mechanisms and diseases. Front Cell Dev Biol 2019; 7: 114.
[http://dx.doi.org/10.3389/fcell.2019.00114] [PMID: 31312633]
[38]
Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB III. Autophagy. Autophagy 2013; 9(7): 951-72.
[http://dx.doi.org/10.4161/auto.24273] [PMID: 24121596]
[39]
Marzoog BA. Endothelial cell autophagy in the context of disease development. Anat Cell Biol 2023; 56(1): 16-24.
[http://dx.doi.org/10.5115/acb.22.098] [PMID: 36267005]
[40]
Torisu T, Torisu K, Lee IH, et al. Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat Med 2013; 19(10): 1281-7.
[http://dx.doi.org/10.1038/nm.3288] [PMID: 24056772]
[41]
Bharath LP, Mueller R, Li Y, et al. Impairment of autophagy in endothelial cells prevents shear-stress-induced increases in nitric oxide bioavailability. Can J Physiol Pharmacol 2014; 92(7): 605-12.
[http://dx.doi.org/10.1139/cjpp-2014-0017] [PMID: 24941409]
[42]
Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L. Reactive oxygen species: Key regulators in vascular health and diseases. Br J Pharmacol 2018; 175(8): 1279-92.
[http://dx.doi.org/10.1111/bph.13828] [PMID: 28430357]
[43]
Montezano AC, Touyz RM. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid Redox Signal 2014; 20(1): 164-82.
[http://dx.doi.org/10.1089/ars.2013.5302] [PMID: 23600794]
[44]
Hua Y, Zhang J, Liu Q, et al. The induction of endothelial autophagy and its role in the development of atherosclerosis. Front Cardiovasc Med 2022; 9(Mar): 831847.
[http://dx.doi.org/10.3389/fcvm.2022.831847] [PMID: 35402552]
[45]
Vion AC, Kheloufi M, Hammoutene A, et al. Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proc Natl Acad Sci 2017; 114(41): E8675-84.
[http://dx.doi.org/10.1073/pnas.1702223114] [PMID: 28973855]
[46]
Tang X, Luo YX, Chen HZ, Liu DP. Mitochondria, endothelial cell function, and vascular diseases. Front Physiol 2014; 5: 175.
[http://dx.doi.org/10.3389/fphys.2014.00175] [PMID: 24834056]
[47]
Kumar V, Jurkunas UV. Mitochondrial dysfunction and mitophagy in fuchs endothelial corneal dystrophy. Cells 2021; 10(8): 1888.
[http://dx.doi.org/10.3390/cells10081888] [PMID: 34440658]
[48]
Chan KY, Yan C-CS, Roan H-Y, Hsu S-C, Tseng T-L, Hsiao C-D. Skin cells undergo asynthetic fission to expand body surfaces in zebrafish. Nature 2022; 605(7908): 119-25.
[http://dx.doi.org/10.1038/s41586-022-04641-0]
[49]
Zhunina OA, Yabbarov NG, Grechko AV, et al. The role of mitochondrial dysfunction in vascular disease, tumorigenesis, and diabetes. Front Mol Biosci 2021; 8: 671908.
[http://dx.doi.org/10.3389/fmolb.2021.671908] [PMID: 34026846]
[50]
Ramakrishnan RK, Bajbouj K, Hachim MY, et al. Enhanced mitophagy in bronchial fibroblasts from severe asthmatic patients. PLoS One 2020; 15(11): e0242695.
[http://dx.doi.org/10.1371/journal.pone.0242695] [PMID: 33253229]
[51]
Marzoog BA. Autophagy in cancer cell transformation: A potential novel therapeutic strategy. Curr Cancer Drug Targets 2022; 22(9): 749-56.
[http://dx.doi.org/10.2174/1568009622666220428102741] [PMID: 36062863]
[52]
Chang AL, Ulrich A, Suliman HB, Piantadosi CA. Redox regulation of mitophagy in the lung during murine Staphylococcus aureus sepsis. Free Radic Biol Med 2015; 78: 179-89.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.10.582] [PMID: 25450328]
[53]
Rouschop KMA, van den Beucken T, Dubois L, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 2010; 120(1): 127-41.
[http://dx.doi.org/10.1172/JCI40027] [PMID: 20038797]
[54]
Ward C, Martinez-Lopez N, Otten EG, et al. Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861(4): 269-84.
[http://dx.doi.org/10.1016/j.bbalip.2016.01.006] [PMID: 26778751]
[55]
Marzoog BA. Local lung fibroblast autophagy in the context of lung fibrosis pathogenesis. Curr Respir Med Rev 2023; 19(1): 6-11.
[http://dx.doi.org/10.2174/1573398X19666221130141600]
[56]
Marzoog BA, Vlasova TI. The possible puzzles of BCG vaccine in protection against COVID-19 infection. Egypt J Bronchol 2021; 15(1): 7.
[http://dx.doi.org/10.1186/s43168-021-00052-3]
[57]
Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ 2018; 25(6): 1080-93.
[http://dx.doi.org/10.1038/s41418-018-0086-7] [PMID: 29540794]
[58]
Yang M, Linn BS, Zhang Y, Ren J. Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2019; 1865(9): 2293-302.
[http://dx.doi.org/10.1016/j.bbadis.2019.05.007] [PMID: 31100337]
[59]
Qin C, Gu J, Liu R, et al. Release of mitochondrial DNA correlates with peak inflammatory cytokines in patients with acute myocardial infarction. Anatol J Cardiol 2017; 17(3): 224-8.
[PMID: 27721319]
[60]
Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012; 36(3): 401-14.
[http://dx.doi.org/10.1016/j.immuni.2012.01.009] [PMID: 22342844]
[61]
Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rav Card 2018; 15: 203-14.
[http://dx.doi.org/10.1038/nrcardio.2017.161]
[62]
Elmadhun NY, Sabe AA, Lassaletta AD, Chu LM, Sellke FW. Metformin mitigates apoptosis in ischemic myocardium. J Surg Res 2014; 192(1): 50-8.
[http://dx.doi.org/10.1016/j.jss.2014.05.005] [PMID: 24969550]
[63]
Soraya H, Rameshrad M, Mokarizadeh A, Garjani A. Metformin attenuates myocardial remodeling and neutrophil recruitment after myocardial infarction in rat. Bioimpacts 2017; 5(1): 3-8.
[http://dx.doi.org/10.15171/bi.2015.02] [PMID: 25901291]
[64]
Aoki Y, Kanki T, Hirota Y, et al. Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol Biol Cell 2011; 22(17): 3206-17.
[http://dx.doi.org/10.1091/mbc.e11-02-0145] [PMID: 21757540]
[65]
Manjithaya R, Jain S, Farré JC, Subramani S. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J Cell Biol 2010; 189(2): 303-10.
[http://dx.doi.org/10.1083/jcb.200909154] [PMID: 20385774]
[66]
Wu HB, Yang S, Weng HY, et al. Autophagy-induced KDR/VEGFR-2 activation promotes the formation of vasculogenic mimicry by glioma stem cells. Autophagy 2017; 13(9): 1528-42.
[http://dx.doi.org/10.1080/15548627.2017.1336277] [PMID: 28812437]
[67]
Schaaf MB, Houbaert D, Meçe O, Agostinis P. Autophagy in endothelial cells and tumor angiogenesis. Cell Death Differ 2019; 26(4): 665-79.
[http://dx.doi.org/10.1038/s41418-019-0287-8]
[68]
Zhao Y, Yang J, Liao W, et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 2010; 12(7): 665-75.
[http://dx.doi.org/10.1038/ncb2069] [PMID: 20543840]
[69]
Li C, Tan Y, Wu J, et al. Resveratrol improves bnip3-related mitophagy and attenuates high-fat-induced endothelial dysfunction. Front Cell Dev Biol 2020; 8: 796.
[http://dx.doi.org/10.3389/fcell.2020.00796] [PMID: 32923443]
[70]
Wong WT, Cooke JP. Therapeutic transdifferentiation of human fibroblasts into endothelial cells using forced expression of lineage-specific transcription factors. J Tissue Eng 2016; 7: 2041731416628329.
[http://dx.doi.org/10.1177/2041731416628329] [PMID: 27081470]
[71]
Margariti A, Winkler B, Karamariti E, et al. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc Natl Acad Sci 2012; 109(34): 13793-8.
[http://dx.doi.org/10.1073/pnas.1205526109] [PMID: 22869753]
[72]
Morita R, Suzuki M, Kasahara H, et al. ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells. Proc Natl Acad Sci 2015; 112(1): 160-5.
[http://dx.doi.org/10.1073/pnas.1413234112] [PMID: 25540418]
[73]
Lee S, Park C, Han JW, et al. Direct reprogramming of human dermal fibroblasts into endothelial cells using ER71/ETV2. Circ Res 2017; 120(5): 848-61.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309833] [PMID: 28003219]
[74]
Han JK, Shin Y, Sohn MH, et al. Direct conversion of adult human fibroblasts into functional endothelial cells using defined factors. Biomaterials 2021; 272: 120781.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120781] [PMID: 33848809]
[75]
Han JK, Chang SH, Cho HJ, et al. Direct conversion of adult skin fibroblasts to endothelial cells by defined factors. Circulation 2014; 130(14): 1168-78.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.007727] [PMID: 25186941]
[76]
Mathison M, Sanagasetti D, Singh VP, et al. Fibroblast transition to an endothelial “trans” state improves cell reprogramming efficiency. Sci Rep 2021; 11(1): 22605.
[http://dx.doi.org/10.1038/s41598-021-02056-x] [PMID: 34799643]
[77]
Anokye-Danso F, Trivedi CM, Juhr D, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 2011; 8(4): 376-88.
[http://dx.doi.org/10.1016/j.stem.2011.03.001] [PMID: 21474102]
[78]
Oh JE, Jung C, Yoon Y. Human induced pluripotent stem cell-derived vascular cells: Recent progress and future directions. J Cardiovasc Dev Dis 2021; 8(11): 148.
[http://dx.doi.org/10.3390/jcdd8110148] [PMID: 34821701]
[79]
Wälchli T, Farnhammer F, Fish JE. MicroRNA-based regulation of embryonic endothelial cell heterogeneity at single-cell resolution. Arterioscler Thromb Vasc Biol 2022; 42(3): 343-7.
[http://dx.doi.org/10.1161/ATVBAHA.122.317400] [PMID: 35196110]
[80]
Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107(6): 810-7.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.226357] [PMID: 20651284]
[81]
Rosano S, Corà D, Parab S, et al. A regulatory microRNA network controls endothelial cell phenotypic switch during sprouting angiogenesis. eLife 2020; 9: e48095.
[http://dx.doi.org/10.7554/eLife.48095] [PMID: 31976858]
[82]
Menghini R, Casagrande V, Marino A, et al. MiR-216a: A link between endothelial dysfunction and autophagy. Cell Death Dis 2014; 5(1): e1029.
[http://dx.doi.org/10.1038/cddis.2013.556] [PMID: 24481443]
[83]
Ginsberg M, James D, Ding BS, et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression. Cell 2012; 151(3): 559-75.
[http://dx.doi.org/10.1016/j.cell.2012.09.032] [PMID: 23084400]
[84]
Gao G, Chen W, Yan M, et al. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int J Mol Med 2019; 45(1): 195-209.
[http://dx.doi.org/10.3892/ijmm.2019.4407] [PMID: 31746373]
[85]
Boteon YL, Laing R, Mergental H, et al. Mechanisms of autophagy activation in endothelial cell and their targeting during normothermic machine liver perfusion. World J Gastroenterol 2017; 23(48): 8443-51.
[http://dx.doi.org/10.3748/wjg.v23.i48.8443] [PMID: 29358854]
[86]
Ghosh AK, Mau T, O’Brien M, Garg S, Yung R. Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue. Aging 2016; 8(10): 2525-37.
[http://dx.doi.org/10.18632/aging.101083] [PMID: 27777379]
[87]
Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: Defining a path forward. Cell 2019; 179(4): 813-27.
[http://dx.doi.org/10.1016/j.cell.2019.10.005] [PMID: 31675495]
[88]
Bjedov I, Cochemé HM, Foley A, et al. Fine-tuning autophagy maximises lifespan and is associated with changes in mitochondrial gene expression in Drosophila. PLoS Genet 2020; 16(11): e1009083.
[http://dx.doi.org/10.1371/journal.pgen.1009083] [PMID: 33253201]
[89]
Jiang F. Autophagy in vascular endothelial cells. Clin Exp Pharmacol Physiol 2016; 43(11): 1021-8.
[http://dx.doi.org/10.1111/1440-1681.12649] [PMID: 27558982]
[90]
Jeong IH, Bae WY, Choi JS, Jeong JW. Ischemia induces autophagy of endothelial cells and stimulates angiogenic effects in a hindlimb ischemia mouse model. Cell Death Dis 2020; 11(8): 624.
[http://dx.doi.org/10.1038/s41419-020-02849-4] [PMID: 32796816]
[91]
An R, Man Y, Cheng K, et al. Sickle red blood cell-derived extracellular vesicles activate endothelial cells and enhance sickle red cell adhesion mediated by von Willebrand factor. Br J Haematol 2023; 201(3): 552-63.
[http://dx.doi.org/10.1111/bjh.18616] [PMID: 36604837]
[92]
Piccin A, Steurer M, Feistritzer C, et al. Observational retrospective study of vascular modulator changes during treatment in essential thrombocythemia. Transl Res 2017; 184: 21-34.
[http://dx.doi.org/10.1016/j.trsl.2017.02.001] [PMID: 28259616]
[93]
Andrea P, Steurer M, Gianni B. New insights into sinusoidal obstruction syndrome. Intern Med J 2017; 47(10): 1173-83.
[http://dx.doi.org/10.1111/imj.13550]
[94]
Vindis C. Autophagy: An emerging therapeutic target in vascular diseases. Br J Pharmacol 2015; 172(9): 2167-78.
[http://dx.doi.org/10.1111/bph.13052] [PMID: 25537552]
[95]
Yang A, Kimmelman AC. Inhibition of autophagy attenuates pancreatic cancer growth independent of TP53/TRP53 status. Autophagy 2014; 10(9): 1683-4.
[http://dx.doi.org/10.4161/auto.29961] [PMID: 25046107]
[96]
Abdullah Marzoog B. Caveolae’s behavior in norm and pathology. Emir Med J 2023; 4(2): e080523216639.
[http://dx.doi.org/10.2174/0250688204666230508112229]
[97]
Marzoog BA. Autophagy behavior in post-myocardial infarction injury. Cardiovasc Hematol Disord Drug Targets 2023; 23.
[http://dx.doi.org/10.2174/1871529X23666230503123612] [PMID: 37138481]
[98]
Marzoog BA. Clinical case of a combination of endocrine, metabolic, and mental pathologies: Hypopituitarism associated with organic personality disorder. Emir Med J 2023; 4(2): e170423215880.
[http://dx.doi.org/10.2174/0250688204666230417092226]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy