Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Review Article

Recent Innovations and Patents of Lithium Extraction Techniques from Various Lithium Bearing Solutions

Author(s): Sewar Aljarrah, Aiman E. Al-Rawajfeh, Muhammad Kashif Shahid* and Qamar Ul Islam

Volume 16, Issue 4, 2023

Published on: 06 October, 2023

Page: [241 - 259] Pages: 19

DOI: 10.2174/0124055204266229230927035347

Price: $65

Abstract

Lithium, with its exceptional properties, such as remarkable redox activity and high specific heat capacity, finds widespread applications in thermonuclear fusion reactors, ceramics, batteries, aerospace, glass, metal additives, and photo-electricity. The growing demand for clean technology, especially electric cars and energy storage, has led to a significant rise in global lithium production. Brines now constitute a major portion of the world's lithium output, driving research in lithium extraction and purification methods. This study examines recent innovative research and patents, including various extraction techniques, sorbents, electrolysis-based approaches, and costeffective methods. The study identifies gaps and limitations in existing lithium extraction technology and proposes future research areas to advance the field. The bibliographic analysis underscores the importance of further investigation to overcome current obstacles and drive progress in lithium extraction.

Graphical Abstract

[1]
Makuza B, Tian Q, Guo X, Chattopadhyay K, Yu D. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. J Power Sources 2021; 491: 229622.
[http://dx.doi.org/10.1016/j.jpowsour.2021.229622]
[2]
Bauer M, Gitlin M. Lithium and its history. In: Bauer M, Gitlin M, Eds. The Essential Guide to Lithium Treatment. Cham: Springer International Publishing 2016; pp. 25-31.
[http://dx.doi.org/10.1007/978-3-319-31214-9_3]
[3]
Ahmadi M, Ghaemi A, Qasemnazhand M. Lithium hydroxide as a high capacity adsorbent for CO2 capture: Experimental, modeling and DFT simulation. Sci Rep 2023; 13(1): 7150.
[http://dx.doi.org/10.1038/s41598-023-34360-z] [PMID: 37130879]
[4]
Sadoway DR, Sadoway DR. Toward new technologies for the production of lithium. J Miner Met Mater Soc 1998; 50(5): 24-6.
[http://dx.doi.org/10.1007/s11837-998-0027-x] [PMID: 10187174]
[5]
Dessemond C, Lajoie-Leroux F, Soucy G, Laroche N, Magnan JF. Spodumene: The lithium market, resources and processes. Minerals 2019; 9(6): 334.
[http://dx.doi.org/10.3390/min9060334]
[6]
Meshram P, Pandey BD, Mankhand TR. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy 2014; 150: 192-208.
[http://dx.doi.org/10.1016/j.hydromet.2014.10.012]
[7]
Liu G, Zhao Z, Ghahreman A. Novel approaches for lithium extraction from salt-lake brines: A review. Hydrometallurgy 2019; 187: 81-100.
[http://dx.doi.org/10.1016/j.hydromet.2019.05.005]
[8]
Shi W, Liu X, Ye C, Cao X, Gao C, Shen J. Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane. Separ Purif Tech 2019; 210: 885-90.
[http://dx.doi.org/10.1016/j.seppur.2018.09.006]
[9]
Li B, Wu J, Lu J. Life cycle assessment considering water-energy nexus for lithium nanofiltration extraction technique. J Clean Prod 2020; 261: 121152.
[http://dx.doi.org/10.1016/j.jclepro.2020.121152]
[10]
Pan XJ, Dou ZH, Meng DL, Han XX, Zhang TA. Electrochemical separation of magnesium from solutions of magnesium and lithium chloride. Hydrometallurgy 2020; 191: 105166.
[http://dx.doi.org/10.1016/j.hydromet.2019.105166]
[11]
Arroyo F, Morillo J, Usero J, Rosado D, El Bakouri H. Lithium recovery from desalination brines using specific ion-exchange resins. Desalination 2019; 468(March): 114073.
[http://dx.doi.org/10.1016/j.desal.2019.114073]
[12]
Flexer V, Baspineiro CF, Galli CI. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Sci Total Environ 2018; 639: 1188-204.
[http://dx.doi.org/10.1016/j.scitotenv.2018.05.223] [PMID: 29929287]
[13]
Gao D, Yu X, Guo Y, et al. Extraction of lithium from salt lake brine with triisobutyl phosphate in ionic liquid and kerosene. Chem Res Chin Univ 2015; 31(4): 621-6.
[http://dx.doi.org/10.1007/s40242-015-4376-z]
[14]
Hu S, Sun Y, Pu M, Yun R, Xiang X. Determination of boundary conditions for highly efficient separation of magnesium and lithium from salt lake brine by reaction-coupled separation technology. Separ Purif Tech 2019; 229(April): 115813.
[http://dx.doi.org/10.1016/j.seppur.2019.115813]
[15]
Li H, Li L, Peng X, Ji L, Li W. Selective recovery of lithium from simulated brine using different organic synergist. Chin J Chem Eng 2019; 27(2): 335-40.
[http://dx.doi.org/10.1016/j.cjche.2018.04.010]
[16]
U.S. Geological Survey. Mineral Commodity Summaries. 2023. Available from: https://www.usgs.gov/publications/mineral-commodity-summaries-2023
[17]
Chen WS, Lee CH, Ho HJ. Purification of lithium carbonate from sulphate solutions through hydrogenation using the Dowex G26 resin. Appl Sci 2018; 8(11): 2252.
[http://dx.doi.org/10.3390/app8112252]
[18]
Li X, Wang Z, Zhang H, Zhang W, Jiang J, Guo R. An ion-sieve-tailored biomimetic porous nanofiber as an efficient adsorbent for extraction of lithium from brine. New J Chem 2023; 47(9): 4187-91.
[http://dx.doi.org/10.1039/D2NJ06072H]
[19]
Liu C, Long J, Luo W, et al. Synergistic strengthening mechanisms of mechanical activation-microwave reduction for selective lithium extraction from spent lithium batteries. Waste Manag 2023; 155: 281-91.
[http://dx.doi.org/10.1016/j.wasman.2022.11.009] [PMID: 36403412]
[20]
Jiang H, Yang Y, Yu J. Application of concentration-dependent HSDM to the lithium adsorption from brine in fixed bed columns. Separ Purif Tech 2020; 241: 116682.
[http://dx.doi.org/10.1016/j.seppur.2020.116682]
[21]
Park SH, Kim JH, Moon SJ, et al. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. J Membr Sci 2020; 598: 117683.
[http://dx.doi.org/10.1016/j.memsci.2019.117683]
[22]
Shi D, Cui B, Li L, Xu M, Zhang Y, Peng X. Removal of calcium and magnesium from lithium concentrated solution by solvent extraction method using D2EHPA. Desalination 2020; 479: 114306.
[http://dx.doi.org/10.1016/j.desal.2019.114306]
[23]
Tadesse B, Makuei F, Albijanic B, Dyer L. The beneficiation of lithium minerals from hard rock ores: A review. Miner Eng 2019; 131(131): 170-84.
[http://dx.doi.org/10.1016/j.mineng.2018.11.023]
[24]
Rioyo J, Tuset S, Grau R. Lithium extraction from spodumene by the traditional sulfuric acid process: A review. Miner Process Extr Metall Rev 2022; 43(1): 97-106.
[http://dx.doi.org/10.1080/08827508.2020.1798234]
[25]
Somrani A, Hamzaoui AH, Pontie M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO). Desalination 2013; 317: 184-92.
[http://dx.doi.org/10.1016/j.desal.2013.03.009]
[26]
Harvianto GR, Kim SH, Ju C-S. Solvent extraction and stripping of lithium ion from aqueous solution and its application to seawater. Rare Met 2016; 35(12): 948-53.
[http://dx.doi.org/10.1007/s12598-015-0453-1]
[27]
Jandová J. , Dvořák P, Kondás J, Havlák L. Recovery of lithium from waste materials. Ceram - Silikaty 2012; 56(1): 50-4.
[28]
Song Y, Zhao Z. Recovery of lithium from spent lithium-ion batteries using precipitation and electrodialysis techniques. Separ Purif Tech 2018; 206: 335-42.
[http://dx.doi.org/10.1016/j.seppur.2018.06.022]
[29]
Grágeda M, González A, Grágeda M, Ushak S. Purification of brines by chemical precipitation and ion - exchange processes for obtaining battery - grade lithium compounds. Int J Energy Res 2017; 42(7): 2386-99.
[http://dx.doi.org/10.1002/er.4008]
[30]
Razmjou A, Eshaghi G, Orooji Y, et al. Lithium ion-selective membrane with 2D subnanometer channels. Water Res 2019; 159: 313-23.
[http://dx.doi.org/10.1016/j.watres.2019.05.018] [PMID: 31102860]
[31]
Wei S, Wei Y, Chen T, Liu C, Tang Y. Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water. Chem Eng J 2020; 379: 122407.
[http://dx.doi.org/10.1016/j.cej.2019.122407]
[32]
Zhao LM, Chen QB, Ji ZY, et al. Separating and recovering lithium from brines using selective-electrodialysis: Sensitivity to temperature. Chem Eng Res Des 2018; 140: 116-27.
[http://dx.doi.org/10.1016/j.cherd.2018.10.009]
[33]
Paquin F, Rivnay J, Salleo A, Stingelin N, Silva C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J Mater Chem C Mater Opt Electron Devices 2015; 3: 10715-22.
[http://dx.doi.org/10.1039/C5TC02043C]
[34]
Ha Y, Jung HB, Lim H, et al. Continuous lithium extraction from aqueous solution using flow-electrode capacitive deionization. Energies 2019; 12(15): 2913.
[http://dx.doi.org/10.3390/en12152913]
[35]
Zhang Y, Hu Y, Wang L, Sun W. Systematic review of lithium extraction from salt-lake brines via precipitation approaches. Miner Eng 2019; 139: 105868.
[http://dx.doi.org/10.1016/j.mineng.2019.105868]
[36]
Sun Y, Guo X, Hu S, Xiang X. Highly efficient extraction of lithium from salt lake brine by LiAl-layered double hydroxides as lithium-ion-selective capturing material. J Energy Chem 2019; 34: 80-7.
[http://dx.doi.org/10.1016/j.jechem.2018.09.022]
[37]
Razmjou A, Asadnia M, Hosseini E, Habibnejad Korayem A, Chen V. Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nat Commun 2019; 10(1): 5793.
[http://dx.doi.org/10.1038/s41467-019-13648-7] [PMID: 31857585]
[38]
Dang H, Li N, Chang Z, Wang B, Zhan Y, Wu X. Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery. Sep Purif Technol 2020; 233: 116025.
[http://dx.doi.org/10.1016/j.seppur.2019.116025]
[39]
Gong L, Ouyang W, Li Z, Han J. Direct numerical simulation of continuous lithium extraction from high Mg2+/Li+ ratio brines using microfluidic channels with ion concentration polarization. J Membr Sci 2018; 556: 34-41.
[http://dx.doi.org/10.1016/j.memsci.2018.03.078] [PMID: 30319169]
[40]
Gong L, Li Z, Han J. Numerical simulation of continuous extraction of highly concentrated Li+ from high Mg2+/Li+ ratio brines in an ion concentration polarization-based microfluidic system. Separ Purif Tech 2019; 217(217): 174-82.
[http://dx.doi.org/10.1016/j.seppur.2019.01.036]
[41]
Garipova AR, Kamkina AG, Urazgalieva AA, Garifzyanov AR, Cherkasov RA. Membrane extraction of lithium and sodium ions with 2-ethylhexyl hydrogen [Bis(2-ethylhexyl)amino]methylphosphonate. Russ J Gen Chem 2018; 88(1): 120-3.
[http://dx.doi.org/10.1134/S107036321801019X]
[42]
Li Y, Zhao YJ, Wang H, Wang M. The application of nanofiltration membrane for recovering lithium from salt lake brine. Desalination 2019; 468: 114081.
[http://dx.doi.org/10.1016/j.desal.2019.114081]
[43]
Wang X, Jing Y, Liu H, et al. Extraction of lithium from salt lake brines by bis[(trifluoromethyl)sulfonyl]imide-based ionic liquids. Chem Phys Lett 2018; 707: 8-12.
[http://dx.doi.org/10.1016/j.cplett.2018.07.030]
[44]
Shahid MK, Mainali B, Rout PR, et al. A review of membrane-based desalination systems powered by renewable energy sources. Water 2023; 15(3): 534.
[http://dx.doi.org/10.3390/w15030534]
[45]
Zhang Y, Wang L, Sun W, Hu Y, Tang H. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review. J Ind Eng Chem 2020; 81: 7-23.
[http://dx.doi.org/10.1016/j.jiec.2019.09.002]
[46]
Shahid MK, Pyo M, Choi YG. Inorganic fouling control in reverse osmosis wastewater reclamation by purging carbon dioxide. Environ Sci Pollut Res Int 2019; 26(2): 1094-102.
[http://dx.doi.org/10.1007/s11356-017-9008-3] [PMID: 28432627]
[47]
Ji L, Li L, Shi D, et al. Extraction equilibria of lithium with N, N -bis(2-ethylhexyl)-3-oxobutanamide and tributyl phosphate in kerosene and FeCl 3. Hydrometallurgy 2016; 164: 304-12.
[http://dx.doi.org/10.1016/j.hydromet.2016.06.022]
[48]
Lai X, Xiong P, Zhong H. Extraction of lithium from brines with high Mg/Li ratio by the crystallization-precipitation method. Hydrometallurgy 2020; 192: 105252.
[http://dx.doi.org/10.1016/j.hydromet.2020.105252]
[49]
Pramanik BK, Asif MB, Kentish S, Nghiem LD, Hai FI. Lithium enrichment from a simulated salt lake brine using an integrated nanofiltration-membrane distillation process. J Environ Chem Eng 2019; 7(5): 103395.
[http://dx.doi.org/10.1016/j.jece.2019.103395]
[50]
Liu X, Chen X, He L, Zhao Z. Study on extraction of lithium from salt lake brine by membrane electrolysis. Desalination 2015; 376: 35-40.
[http://dx.doi.org/10.1016/j.desal.2015.08.013]
[51]
Luong VT, Kang DJ, An JW, Kim MJ, Tran T. Factors affecting the extraction of lithium from lepidolite. Hydrometallurgy 2013; 134-135: 54-61.
[http://dx.doi.org/10.1016/j.hydromet.2013.01.015]
[52]
Shi D, Zhang L, Peng X, et al. Extraction of lithium from salt lake brine containing boron using multistage centrifuge extractors. Desalination 2018; 441: 44-51.
[http://dx.doi.org/10.1016/j.desal.2018.04.029]
[53]
Sun SY, Cai LJ, Nie XY, Song X, Yu JG. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane. J Water Process Eng 2015; 7: 210-7.
[http://dx.doi.org/10.1016/j.jwpe.2015.06.012]
[54]
Shahid MK, Pyo M, Choi YG. Carbonate scale reduction in reverse osmosis membrane by CO2 in wastewater reclamation. Membr Water Treatment 2017; 8(2): 125-36.
[http://dx.doi.org/10.12989/mwt.2017.8.2.125]
[55]
Yang S, Liu G, Wang J, Cui L, Chen Y. Recovery of lithium from alkaline brine by solvent extraction with functionalized ionic liquid. Fluid Phase Equilib 2019; 493: 129-36.
[http://dx.doi.org/10.1016/j.fluid.2019.04.015]
[56]
Yi D, Xiao L, Wang B, Tian Z, Zhu B, Yu H. Method for quickly extracting lithium carbonate from saline lake water. United States Patent; US9932241B2,, 2018.
[57]
Li R, Wang Y, Duan W, et al. Selective extraction of lithium ions from salt lake brines using a tributyl phosphate-sodium tetraphenyl boron-phenethyl isobutyrate system. Desalination 2023; 555: 116543.
[http://dx.doi.org/10.1016/j.desal.2023.116543]
[58]
Wei Z, Mingang Z, Min Z, Jianwu Q, Wanpeng H, Yanbo Z. Device and method for extracting lithium from salt lake brine with high magnesium-lithium ratio. Patent China; CN115992315A, 2023.
[59]
Xu W, Liu D, He L, Zhao Z. A comprehensive membrane process for preparing lithium carbonate from high Mg/Li brine. Membranes 2020; 10(12): 371.
[http://dx.doi.org/10.3390/membranes10120371] [PMID: 33256217]
[60]
Yang H, Li Q, Li B, Guo F, Meng Q, Li W. Optimization of operation conditions for extracting lithium ions from calcium chloride-type oil field brine. Int J Miner Metall Mater 2012; 19(4): 290-4.
[http://dx.doi.org/10.1007/s12613-012-0553-y]
[61]
Wang H, Zhong Y, Du B, Zhao Y, Wang M. Recovery of both magnesium and lithium from high Mg/Li ratio brines using a novel process. Hydrometallurgy 2018; 175: 102-8.
[http://dx.doi.org/10.1016/j.hydromet.2017.10.017]
[62]
Liu X, Zhong M, Chen X, Zhao Z. Separating lithium and magnesium in brine by aluminum-based materials. Hydrometallurgy 2018; 176: 73-7.
[http://dx.doi.org/10.1016/j.hydromet.2018.01.005]
[63]
Tran KT, Han KS, Kim SJ, Kim MJ, Tran T. Recovery of magnesium from Uyuni salar brine as hydrated magnesium carbonate. Hydrometallurgy 2016; 160: 106-14.
[http://dx.doi.org/10.1016/j.hydromet.2015.12.008]
[64]
Li Y, Zhao Z, Liu X, Chen X, Zhong M. Extraction of lithium from salt lake brine by aluminum-based alloys. Trans Nonferrous Met Soc China 2015; 25(10): 3484-9.
[http://dx.doi.org/10.1016/S1003-6326(15)64032-8]
[65]
Heidari N, Momeni P. Selective adsorption of lithium ions from Urmia Lake onto aluminum hydroxide. Environ Earth Sci 2017; 76(16): 551.
[http://dx.doi.org/10.1007/s12665-017-6885-1]
[66]
Wahyudi A, Septiarani A. Lithium extraction from dieng geothermal brine using solvent extraction – a preliminary study. Indones Min J 2023; 26(1): 29-37.
[67]
Burba I. Sorbent for lithium extraction. Patent US8753594B1,, 2014.
[68]
Harrison S, Sharma CVK, Viani BE, Peykova D. Lithium extraction composition and method of preparation thereof. . United States Patent; USOO8637428B1,, 2014.
[69]
Harrison S. Porous activated alumina based sorbent for lithium extraction. Patent US8901032B1, 2019.
[70]
Reich R, Danisi RM, Kluge T, Eiche E, Kolb J. Structural and compositional variation of zeolite 13X in lithium sorption experiments using synthetic solutions and geothermal brine. Microporous Mesoporous Mater 2023; 359: 112623.
[http://dx.doi.org/10.1016/j.micromeso.2023.112623]
[71]
Wang M, Zhang T, Meng Z, et al. Self-intercepting interference of hydrogen-bond induced flexible hybrid film to facilitate lithium extraction. Chem Eng J 2023; 458: 141403.
[http://dx.doi.org/10.1016/j.cej.2023.141403]
[72]
Jones CM. Ion lithium extraction apparatus. United States Patent; US11638916B1,, 2023.
[73]
Bhattacharyya S, Sobek D. Oxygenated metal compounds for selective extraction of lithium salts and methods of use thereof. United States Patent; US20230047281A1,, 2023.
[74]
Chon U, Kim KH, Kwon OJ, Song CH, Han GC, Kim KY. Method of extracting lithium with high purity from lithium bearing solution by electrolysis. United States Patent; US8936711B2, 2015.
[75]
Lawagon CP, Nisola GM, Cuevas RAI, Kim H, Lee SP, Chung WJ. Li1-Ni0.33Co1/3Mn1/3O2/Ag for electrochemical lithium recovery from brine. Chem Eng J 2018; 348: 1000-11.
[http://dx.doi.org/10.1016/j.cej.2018.05.030]
[76]
Liu Y, Zhu Q, Yu X, Yang P, Liu K. Modeling and performance predictions of electrochemical lithium extraction: Impact of leakage current. Desalination 2023; 550: 116395.
[http://dx.doi.org/10.1016/j.desal.2023.116395]
[77]
Xu W, Liu D, Liu X, Wang D, He L, Zhao Z. Highly selective and efficient lithium extraction from brines by constructing a novel multiple-crack-porous LiFePO4/FePO4 electrode. Desalination 2023; 546: 116188.
[http://dx.doi.org/10.1016/j.desal.2022.116188]
[78]
Zhao X, Yang S, Hou Y, et al. Recent progress on key materials and technical approaches for electrochemical lithium extraction processes. Desalination 2023; 546: 116189.
[http://dx.doi.org/10.1016/j.desal.2022.116189]
[79]
Guo ZY, Ji ZY, Wang J, Guo XF, Liang JS. Electrochemical lithium extraction based on “rocking-chair” electrode system with high energy-efficient: The driving mode of constant current-constant voltage. Desalination 2022; 533: 115767.
[http://dx.doi.org/10.1016/j.desal.2022.115767]
[80]
Guo ZY, Ji ZY, Wang J, et al. Development of electrochemical lithium extraction based on a rocking chair system of LiMn2O4/Li1-xMn2O4: Self-driven plus external voltage driven. Separ Purif Tech 2021; 259: 118154.
[http://dx.doi.org/10.1016/j.seppur.2020.118154]
[81]
Lawagon CP, Nisola GM, Cuevas RAI, et al. Li Ni0.5Mn1.5O4/Ag for electrochemical lithium recovery from brine and its optimized performance via response surface methodology. Separ Purif Tech 2019; 212: 416-26.
[http://dx.doi.org/10.1016/j.seppur.2018.11.046]
[82]
Zhao X, Feng M, Jiao Y, Zhang Y, Wang Y, Sha Z. Lithium extraction from brine in an ionic selective desalination battery. Desalination 2020; 481: 114360.
[http://dx.doi.org/10.1016/j.desal.2020.114360]
[83]
Wang Y, Zhang J, Cheng Z, Xiang X. Hydrophilic modification using polydopamine on core–shell Li 1.6 Mn 1.6 O 4 @carbon electrodes for lithium extraction from lake brine. ACS Sustain Chem Eng 2022; 10(27): 8970-9.
[http://dx.doi.org/10.1021/acssuschemeng.2c02706]
[84]
Jang Y, Hou CH, Park S, Kwon K, Chung E. Direct electrochemical lithium recovery from acidic lithium-ion battery leachate using intercalation electrodes. Resour Conserv Recycling 2021; 175: 105837.
[http://dx.doi.org/10.1016/j.resconrec.2021.105837]
[85]
Han T, Yu X, Guo Y, Li M, Duo J, Deng T. Green recovery of low concentration of lithium from geothermal water by a novel FPO/KNiFC ion pump technique. Electrochim Acta 2020; 350: 136385.
[http://dx.doi.org/10.1016/j.electacta.2020.136385]
[86]
Siekierka A, Kujawa J, Kujawski W, Bryjak M. Lithium dedicated adsorbent for the preparation of electrodes useful in the ion pumping method. Separ Purif Tech 2018; 194: 231-8.
[http://dx.doi.org/10.1016/j.seppur.2017.11.045]
[87]
Zhao H, Wang Y, Cheng H. Recent advances in lithium extraction from lithium-bearing clay minerals. Hydrometallurgy 2023; 217: 106025.
[http://dx.doi.org/10.1016/j.hydromet.2023.106025]
[88]
Chon U, Kim KY, Han G-C, Song CH, Jang YS, Jeung K-U. Method for extraction of lithium from lithium bearing solution. United States Patent; US010017838B2, 2018.
[89]
Chon U, Kwon OJ, Kim KH, Song CH, Han GC, Kim KY. Method for economical extraction of lithium from solution including lithium. United States Patent; US8778289B2, 2014.
[90]
Chong U, Kim KY, Han G-C, Song CH, Jang YS, Jeung K-U. Method for extraction of lithium from lithium bearing solution. United States Patent; US20140348734A1 2014.
[91]
Cobo MJ, López-Herrera AG, Herrera-Viedma E, Herrera F. Science mapping software tools: Review, analysis, and cooperative study among tools. J Am Soc Inf Sci Technol 2011; 62(7): 1382-402.
[http://dx.doi.org/10.1002/asi.21525]
[92]
Lazarides MK, Lazaridou IZ, Papanas N. Bibliometric analysis: Bridging informatics with science. Int J Low Extrem Wounds 2023; 15347346231153538.
[http://dx.doi.org/10.1177/15347346231153538] [PMID: 36710511]
[93]
Din SU, Khan MA, Farid H, Rodrigo P. Proactive personality: A bibliographic review of research trends and publications. Pers Individ Dif 2023; 205: 112066.
[http://dx.doi.org/10.1016/j.paid.2022.112066]
[94]
Shahid J, Kashif A, Shahid MK. Enhancing post-operative recovery in spastic diplegia through physical therapy rehabilitation following selective dorsal rhizotomy: A case report and thorough literature analysis. Children 2023; 10(5): 842.
[http://dx.doi.org/10.3390/children10050842] [PMID: 37238390]
[95]
Shahid J, Kashif A, Shahid MK. A comprehensive review of physical therapy interventions for stroke rehabilitation: Impairment-based approaches and functional goals. Brain Sci 2023; 13(5): 717.
[http://dx.doi.org/10.3390/brainsci13050717] [PMID: 37239189]
[96]
Jagwani P, Singh VB, Agrawal N, Tripathi AP. Blockchain technology and software engineering practices: A systematic review of literature using topic modelling approach. Int J Syst Assur Eng Manag 2023; 14(S1): 1-17.
[http://dx.doi.org/10.1007/s13198-022-01823-x]
[97]
Ruan H, Wei Z, Shang W, Wang X, He H. Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging. Appl Energy 2023; 336: 120751.
[http://dx.doi.org/10.1016/j.apenergy.2023.120751]
[98]
Ji S, Zhu J, Lyu Z, et al. Deep learning enhanced lithium-ion battery nonlinear fading prognosis. J Energy Chem 2023; 78: 565-73.
[http://dx.doi.org/10.1016/j.jechem.2022.12.028]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy